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Abstract. Universality of short range correlations has been investigated both

in coordinate and in momentum space, by means of one-and two-body densities

and momentum distributions. In this contribution we discuss one- and two-

body momentum distributions across a wide range of nuclei and their common

features which can be ascribed to the presence of short range correlations. Cal-

culations for few-body nuclei, namely 3He and 4He, have been performed us-

ing exact wave functions obtained with Argonne nucleon-nucleon interactions,

while the linked cluster expansion technique is used for medium-heavy nuclei.

The center of mass motion of a nucleon-nucleon pair in the nucleus, embedded

in the full two-body momentum distribution nNN (krel,KCM ), is shown to

exhibit the universal behavior predicted by the two-nucleon correlation model,

in which the nucleon-nucleon pair moves inside the nucleus as a deuteron in

a mean-field. Moreover, the deuteron-like spin-isospin (ST)=(10) contribution

to the pn two-body momentum distribution is obtained, and shown to exactly

scale to the deuteron momentum distribution. Universality of correlations in

two-body distributions is cast onto the one-body distribution n(k1), obtained

by integration of the two-body nNN (k1,k2): in particular, the high momen-

tum part of n(k1) exhibits the same pattern for all considered nuclei, in favor

of a universal character of the short range structure of the nuclear wave func-

tion. Perspectives of this work, namely the calculation of reactions involving

light and complex nuclei with realistic wave functions and effects of Final State

Interactions (FSI), investigated by means of distorted momentum distributions

within the Glauber multiple scattering approach, are eventually discussed.

We report on recent developments on the investigation of Short Range Cor-

relations (SRC) in nuclei, whose common properties have recently been studied

by a few authors in light [1–5] and medium-heavy [6–9] nuclei using realistic

nuclear wave functions. Common properties among different nuclei have been

investigated both in coordinate and momentum space using various methods

and Nucleon-Nucleon (NN) interaction potentials for generating nuclear wave

functions. Such an effort from the theoretical side was motivated by the re-

cent observation of NN SRC in different experiments (reviewed in [10]): two
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nucleon at high four-momentum transfer with protons and electrons, namely

A(p,ppN)X of Ref. [11] and A(e,e′pN)X of Refs. [12,13], and inclusive electron

scattering A(e,e′)X of Refs. [14, 15], have provided evidence that NN SRC: i)

exist in the ground-state wave function of nuclei; ii) can be detected in differ-

ent reactions, using different projectiles and final states, suggesting some uni-

versal character, though direct measurement of two nucleons in a correlated

pair have been performed only in the carbon nucleus; iii) are dominated by

tensor correlations, which is suggested by the small observed fraction of cor-

related proton-proton pair as compared to the proton-neutron ones, and origi-

nating from the two-body tensor operator acting between pairs of nucleons in

a state with spin S=1 and isospin T=0. Universality patterns observed in mo-

mentum space in the high-momentum region, correspond to similar behavior in

coordinate space [4, 16–19]. Moreover, the existence of SRC in nuclei has been

related to nuclear EMC effect and poses the question of the validity of many of

the proposed models of the EMC effect [20, 21].

The dominance of the tensor part of the NN interaction and its effects on the

two-body momentum distributions were clearly described from different theo-

retical groups for light [1] and medium-heavy nuclei [7, 8]. Moreover, the pn

vs. pp content of the two-body momentum distributions of a nucleon pair with

zero center of mass was calculated in Ref. [7], and found to be compatible with

the observed ratio of pn over pp correlated pairs. Nevertheless, a consistent

and a quantitative description of the detected pairs in the experimental kinemat-

ics should use the full information contained in the wave functions, so that the

center of mass momentum of the pair is allowed to be different from zero, and

should take into account the complex FSI suffered by the two nucleons before

leaving the nucleus and being detected.

The calculation of the center of mass dependence of two-body momentum

distributions for light [3] and medium-heavy nuclei [22,23] has been performed

with exact wave functions [24, 25], in the first case, while it relies on the linked

cluster expansion method presented in Refs. [26, 27], in the case of A≥12. The

linked cluster expansion formalism makes use of variationally determined cor-

relation functions coupled to the spin-isospin dependent operators adopted by

realistic interactions. The correlation function approach is common to several

methods, and it is used to describe both finite nuclei [28–32] and nuclear mat-

ter [33–38]. The linked cluster expansion method allows the computational de-

mand to be reduced with respect to exact methods, so that the full one- and two-

body, diagonal and non-diagonal density distributions can be calculated, along

with the individual contributions of given spin and isospin states.

The distributions discussed in this contribution, for all the nuclei we consid-

ered, are obtained by computing the expectation value of suitable operators on

the ground-state wave function. The non-diagonal one-body density is obtained
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as:

ρ
(1)
N (r1; r

′
1) =

∑

{σ,τ}

∫ A
∏

j=2

drjdr
′
jΨ

⋆({x}) ρ̂(1) Ψ({x′}) , (1)

while the two-body density is:

ρ
(2)
NN (r1, r2, ; r

′
1, r

′
2) =

∑

{σ,τ}

∫ A
∏

j=3

drjdr
′
jΨ

⋆({x}) ρ̂(2) Ψ({x′}) , (2)

where {σ} and {τ} stand for the spin and isospin degrees of freedom, respec-

tively, of the A nucleons; x = {r, σ, τ}, and the primed variables stands for

fluctuation of the spatial part r, while the spin and isospin variables of the corre-

sponding particle are fixed. We use a Slater determinant Φ of shell model single

particle wave function for Ψ, and the correlations are implemented, by means

of an operator F̂ containing the correlation functions and corresponding state-

dependent operators [27]: Ψ(x1, · · · ,xA) = F̂ (x1, · · · ,xA)Φ(x1, · · · ,xA),
in such a way that the final wave function is totally antisymmetric.

The operators appearing in Eqs. (1) and (2) are respectively defined as:

ρ̂(1)=

A
∑

i

δ(ri − r̃1) δ(r
′
i − r̃′1)

A
∏

k 6=i

δ(rk − r′k) ; (3)

ρ̂(2)=
A
∑

i<j

δ(ri − r̃1) δ(rj − r̃2) δ(r
′
i − r̃′

1) δ(r
′
j − r̃′

2)
A
∏

k 6=i,j

δ(rk − r′k) . (4)

The one- and two-body momentum distributions are obtained from Eqs. (1)

and (2) by proper Fourier transformations:

nN (k1) =
1

(2π)3

∫

dr1dr
′
1 e

ik1·(r1−r′

1
) ρ

(1)
N (r1; r

′
1) , (5)

nNN (k1,k2) =
1

(2π)6

∫

dr1dr2dr
′
1dr

′
2 e

ik1·(r1−r′

1
) ·

· eik2·(r2−r′

2
) ρ

(2)
NN(r1, r2; r

′
1, r

′
2) ; (6)

the two-body momentum distributions can be conveniently rewritten in terms of

the relative and center of mass momenta as follows:

nNN (krel,KCM ) =
1

(2π)6

∫

drdRdr′dR′ eikrel·(r−r′) ·

· eiKCM ·(R−R′

) ρ(r,R; r′,R′) , (7)

were r = r1 − r2, R = (r1 + r2)/2 (and analogous definitions for the primed

vectors) and krel = (k1−k2)/2, KCM = k1+k2. The partial spin and isospin
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contributions to the quantities above have been obtained by complementing the

density operators of Eq. (4) by the projection operators on specific total spin S

and isospin T of the “1,2” NN pair; extended definitions, normalization condi-

tions and relations between the various formulas of Eqs. (1) and (2) are given in

Ref. [6]. It is worth mentioning that actual calculations of two-body momentum

distributions, which are obtained by sampling the one- and two-body densities

after multidimensional integration of the few-body wave functions, in the case

of 3He and 4He, and of the corresponding linked cluster expansion formulas

given in details in Refs. [27, 39], for complex nuclei, are the following. In the

case of the relative two-body distribution, obtained by integrating Eq. (7) over

the center of mass momentum, we use the following coordinates: x = r − r′,

t = 1
2 (r + r′), s = R−R′ and w = 1

2

(

R+R′
)

. Performing the coordinate

transformation into Eq. (7) and integrating over KCM , we have:

nNN
rel (krel) =

∫

dKCM nNN(krel,KCM ) =

=
1

(2π)3

∫

dx dt ds dw eikrel·x ρ
(2)
NN (x, t, s,w) =

=
1

(2π)3

∫

dx eikrel·x ρ
(2)
NN (x) =

=
1

2π2

∫ ∞

0

dxx
sin krel x

krel
ρ
(2)
NN (x) , (8)

where we choose krel along a given direction that we define as the z axis and

with, obviously:

ρ
(2)
NN(x) =

∫

dt ds dw ρ
(2)
NN(x, t, s,w) , (9)

with x = |x|. Analogously, we have

nNN
CM (KCM ) =

1

2π2

∫ ∞

0

ds s
sinKCM s

KCM

ρ
(2)
NN(s) . (10)

In the case we want to fix a few (small) values of KCM , and plot the resulting

krel distribution, we have to choose the relative orientation of krel and KCM .

If we choose both of the them along the same direction, for example z, Eq. (7)

becomes

nNN
‖ (krel,KCM ) =

=
1

(2π)6
Re

∫

dx dt ds dw eiKCM ·s eikrel·x ρ
(2)
NN (x, t, s,w) =

=
1

(2π)6
Re

∫

dx dt ds dw eiKCM sz ei krel xz ρ
(2)
NN (x, t, s,w) =

=
1

(2π)6

∫ ∞

−∞

dxz dsz cos (krel xz +KCM sz) ρ
(2)
NN (xz , sz) , (11)
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where, in this case, we have to sample a two-dimensional ρ
(2)
NN (xz , sz), defined

as

ρ
(2)
NN(xz , sz) =

∫

dtdw dxx dxy dsx dsy ρ
(2)
NN (x, t, s,w) , (12)

and we have taken the real part in Eq. (11). Similarly, we can calculate the

distribution in the case of the relative momentum perpendicular to the center of

mass momentum:

nNN
⊥ (krel,KCM) =

∫

dxz dsx
(2π)6

cos (krel xz +KCM sx) ρ
(2)
NN(xz , sx) , (13)

with ρ
(2)
NN (xz , sx) defined accordingly; in this case, we choose krel along the

z axis, and KCM along the x axis. Results for the parallel case, Eq. (11), are

shown in Fig. 1, for various nuclei. We also compare these results with the

predictions of the Two-Nucleon Correlation (TNC) model, where the relative

distribution is taken as the deuteron’s one, and the center of mass Gaussian dis-

tribution of the model has been replaced by actual values of npn
CM (KCM ), the

two-body momentum distributions integrated over the relative momentum, Eq.

(10).

The general conclusions that can be drawn about the two-body momentum

distribution nNN(krel,KCM ) are: i) at KCM = 0, i.e. for nucleons moving

exactly back-to-back, in the so-called correlated region 1.5 fm. krel . 3.0 fm,

the distribution as a function of krel, n
NN(krel,KCM = 0), has a shape which

is similar to deuteron’s S wave, in the proton-proton pair case, and similar to the

deuteron’s D wave, in the proton-neutron pair case [1]; ii) the node in the S wave

is partially filled increasing A from 3He and 4He to 12C and 16O [3,7,8,22,23];

iii) for non-zero values of KCM , we find a decreasing high-momentum tail,

with respect to the KCM = 0 case [3, 7, 8, 22, 23]; iii) the high-momentum

tail of the proton-neutron distribution can be checked against TNC model of

Ref. [40], where the deuteron distribution was convoluted with a Gaussian center

of mass dependence to obtain a model two-body momentum distribution: the

comparison shows that up to moderate values of KCM , the deuteron shape is

reproduced by realistic calculations [3, 7, 8, 22, 23]; iv) in the region of small

values of KCM and 1.5 fm. krel . 3.0 fm, the proton-neutron distributions at

KCM>0 can be obtained from the one at KCM=0 scaled by a factor which is

given by npn
CM (KCM ) of Eq. (8), and depends only on the modulus of KCM [3]

(cfr. Fig. 1); v) starting from 4He the Gaussian approximation of Ref. [40]

seems to be a good one, and the agreement with the Gaussian shape is better in

larger nuclei [3]; vi) the comparison of nNN (krel,KCM = 0) with the deuteron

distribution is an approximate one: it was found that extracting from the total

distribution the only contribution due to proton-neutron pairs in a spin 0 and

isospin 1 state, which is possible in our formalism both in the light nuclei as well

as in the medium-heavy nuclei case, the agreement becomes quantitative and the

ratio of the nucleus to deuteron distribution is a constant in the correlation region

[3]. Moreover, we recently extended our analysis to the one-body momentum
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Figure 1. The relative two-body momentum distribution for a proton-neutron pair in
3He and 4He (top panels; after Ref. [3]) and in 12C and 16O (lower panels; after Refs.

[22,23]) at fixed values KCM=0.0, 0.5, 1.0 and 1.5 fm−1 of the center of mass of the pair.

The various curves are compared to the deuteron distribution, multiplied by the value of

n(KCM ) =
∫
dkreln(krel,Kcm) at the corresponding values of KCM ; see Ref. [3] for

details and additional calculations.

distributions case in great detail [6], showing that similar conclusions can be

drawn as in the two-body distributions case, and that the TNC model of Ref. [40]

can be effectively be updated exploiting the outcomes of the described realistic

calculations, in view of the possible experimental measurement of correlated

pairs in a nucleus in different spin and isospin states as well as carrying arbitrary

center of mass momentum.

Such a detailed picture of SRC is experimentally limited to the 12C nucleus,

where one- and two-nucleon knockout were investigated in the correlation re-

gion, while correlations have been studied in a number of nuclei in inclusive

electron scattering at x = Q2/2MNν>1 and low ν. Experimental information

on the center of mass momentum of a correlated pair in 12C from Ref. [11] was

compared with predictions made long before within the TNC model [41], find-

ing quantitative agreement; nevertheless, as realistic calculations such as those

presented in this report have become available for whole range of nuclei, it is

now possible to go beyond the model predictions [3,6]. Additional experimental
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information on the dependence of SRC on the center of mass of the pair and its

isospin could be compared with theoretical calculations as the ones presented in

this report. Our calculations of two-body distributions and their interpretation in

terms of TNC model for correlated pairs allows one to single out the regions on

the krel, KCM plane in which the various contributions to nNN(krel,KCM )
are dominant. The region of small momenta is clearly dominated by the shell

model contribution, while the region of high relative and small center of mass

momenta of the pair is dominated by the two-nucleon correlations. As the cen-

ter of mass momentum of the pair increase, configurations with three nucleons

with vanishing total momentum start to dominate, and this is the region in which

three-body correlations effects should be investigated, as it is argued in Ref. [3].

While experimental information on the relevance of three-nucleon correlations

are still missing, evaluation of the contributions due to particular configurations

of three nucleons whose total momentum is small seems to be feasible in the

range of light to medium-heavy nuclei.

As we already mentioned, a full calculation of the processes used to directly

observe SRC in 12C is still missing. A consistent calculation should take into

account the realistic initial state and full FSI between the knocked out nucle-

ons and the residual nucleons, in the same way in which calculations for light

nuclei has been performed (see [2, 42–47]) and have proven to reproduce cross

section data. Inclusion of SRC in the initial state can be done by means of the

notion of two-nucleon overlap function, the overlap between the initial A-body

state and the (A-2)-body plus the two knocked out nucleons final state [48–53].

In particular, the approach of Ref. [51] where the authors perform calculations

for two-proton knockout reactions with Jastrow correlations implemented with

a linked cluster expansion similar to the one we used in our work, seems to be

particularly suitable for an extension to realistically correlated wave functions

calculated within our formalism. As a matter of fact, the Jastrow correlation

functions misses the complexity of the full correlation structure induced by re-

alistic potentials: in particular, they lack the tensor interaction which is a key

ingredient for distinguishing basic properties of proton-proton as compared to

proton-neutron correlations. For this reason an extension of the calculations of

Ref. [51], in which only the reaction 16O(e,e′pp)14C(g.s.) C was discussed, with

a fully correlated wave function, would be particularly meaningful. As far as

FSI are concerned, it should be mentioned that the use of generalized Glauber

multiple scattering approach for the rescattering of the knocked out nucleons in

the final state in conjunction with realistic wave functions, in the case of light

nuclei, proved to be very successful when comparing to experimental data, and

basic features concerning the behavior of the correlated pair are reproduced by

the TNC model. Calculations of distorted momentum distributions within the

framework of the Glauber theory, and using correlated initial states for medium-

heavy nuclei, can be performed in our formalism [26, 39, 54, 55] and suggest a

common pattern across the range of nuclei we have investigated; partial results

for complex nuclei, obtained with an extension the formalism of Ref. [26], are
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Figure 2. The distorted momentum distribution 16O and 40Ca calculated within the

Glauber model for the FSI of the knocked out proton in an A(e,e′p)X process and corre-

lated nuclear wave functions, as proposed in Ref. [26].

shown in Fig. 2 (see [39]). The figure shows the quantity

nD(pm, θ) =
1

(2π)3

∫

dr1dr
′
1 e

ip
m
·(r1−r′

1
) ρ

(1)
D (r1; r

′
1) . (14)

The distorted momentum distribution of Eq. (14) correspond to a process

A(e,e′p)X, with three-momentum transfer q and missing momentum pm; θ is

the angle between the missing momentum and the direction of propagation of

the knocked out proton. This direction is singled out by the Glauber operator Ŝ
contained in the distorted density:

ρ
(1)
D (r1; r

′
1) =

∑

{σ,τ}

∫ A
∏

j=2

drjdr
′
j e

ip
m
·(r1−r′

1
)Ψ⋆({x}) Ŝ† ρ̂(1) ŜΨ({x′}) ,

(15)

and causes the original momentum distribution of the nucleon in the nucleus to

be distorted and anisotropic, even if the target nucleus is a spherical one. As

expected, the effect of FSI is different at the different values of the angle, and

a similar pattern is exhibited by calculations at same angle in different nuclei,

despite the different methods used to obtain the wave functions. A detailed

comparison between the results for finite nuclei and the deuteron, and the extent

to which similarities can be ascribed to universality of FSI within a correlated

pair, is under investigation and will be reported in a separate publication.
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