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6. LANDSLIDE SUSCEPTIBLITY ZONING 

The process of categorizing … 
involves an act of invention. 

 
(Bruner, Goodnow and Austin 

A Study of Thinking, 1956) 

 

 

 

In the literature, confusion exists between the terms landslide “susceptibility” and landslide 
“hazard”. Often, the terms are used as synonymous despite the two words expressing different 
concepts. Landslide susceptibility is the likelihood of a landslide occurring in an area on the 
basis of local terrain conditions (Brabb, 1984). It is the degree to which a terrain can be 
affected by slope movements, i.e., an estimate of “where” landslides are likely to occur. 
Susceptibility does not consider the temporal probability of failure (i.e., when or how 
frequently landslides occur), nor the magnitude of the expected landslide (i.e., how large or 
destructive the failure will be) (Committee on the Review of the National Landslide Hazards 
Mitigation Strategy, 2004). In mathematical language, landslide susceptibility is the 
probability of spatial occurrence of slope failures, given a set of geo-environmental conditions. 
This is called “landslide analysis” by Vandine et al. (2004). Landslide hazard is the probability 
that a landslide of a given magnitude will occur in a given period and in a given area. Besides 
predicting “where” a slope failure will occur, landslide hazard forecasts “when” or “how 
frequently” it will occur, and “how large” it will be (Guzzetti et al., 2005a). Landslide hazard 
is more difficult to obtain than landslide susceptibility, as susceptibility is a component (the 
spatial component) of the hazard. More generally, landslide susceptibility consists in the 
assessment of what has happened in the past, and landslide hazard evaluation consists in the 
prediction of what will happen in the future. 

In this Chapter, I discuss landslide susceptibility zoning, whereas landslide hazard modelling 
will be dealt with in § 7. Here, I review the methods proposed to ascertain landslide 
susceptibility, including an analysis of the types of mapping units most commonly adopted, 
and of the relationships between the selected mapping units and the adopted susceptibility 
methods. I then examine a probabilistic model for landslide susceptibility, including problems 
and difficulties in its application, and I present an example of a landslide susceptibility model 
for the Upper Tiber River basin, an area that extends for about 4100 km2 in central Italy. 
Lastly, I discuss the problem of the verification of the performances of a landslide 
susceptibility model, including examples for the Collazzone area, in central Umbria. 

In the following, I will often refer to the literature on landslide hazard, including some of my 
own work (e.g., Guzzetti et al., 1999a). This is because of two reasons: (i) due to the 
mentioned confusion between susceptibility and hazard, literature on landslide hazard often 
discusses methods and techniques to obtain landslide susceptibility (and not landslide hazard); 
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and (ii) some of the arguments (e.g., selection of the mapping unit of reference, statistical 
modelling, and validation techniques) are common to both susceptibility and hazard 
modelling. 

6.1. Background 

Over the past decades, government, environmental and research organizations worldwide have 
invested resources in the attempt to assess landslide susceptibility (or hazard), and to produce 
maps portraying its spatial distribution (landslide susceptibility or hazard zonation). Inspection 
of the literature reveals that a few reviews of the concepts, principles, techniques and 
methodologies for landslide susceptibility and hazard evaluation have been proposed 
(Cotecchia, 1978b; Humam and Radulescu, 1978; Carrara, 1983; Brabb, 1984; Crozier, 1986; 
Hansen, 1984a; Varnes and IAEG Commission on Landslides and other Mass-Movements, 
1984; Crozier, 1986; Einstein, 1988; Hartlen and Viberg, 1988; Mulder, 1991; van Westen, 
1993, 1994; Soeters and van Westen, 1996; van Westen et al., 1997; Aleotti and Chowdhury, 
1999; Chung and Fabbri, 1999; Guzzetti et al., 1999a; Crozier and Glade, 2005; Glade and 
Crozier, 2005b; Glade et al., 2005). Comparatively, little work has been done on the 
systematic comparison of different techniques to determine landslide susceptibility, outlining 
advantages and limitations of the proposed methods (Carrara et al., 1992, 1995; van Westen, 
1993; Pistocchi et al., 2002; Gorsevski et al., 2003; Lee et al., 2004; Süzen and Doyuran, 
2004a; Crozier and Glade, 2005; Glade et al., 2005), or to the critical discussion of the basic 
principles and the underlying assumptions of landslide susceptibility/hazard zonation (Varnes 
and IAEG Commission on Landslides and other Mass-Movements, 1984; Carrara et al., 1995; 
Hutchinson, 1995; Soeters and van Westen, 1996; van Westen et al., 1997; Aleotti and 
Chowdhury, 1999; Guzzetti et al., 1999; Committee on the Review of the National Landslide 
Hazards Mitigation Strategy, 2004; Crozier and Glade, 2005). Recently, Glade and Crozier 
(2005b) have published a review of landslide susceptibility (and hazard) models at the 
catchment, regional and national scale, published in the period from 1977 to 2004. 

The majority of papers discuss specific attempts at the evaluation of landslide susceptibility in 
limited areas. Only a few authors report on long-term projects on the evaluation of slope 
instability conditions, and the related hazards and risk, over large regions. Notable examples 
are represented by the work carried out in San Mateo County, California, by the U.S. 
Geological Survey (Nilsen and Brabb, 1977; Brabb et al., 1978; Mark, 1992; Brabb, 1995); by 
the proposal made by the French Bureau des Recherché Géologiques et Minières for a 
geomorphologically based evaluation of landslide hazard (Humbert, 1976, 1977; Antoine, 
1977; Landry, 1979; Porcher and Guiloppe, 1979; Delaunay, 1981; Godefroy and Humbert, 
1983; Leroi, 1996); and by the work carried out in Hong Kong by the Geotechnical 
Engineering Office (Brand, 1988; Brand et al., 1982; Burnett et al., 1985; Hansen et al., 1995; 
Ng et al., 2003) and other investigators (Dai and Lee, 1999, 2001, 2002, 2003; Dai et al., 
2002; Zhou et al., 2002; 2003; Chen and Lee, 2003, 2004; Chau et al., 2003, 2004). 

Italy has a long tradition of landslide mapping (Almagià, 1907, 1910; Govi, 1976; Bosi, 1978; 
Carrara, 1978; Cotecchia, 1978b), and efforts to produce a detailed national geomorphological 
inventory are under way (Amanti, 2000; Amanti et al., 2001). Several regional governments 
have already produced geomorphological inventory maps at 1:25,000 or 1:10,000 scale. 
Despite these significant mapping efforts, attempts at producing susceptibility and hazard 
maps by the application of statistical techniques are mostly limited to academic exercises in 
pilot areas (Carrara, 1983; Carrara et al., 1991, 1995, 2003; Guzzetti et al., 1999; Ardizzone et 
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al., 2002; Clerici et al., 2002; Donati and Turrini, 2002; Sorriso-Valvo, 2005; Guzzetti et al., 
2005a,d). The same occurs for the application of physically based models for determining the 
susceptibility of shallow landslides (Borga et al., 1998, 2002a, 2002b; Crosta and Dal Negro, 
2003; Crosta and Frattini, 2003) and of rock falls (Guzzetti et al., 2004b). With this respect, 
the experiment conducted in the Upper Tiber River basin to produce a susceptibility map for a 
large area (~ 4100 km2) represents an important exception (Cardinali et al., 2001; 2002b). I 
will discuss the results of this experiment in § 6.4. 

6.2. Landslide susceptibility methods 

Several different methods and techniques for evaluating landslide susceptibility have been 
proposed and tested. However, no general agreement exists either on the methods for or on the 
scope of producing susceptibility maps (Brabb, 1984; Varnes and IAEG Commission on 
Landslides and other Mass-Movements, 1984; Carrara, 1989; Nieto, 1989; Carrara et al., 
1991a, 1997; Soeters and van Westen, 1996; van Westen et al., 1997; Aleotti and Chowdhury, 
1999; Guzzetti et al., 1999a, Committee on the Review of the National Landslide Hazards 
Mitigation Strategy, 2004; Crozier and Glade, 2005; Glade and Crozier, 2005b). Operational 
and conceptual differences include: (i) the general underlying assumptions; (ii) the type of 
mapping unit selected for the investigation; and (iii) the techniques and tools favoured for the 
analysis and the susceptibility assessment. 

6.2.1. Assumptions 
Despite conflicting views among experts, all the proposed methods are based upon a few, 
widely accepted assumptions (Varnes and IAEG Commission on Landslides and other Mass-
Movements, 1984; Carrara et al., 1991a; Hutchinson and Chandler, 1991; Hutchinson, 1995; 
Turner and Schuster, 1996; Guzzetti et al., 1999a). These are the same assumptions which lay 
at the base of landslide mapping (see § 2.1), namely: 

(a) Slope failures leave discernible features that can be recognized, classified and mapped in 
the field or through remote sensing, chiefly stereoscopic aerial photographs (Rib and 
Liang, 1978; Varnes, 1978; Hansen, 1984; Hutchinson, 1988; Cruden and Varnes, 1996; 
Dikau et al., 1996; Griffiths, 1999). 

(b) Landslides are controlled by mechanical laws that can be determined empirically, 
statistically or in deterministic fashion. Conditions that cause landslides (instability 
factors), or directly or indirectly linked to slope failures, can be collected and used to 
build predictive models of landslide occurrence (Crozier, 1986; Hutchinson, 1988; 
Dietrich et al., 1995). 

(c) For landslides, the past and present are keys to the future (Varnes and IAEG Commission 
on Landslides and other Mass-Movements, 1984; Carrara et al., 1991a; Hutchinson, 
1995). The principle implies that future slope failures will be more likely to occur under 
the conditions which led to past and present instability. Hence, the understanding of past 
failures is essential in the assessment of landslide hazard (Varnes and IAEG Commission 
on Landslides and other Mass-Movements, 1984; Carrara et al., 1991a, 1995; Hutchinson, 
1995; Guzzetti et al., 1999a). 

In addition, the following assumption also applies: 
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(d) Landslide occurrence, in space or time, can be inferred from heuristic investigations, 
computed through the analysis of environmental information or inferred from physical 
models. Therefore, a territory can be zoned into susceptibility (or hazard) classes ranked 
according to different probabilities (Carrara et al., 1995; Soeters and van Westen, 1996; 
Aleotti and Chowdhury, 1999; Guzzetti et al., 1999a). 

Ideally, evaluation of landslide susceptibility and its mapping should derive from all of these 
assumptions. Failure to comply with them will limit the applicability of any susceptibility 
assessment, regardless of the methodology used for the investigation. Unfortunately, as it will 
become clear later, satisfactory application of these principles proves difficult, both 
operationally and conceptually (Carrara et al., 1995, 1999; Guzzetti et al., 1999a). 

6.2.2. Mapping units 
Evaluation of the likelihood of a landslide occurring in an area on the basis of local terrain 
conditions requires the preliminary selection of a suitable terrain mapping unit (TMU). The 
term refers to a portion of the land surface which contains a set of ground conditions that differ 
from the adjacent units across definable boundaries (Hansen, 1984; Carrara et al., 1995; van 
Westen et al., 1997; Luckman et al., 1999). At the scale of the analysis, a mapping unit 
represents a domain that maximises internal homogeneity and between-units heterogeneity. 
Soil scientists have challenged the concept of TMU as land subdivisions separated by distinct 
(“crisp”) boundaries, suggesting that soil and landform variations are more continuous than 
discrete (Odeh et al., 1992), and calling for a continuous approach to landform classification 
(Burrough and McDonnell, 1998; Burrough et al., 2001a; Gorsevski et al., 2003). Based on 
the concept of a distinct, clearly definable TMU, various methods have been proposed to 
partition the landscape for landslide susceptibility assessment and mapping (Meijerink, 1988; 
Carrara et al., 1995; Soeters and van Westen, 1996; Guzzetti et al., 1999a). All methods fall 
into one of the following six groups: (i) grid cells, (ii) terrain units, (iii) unique condition units, 
(iv) slope units, (v) geo-hydrological units, (vi) topographic units, and (vii) political or 
administrative units. 

Grid cells divide the territory into regular areas (“cells”) of pre-defined size, which become the 
mapping unit of reference (e.g., Carrara, 1983; Bernknopf et al., 1988; Pike, 1988; Mark, 
1992; van Westen, 1993, 1994; Mark and Ellen, 1995; Chung and Fabbri, 1999; Dymond et 
al., 1999; Clerici et al., 2002; Lee and Min, 2002; Remondo et al., 2003a, 2003b; Chau et al., 
2004; Lee, 2004; Lee et al., 2002, 2004; Ayalew and Yamagishi, 2005; Lan et al., 2005; 
Moreiras, 2005). Grid cells are preferred by raster-based GIS users. For this reason, most 
commonly cells are squares but rectangular, triangular or hexagonal subdivisions (Di Gregorio 
et al., 1999a,b) are possible. Each grid cell is assigned a value for each factor (e.g., 
morphological, geological, of land-use, etc.) taken into consideration. Alternatively, a stack of 
raster layers, each mapping a single instability factor, is prepared. The main conceptual 
limitation of grid cells refers to the representation of continuous geological and morphological 
forms in discrete form, and the representation of linear and area features (such as geological 
boundaries, landslide deposits, lithological units) using cells of predefined shape and size. 
Advancements in computer technology (e.g., size of available memory and processing speed) 
have largely (but not completely) overcome this limitation, allowing for grid cells of very 
small size that can capture more faithfully the terrain characteristics. 

Terrain units are traditionally favoured by field geomorphologists. They are based on the 
observation that in natural environments the interrelations between materials, forms and 
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processes result in boundaries which reflect geomorphological and geological differences. 
Terrain units are the basis for the land-system classification approach which has found 
application in many land resources investigations (Cooke and Doornkamp, 1974; Speight, 
1977; Verstappen, 1983; Burnett et al., 1985; Meijerink, 1988; Hansen et al., 1995, van 
Westen et al., 1997; Ng et al., 2003; Fannin et al., 2005). The main limit of terrain units lies in 
their subjectivity. It is difficulty to establish clearly defined rules to unambiguously delineate 
the boundaries between the different terrain units, and even more difficult to apply them 
consistently. For susceptibility studies, it is difficult to infer the degree of landslide propensity 
based solely on geomorphological forms and processes, and to derive from this information an 
objective subdivision of the territory. 

First introduced to investigate mineral resources, unique condition units (UCU) (Bonham-
Carter et al., 1989; Bonham-Carter, 1994; Carrara et al., 1995; Chung et al., 1995; van Westen 
et al., 1997; Chung and Fabbri, 1999) imply the classification of each factor controlling or 
conditioning slope instability into a few significant classes which are stored into a single map, 
or layer. By sequentially overlying all the layers, homogeneous domains (unique conditions) 
are singled out whose number, size and nature depend on the criteria used in classifying the 
input factors. Unique condition units are particularly suited for vector-based representations of 
the geographical information (Carrara et al., 1995). However, they are largely adopted also by 
users of raster-based GIS systems (Bonham-Carter, 1994; Chung et al., 1995), because of their 
straightforward implementation and ease of use (Carrara et al., 1995; 1999). Conceptual 
problems with UCU include the fact that, for practical purposes, layers showing continuous 
thematic information (e.g., elevation, terrain slope, aspect, soil thickness) must be classified 
using a small number of classes. Selection of the classes is seldom based on local knowledge 
of the physical processes controlling landslides. Fabbri et al. (2003) investigated the problem, 
and found selection of the number of classes used to categorize continuous thematic layers not 
particularly significant for their data sets. Also, the number of classes and the class limits may 
affect the statistical analysis. In a vector-based GIS system, overlay of several thematic layers, 
or of layers containing many small polygons, easily results in a very large number (hundreds 
of thousands) of mapping units, making it difficult (or at least impracticable) to analyze the 
results (Carrara et al., 1995). Intersections of layers affected by minor digitization errors (e.g., 
mismatch between a landslide boundary and the river network) may results in a small UCU 
whose geomorphological significance is difficult to interpret. A small polygon or a single grid 
cell may reflect unique (exclusive) environmental conditions important to determine landslide 
susceptibility, or it may be the result of cartographic or mapping errors, irrelevant to landslide 
susceptibility. 

Slope units partition the territory into hydrological regions bounded by drainage and divide 
lines (Carrara, 1988; Carrara et al., 1991; 1995; Guzzetti et al., 1999a). They can be identified 
manually from accurate topographic maps. As an alternative, specific software was developed 
to automatically delineate slope units from high-quality DTMs, eventually aided by simplified 
versions of the drainage network (e.g., Carrara, 1988; Hutchinson, 1989; Fairfield and 
Laymarie, 1991). The computerized method is preferred for its speed and efficiency, and 
because it guarantees an objective, reproducible subdivision of terrain. Hydrological and 
morphometric parameters (and their statistics) can be computed for each slope unit, and used 
in susceptibility analyses. Significantly, hydrological and morphometric parameters obtained 
for individual slope units do not reflect “spot” values (like in grid cells). Instead, they refer to 
the entire terrain subdivision, providing more reliable and geomorphological meaningful 
results. Since landslides occur on slopes, and slope units represent slopes, this type of 
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subdivision is – at least in principle – particularly suited to investigate landslide susceptibility. 
Depending on the type of instability to be investigated (e.g., deep seated vs. shallow slides or 
complex slides vs. debris flows), the mapping unit may correspond either to an individual 
slope unit (a sub-basin) or to the combination of two (or more) slope units representing a small 
catchment. Limitations of slope units include: (i) the difficulty in their preparation, which 
requires resources, including specialized software; (ii) the difficulty in tailoring the size of the 
slope units to the known distribution of landslides; (iii) a certain lack of representativeness of 
slope units for small shallow landslides; and (iv) the fact that hydrological boundaries 
(drainage and divide lines) may not correspond to geomorphological or land use subdivisions 
important for determining landslide susceptibility. 

The latter problem is partially solved by adopting a subdivision based on geo-hydrological 
units. Geo-hydrological units are obtained by further partitioning the slope units based on the 
main lithological types cropping out in a region and considered important to separate 
dissimilar susceptibility conditions within the same slope (Ardizzone et al., 2000; Cardinali et 
al., 2002b). This can be easily obtained in a GIS by intersecting the slope units subdivision 
with a simplified lithological map. A geo-hydrological subdivision retains all the information 
typical of a division based solely on drainage and divides lines (i.e., the morphological and 
hydrological factors), and limits the problem of having in the same slope unit two or more 
rock types with distinctly different landslide propensity (e.g., stable hard rocks underlined by 
unstable weak sediments). One can imagine extending the concept of geo-hydrological units 
by further subdividing them based on main land use types, e.g., forested vs. non forested 
terrain. This further subdivision may prove useful where landslides are principally controlled 
by the type of land cover. 

Topographic units are vector-based subdivisions obtained by partitioning a catchment, or a 
single slope, into stream tube elements of irregular size and shape. The upper and lower 
boundaries of a stream tube are defined by adjacent contours, and the lateral boundaries are 
delineated by flow lines orthogonal to contours (O’Loughlin, 1986; Moore et al., 1988; Moore 
and Grayson, 1991). Thus, topographic units are a particular subdivision of slope units. For 
each stream tube, local morphometric and hydrological variables are computed, including the 
cumulative drainage area of all up-slope elements. Due to their surface and sub-surface 
hydrological significance, topographic units are most suited to model the behaviour of shallow 
landslides, coupling slope instability and infiltration models. Topographic units appear less 
adapt to model large, deep-seated slides. Limitations of topographic units parallel those of the 
hydrologically-based units (i.e., slope units and geo-hydrological units), and include: (i) the 
difficulty in their preparation, which requires specialized software; (ii) the difficulty in 
tailoring their size to the known distribution of landslides or to local topographic conditions; 
and (iii) the fact that surface hydrological boundaries may not correspond to sub-surface 
morphological and hydrological conditions important for the initiation of shallow landslides. 

When investigating very large areas, such an entire region or a nation, political, administrative 
or demographic units can be adopted (e.g., census zones, municipalities, districts, provinces) 
(Guzzetti et al., 2003a). Most commonly, these geographical units do not reflect 
morphological, hydrological, or lithological boundaries. This is undoubtedly a limitation for 
landslide susceptibility studies. However, clear linkage between a geographical mapping unit 
and political or administrative offices and/or responsibilities makes the subdivision appealing 
to politicians and decision makers, particularly at the regional and the national scale. 
Administrative units are suited to analyze and synthesize information stored in archive 
inventories (Guzzetti and Tonelli, 2004).  



 

  Landslide susceptibility
 

 

  119
 

Selection of an appropriate mapping unit depends on a number of factors, including: (i) the 
type of landslide phenomena to be studied, (ii) the scale of the investigation, (iii) the available 
resources, (iv) the quality, resolution, scale and type of the thematic information required, and 
(v) the availability of the adequate information management and analysis tools. Each 
technique for partitioning the territory has advantages and limitations that can be enhanced or 
reduced choosing the appropriate susceptibility evaluation method (Carrara et al., 1995; 
Guzzetti et al., 1999a). 

6.2.3. Methods 
Review of the literature (Varnes and IAEG Commission on Landslides and other Mass-
Movements, 1984; Carrara et al., 1995; Hutchinson, 1995; Soeters and van Westen, 1996; van 
Westen et al., 1997; Aleotti and Chowdhury, 1999; Guzzetti et al., 1999a; Gorsevski et al., 
2003; Committee on the Review of the National Landslide Hazards Mitigation Strategy, 2004, 
and reference therein) reveals that methods for ranking slope instability factors and assigning 
different susceptibility levels can be: (i) qualitative or quantitative, and (ii) direct or indirect. 
Qualitative methods are subjective, ascertain susceptibility heuristically, and portray 
susceptibility levels using descriptive (qualitative) terms. Quantitative methods produce 
numerical estimates, i.e., probabilities of the occurrence of landslide phenomena in any 
susceptibility zone. Only quantitative methods are suited for the quantitative evaluation of 
landslide hazard (see § 7). 

A direct method consists in the (direct) geomorphological mapping of landslide susceptibility, 
in the field, from the aerial photographs (Verstappen, 1983) or from satellite images (Nossin, 
1989). Most commonly (but not necessarily), it is associated with the production of a landslide 
inventory map. Indirect methods for landslide susceptibility assessment are essentially 
stepwise. They require: (i) the recognition and mapping of landslides over a target region or a 
subset of it (i.e., the training area), which is obtained by preparing a landslide inventory map, 
(ii) the identification and mapping of the physical factors which are directly or indirectly 
correlated with slope instability (the instability factors, or independent variables), (iii) an 
estimate of the relative contribution of the instability factors in generating slope failures, (iv) 
the classification of the land surface into domains of different levels of susceptibility, and (v) 
the assessment of the model performance.  

The most common approaches proposed in the literature can be grouped into five main 
categories (Carrara et al., 1992, 1995; van Westen, 1993; Hutchinson, 1995; Soeters and van 
Westen, 1996; van Westen et al., 1997; Aleotti and Chowdhudry, 1999; Guzzetti et al., 1999a; 
Committee on the Review of the National Landslide Hazards Mitigation Strategy, 2004), 
namely: (i) direct geomorphological mapping, (ii) analysis of landslide inventories, (iii) 
heuristic or index based methods, (iv) statistical methods, including neural networks and 
expert systems, and (v) process based, conceptual models (Table 6.1). This classification of 
susceptibility methods is “fuzzy”. Approaches blend one in to the other, and authors are not 
always clear in describing the method they have used to ascertain landslide susceptibility, 
including the similarities or the differences with other published methods. Van Westen et al. 
(1997) provide detailed schemes for the applications of some of the susceptibility methods in a 
GIS environment. 
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Table 6.1 – Characteristics of landslide susceptibility methods proposed in the literature. 

 DIRECT INDIRECT QUALITATIVE QUANTITATIVE
GEOMORPHOLOGICAL MAPPING     

HEURISTIC (INDEX-BASED)     
ANALYSIS OF INVENTORIES      
STATISTICAL MODELLING     

PROCESS BASED (CONCEPTUAL)      
 

6.2.3.1. Geomorphological mapping 
Geomorphological mapping of landslide susceptibility is a direct or semi-direct, qualitative 
method that relies on the ability of the investigator to recognize actual and potential slope 
failures, including their evolution and possible consequences (Humbert, 1977; Godefroy and 
Humbert, 1983; Kienholz et al., 1983, 1984; Bosi et al., 1985; Zimmerman et al., 1986; Seeley 
and West, 1990; Pachauri and Pant, 1992; Hansen et al., 1995; Pachauri et al., 1998; Nossin, 
1999; Pasuto and Soldati, 1999; Ng et al., 2002; Cardinali et al., 2002a; D’Amato et al., 2003; 
Pallàs et al., 2004; Ayenew and Barbieri, 2005; Reichenbach et al., 2005). When carried out 
by experts, geomorphological mapping is a form of expert judgement. If pursued by well 
trained investigators, knowledgeable of the slope instability phenomena in the study area, the 
method can provide very reliable results. However, the method is subjective, difficult to 
formalize, and not fully adequate for quantitative assessments of landslide hazard (see § 7). 
Recently, a method to quantify geomorphological susceptibility mapping for qualitative 
landslide hazards and risk assessments has been proposed and tested by Cardinali et al. 
(2002a) and Reichenbach et al. (2005). In principle, the latter method could be programmed 
into an expert system, providing quantitative estimates of landslide susceptibility, hazard and 
risk. 

6.2.3.2. Analysis of inventories 
The analysis of landslide inventories attempts to predict future patterns of instability directly 
from the past distribution of landslide deposits. This can be accomplished by preparing 
landslide density maps, i.e., maps showing the percent of area covered by landslide deposits or 
the number of landslide events over a region (Campbell, 1973; Wright and Nilsen, 1974; 
Wright et al., 1974; Pomeroy, 1978, 1979; DeGraff, 1985; DeGraff and Canuti, 1988; Guzzetti 
et al., 1994; Bulut et al., 2000; Parise and Jibson, 2000; Chau et al., 2003; Moreiras, 2004). As 
explained in § 3.1, different types of landslide density maps can be prepared, depending on the 
type of mapping unit and the filtering techniques used to determine the density. The method is 
indirect, and the result is quantitative. If properly normalized (e.g., by the total amount of the 
mapped landslide area), a density map may provide frequency estimates suitable for landslide 
hazard mapping. However, due to uncertainties and errors associated with landslide 
inventories and to the complexity of landslide phenomena (§ 1.1), estimates of the probability 
of spatial occurrence of slope failures based solely on landslide density (i.e., not considering 
the geo-environmental factors leading to slope instability) may be misleading or incorrect 
(Ardizzone et al., 2002; Galli et al., 2005). 

6.2.3.3. Heuristic zoning 

An index based approach is based on a priori knowledge, i.e., on the assumption that all the 
causes and instability factors of landsliding in the area under investigation are known. It is an 
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indirect (or semi-direct), mostly qualitative method whose reliability depends on how well and 
how much the investigator understands the geomorphological processes acting upon the 
terrain. Instability factors are classified, ranked and weighted according to their assumed or 
expected importance in causing mass movements. Based on this information, heuristic, 
subjective decision rules are established to define possibly unstable areas and to zone landslide 
susceptibility accordingly (Nilsen and Brabb, 1977; Amadesi and Vianello, 1978; 
Hollingsworth and Kovacs, 1981; Neeley and Rice, 1990; Montgomery et al., 1991; Pachauri 
and Pant, 1992; Mejıa-Navarro et al., 1994; Sarkar et al., 1995; McClelland et al., 1997 
Pachauri et al., 1998; Nagarajan et al., 2000; Lee et al., 2002; He et al., 2003; Liu et al., 2004; 
Moreiras, 2005). Ideally, rules used to rank, weigh and combine the instability factors should 
be based on detailed knowledge of the physical processes controlling landslides. In practice, 
this is rarely done, and ranking and weighing procedures are based (solely) on the experience 
of the investigator, a procedure that introduces subjectivity. van Westen et al. (1997) argued 
that subjectivity is not necessarily bad, particularly if it is based on the opinion of an expert. 
Nonetheless, subjectivity adds to the uncertainty of the model. To limit this problem, the 
expected importance of each instability factor can be obtained “objectively” by investigating 
the relative abundance of landslides (Pachauri et al., 1998; He et al., 2003) or from regression 
analysis (Nagarajan et al., 2000). This process has also limitations, the most severe of which 
consists in not considering the complex interactions between the multiple factors controlling 
slope instability. As an example, slope and lithology are often considered separately, whereas 
in Nature it is their complex interaction that controls the position and abundance of landslides. 
The results of index based models are shown using qualitative levels of landslide 
susceptibility. For this reason they are also not well suited for quantitative assessments of 
landslide hazard (see § 6). Since they are based on generally simple rules, index-based 
approaches are suited to be implemented in computer expert systems (Al-Homoud and 
Masanat, 1998; Al-Homoud and Al-Masri, 1999; Pistocchi et al., 2002). 

6.2.3.4. Statistical methods 
Statistical models to determine spatial landslide instability are constructed to describe the 
functional relationships between instability factors and the past and present distribution of 
slope failures (Carrara, 1983). The approach is indirect and provides quantitative results 
suitable to the quantitative assessment of landslide hazard. The simplest statistical methods are 
based on the determination of the relative abundance (proportion, percentage, frequency, 
incidence) of landslides in the classes in which thematic layers showing the geographical 
distribution of stability/instability factors are ranked. Different approaches have been 
proposed, including: a general instability index (Carrara et al., 1978; 1982), a landslide 
susceptibility/hazard index (Sarkar et al., 1995; van Westen, 1997; Parise and Jibson, 2000; 
Rautela and Lakhera, 2000; Lee et al., 2002; Carrasco et al., 2003; Lee, 2004; Saha et al., 
2005), a frequency index (Parise and Jibson, 2000), and a surface percentage index (Uromeihy 
and Mahdvifar, 2000). These indexes measure, directly or in a weighted form, the relative or 
absolute abundance of landslide area or number in different terrain categories. This 
information is then used by the investigator to establish susceptibility levels. 

More advanced methods employ a variety of classification techniques that can be broadly 
ordered based on the adopted “philosophical” classification approach, including (Michie et al., 
1994): (i) classical (frequentist or Fisherian) statistical techniques, (ii) modern (subjectivist or 
Bayesian) statistical methods, (iii) fuzzy logic systems, (iv) neural networks, and (v) expert 
systems. 



 

Chapter 6  
 

 

122  
 

Many investigators have adopted a classical “frequentist” approach to establish the spatial 
probability of landslide occurrence, and have applied a variety of statistical classification 
techniques including: (i) bivariate analysis (Kobashi and Suzuki, 1988; van Westen 1993; 
Naranjo et al., 1994; Süzen and Doyuran, 2004a, 2004b; Ayalew and Yamagishi, 2005); (ii) 
multiple regression analysis (Carrara, 1983), (iii) discriminant analysis (Reger, 1979; Carrara, 
1983, 1992; Carrara et al., 1982; 1991, 1992, 1995, 2003; Guzzetti et al., 1999a, 2005a,d; 
Nagarajan et al., 2000; Baeza and Corominas, 2001; Ardizzone et al., 2002; Cardinali et al., 
2002b; Santacana et al., 2003), and (iv) logistic regression analysis (Mark, 1992; Carrara et 
al., 1992; Mark and Ellen, 1995; Atckinson and Massari, 1998; Rowbotham and Dudycha, 
1998; Dai et al., 2001; Dai and Lee, 2002, 2003; Olhmacher and Davis, 2003; Lee, 2004; 
Süzen and Doyuran, 2004a; Ayalew and Yamagishi, 2005; Pinter and Dean Vestal, 2005). 
When many factors are available, to reduce the number of variables and to limit their 
interdependence, principal component analysis (PCA) is an option (Carrara et al., 1995; Baeza 
and Corominas, 2001). 

As can be seen from the listed references, discriminant analysis and logistic regression are the 
two most popular techniques. Discriminant Analysis (DA) was introduced by Fisher (1936), 
and is used to classify samples into alternative groups on the basis of a set of measurements 
(Michie et al., 1994; Brown, 1998; SPSS, 2004). More precisely, the goal of DA is to classify 
cases into one of several mutually exclusive groups based on their values for a set of predictor 
variables. The grouping variable must be categorical and the predictor variables must be 
interval or dichotomous (SPSS, 2004, p. 515). For landslide susceptibility assessment, most 
commonly two groups are established, namely: (i) mapping units free of landslides (G0, stable 
slopes), and (ii) mapping units having landslides (G1, unstable slopes). The assumption is 
made that the two groups are distinct, and that a mapping unit r pertains only to one group, 
i.e., if 0Gr∈ , then 1Gr∉ . In the context of landslide susceptibility, the scope of DA is to 
determine the group membership of a mapping unit by finding a linear combination (or 
curvilinear combination in the case of quadratic DA (Michie et al., 1994)) of the 
environmental variables which maximizes the differences between the populations of stable 
and unstable slopes. The goal is to establish a model to sort the mapping units into their 
appropriate groups with minimal error. To obtain this, consider a set of m variables v1, v2, …, 
vm for each mapping unit, r, by means of which it is desired to discriminate the region between 
the groups of stable (G0) and unstable (G1) slopes, and let Z be a linear combination of the 
input variables, such as 

Z = β1v1(r) + β2v2(r) + … + βmvm(r) (6.1)

For DA, the task is to determine the βs of equation 6.1 by means of some criterion that will 
enable Z to serve as an index for differentiating between members of the two groups. If only 
one independent variable is available (e.g., the mapping unit mean slope) equation 6.1 reduces 
to Z = β1v1(r), which is the equation of a line separating mapping units based solely on terrain 
gradient. If two environmental variables are available (e.g., slope and its standard deviation), 
equation 6.1 reduces to Z = β1v1(r) + β2v2(r), which represents a plane in three dimensions that 
separates (discriminates) mapping units given the mean and the standard deviation of the 
slope. Similarly, if m independent variables are used, equation 6.1 represents a hyper plane, a 
multi-dimensional surface that discriminates the mapping units into alternative groups of 
stable or unstable slopes.  
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In DA, the linear discriminant function Z transforms the original sets of measurements into a 
single discriminant score, which represents the sample position along a line defined by the 
same discriminant function. To measure how far apart the two groups are along this line, 
different “distances” can be used, e.g., Euclidean, diagonal or Mahalonobis distances (Michie 
et al., 1994; Gorsevski et al., 2003). Most commonly, the Mahalonobis distance DM is used: 

Z
M V

)ZZ(D
2

10 −=  (6.2)

where, Z0 and Z1 are the means of the stable and unstable groups, respectively, and Vz is the 
pooled sample variance. A larger value of DM indicates that it is easy to discriminate between 
the two groups. Posterior probabilities are then used to express the likelihood of a sample (a 
mapping unit) belonging to one group or the other, i.e. P[r∈G0] = 1-P[r∈G1] (Brown, 1998). 
Thus, when probabilities are derived from a DA, they represent the likelihood of a mapping 
unit pertaining to one of the two groups established a priori. The relative contribution of each 
environmental factor (of each independent variable) to the discriminating function can be 
evaluated by studying the standardized discriminant function coefficients (SDFC). This is 
particularly useful because it allows the investigator to determine if the model is 
geomorphologically sound. 

Logistic Regression Analysis (LRA) was introduced by Cox (1958) and is used to investigate 
a binary response from a set of measurements (Michie et al., 1994; Brown, 1998; SPSS, 
2004). The technique, which regresses a dichotomous dependent variable on a set of 
independent explanatory variables that can be interval, dichotomous or categorical (i.e., 
polychotomous) (SPSS, 2004, p. 859), is widely used in the medical field, or to predict success 
or failure of a process based on a set of measurements. Instead of using a linear relationship 
between the independent variables and the response, a curvilinear model relationship is used. 
In landslide susceptibility investigation, the response is the presence/absence of landslides in 
each mapping unit, and the independent variables are the set of m environmental factors v1, v2, 
…, vm available for each mapping unit, r. Since the response of the analysis must be binary, 
two alternative groups are established: (i) mapping units free of landslides (G0, stable slopes), 
and (ii) mapping units having landslides (G1, unstable slopes). In LRA, the relationship 
between the occurrence of landslides in a mapping unit and its dependency on the set of 
environmental variables is expressed as: 

)e(
S Ψ−+
=

1
1  10 ≤≤ S  (6.3)

where, S is the (Bernoulli) probability that a mapping unit pertains to the stable (G0) or the 
unstable (G1) group. S varies from 0 to 1 on an s-shaped (“logistic”) curve. In equation 6.3, Ψ 

is the logit, i.e., the natural logarithm of the odds, ⎟⎟
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where, β0, β1, … βm are the unknown parameters of the logistic regression model, v0(r), v1(r), 
… vm(r) are the independent variables in each mapping unit and ε is the error associated with 
the curvilinear approximation of the model. LRA involves fitting equation 6.4 to the data, and 
then expressing the probability of the presence/absence of landslides in each mapping unit 
using equation 6.3. The relative contribution of each mapping unit to the logistic function can 
be obtained. Inspection of this information is useful to determine the geomorphological 
reliability of the model. 

In the literature, discussion exists on the advantages and the limitations of LRA over DA 
(Michie et al., 1994; Brown, 1998). A cited advantage of LRA lies in the possibility of using 
together different types of variables, including continuous, binary and categorical variables. 
The latter variables are abundant in geology and geomorphology (Carrara et al., 1992). Most 
commonly in LRA, categorical variables are replaced by various types of contrast variables 
(SPSS, 2004, p. 863-5). In general, it is assumed that DA is more powerful in the presence of 
multivariate normality of the data; conversely, LRA is more suited to analyse datasets lacking 
multivariate normality, or datasets for which multivariate normality is not apparent. When data 
are multivariate normal, DA requires less data to achieve the same precision as LRA (Brown, 
1998). Both methods require near equal number of samples in the groups, and equal variance-
covariance matrices of the groups. Deviance from equality may have severe consequences for 
both methods. Finally, DA is less computationally intensive than LRA. The latter may not be a 
problem with modern personal computers, given the size of the datasets commonly used in 
landslide susceptibility assessments (Carrara et al., 1999).  

In recent years, many investigators have experimented with methods that exploit, more or less 
rigorously, Bayes’ theorem for conditional probability. In this framework, conditional 
probability is a statement of the chance of a hypothesis being true or false given a piece of 
evidence (Gorsevski et al., 2003). Bayesian probabilistic modelling is suited for example for 
solving problems of decision-making under uncertainties. Given the uncertainty associated 
with landslide phenomena and their relationships with the landscape, the method appears 
suited for landslide susceptibility assessment (Chung and Fabbri, 1999; Gorsevski et al., 
2003).  

Bayes’ theorem can be written as: 

( )
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=  (6.5)

which means that the probability of an hypothesis on some event A occurring conditioned by 
the fact that event B has occurred, P(A|B), is equal to the probability of event B occurring 
given that event A has occurred, P(B|A), multiplied by the probability of event A occurring, 
P(A), and divided by the probability of event B occurring, P(B). In equation 6.5, P(A) is the 
“prior probability”, i.e., a reasonable hypothesis on the probability of event A, P(B) is the 
“posterior probability”, i.e., the probability of B given all possible hypotheses on A, and 
P(B|A) is the “likelihood”, i.e., the conditional probability of A given B. In an ideal Bayesian 
analysis, the prior probability has a weak effect on the posterior probability, as most of the 
information comes from the likelihood. 

When applied to landslide susceptibility assessment, Bayes’ theorem is used to determine the 
probability that a region will develop slope failures given the local environmental conditions. 
Following Chung and Fabbri (1999): 



 

  Landslide susceptibility
 

 

  125
 

{ }( ) { }
( ) ⎥

⎦

⎤
⎢
⎣

⎡
…

×…
=…

)( v, (r), v(r),v
)()|)( v, (r), v(r),v()( v, (r), v(r),v|

m10

m10
m10 rP

APArPrAP LL
L  (6.6)

where, AL denotes that a landslide of area A will occur in a mapping unit r for which v0(r), 
v1(r), … vm(r) independent environmental conditions are known. It is further assumed that the 
combination of environmental conditions is unique to the mapping unit r.  

Equation 6.6 indicates that the probability that a mapping unit r in the study area will be 
affected by a landslide is equal to the probability of a landslide in the study area, P(AL), 
multiplied by the probability of a specific (unique) combination of environmental factors 
given the presence of a landslide, divided by the probability of the same combination of 
environmental factors in the entire study area. A straightforward assumption is to obtain the 
three probabilities in the right hand side of equation 6.6 in a GIS from the corresponding 
spatial densities. This can be obtained as follows: (i) for P(AL), by dividing the total landslide 
area (AL) in the study area by the area of the mapping unit, (ii) for ( ))( v, (r), v(r),v m10 rP … , by 
dividing the total area of the unique condition unit by the extent of the study area, and (iii) for 

{ } )|)( v, (r), v(r),v( m10 LArP … , by computing the percentage of landslide area in the study 
area characterized by the total area of the considered unique environmental setting. 

Similar approaches have been proposed by several investigators, including: weight of evidence 
methods (Bonham-Carter, 1991; Lee et al., 2002a, 2002b; Wu et al., 2004), weighting factors 
(Çevik and Topal, 2003), weighted linear combination of instability factors (Ayalew et al., 
2004), landside nominal risk factor (Gupta and Joshi, 1990; Saha et al., 2005), likelihood ratio 
(Chung and Fabbri, 2003, 2005; Fabbri et al., 2003; Lee, 2004), certainty factors (Binaghi et 
al., 1998), information value (van Westen, 1997; Lin and Tung, 2004; Saha et al., 2005), and 
modified Bayesian estimation (Chung and Fabbri, 1999). Understanding the differences 
between the proposed approaches is not always simple, the main differences being the rigor of 
the approach (e.g., Chung and Fabbri, 1999) and the method used to estimate the prior 
probability of landslide occurrence. An advantage of Bayesian probabilistic modelling is the 
possibility of incorporating uncertainty into the susceptibility model, and to explicitly consider 
expert knowledge, which often exists for the investigated area (Chung and Fabbri, 1999). Use 
of expert knowledge is more difficult (but not impossible) when adopting classical statistical 
classification methods. 

A few landslide investigators have attempted to apply fuzzy sets to landslide susceptibility 
zonation (Juang, 1992; Binaghi et al., 1998; Uromeihy and Mahdavifar, 2000; Ercanoglu and 
Gokceoglu, 2002; 2004; Pistocchi et al., 2002; Gorsevski et al., 2003; Saboya et al., 2005). 
Fuzzy set theory was introduced by Zadeh (1975, 1978) as an extension of ordinary set theory. 
In ordinary set theory an element belongs (or does not belong) to a set, i.e., it allows only 0 or 
1 values as possible membership degrees. In fuzzy set theory, membership degree can take any 
value from 0 and 1, i.e., a fuzzy set contains elements that have varying degrees of 
membership. When applied to landslide susceptibility, for each class of an environmental 
variable (e.g., for each slope category) a membership degree is established between the 
presence/absence of landslides and the parameter class (e.g., the presence of landslides in the 
10-20 degree slope category). Various methods can be used to establish this relationship, 
whose “strength” is the degree of membership. A fuzzy set is then constructed for each 
environmental variable, which expresses the landslide susceptibility for each of the considered 
classes (e.g., landslide susceptibility in each slope category). Fuzzy sets for different 
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environmental factors are then combined using rules of various complexities (Ercanoglu and 
Gokceoglu, 2002) to obtain an estimate of landslide susceptibility. 

Expert knowledge approaches applied to landslide susceptibility assessment include artificial 
neural networks and expert systems. Artificial neural networks are computational frameworks 
capable of simulating – albeit in a crude fashion – the behaviour of the human brain in solving 
a complex problem (Michie et al., 1994). Conceptually, the advantage of neural networks over 
other classification methods consists in the fact that they are independent of the distribution of 
the data, although artificial neural networks are calibrated to the data and the calibration 
defines the functionality of the network. Also, neural networks require less data for training 
than other statistical methods (Lee et al., 2004). Most commonly, back propagation learning 
algorithms are adopted. These are made by multiple layers of “neurons” (i.e., individual 
processing nodes), including an input and an output layer and one or more hidden layers. A 
neural network takes the input information and “learns” how to predict the output by 
establishing and adjusting weights between neurons on the same or on different layers, in 
response to errors between predicted and known output values. At each neuron, adjustment 
occurs through weighting summations and non linear functions. At the end of the training 
phase, the neural network should be able to predict the output values (e.g., landslide 
susceptibility) given a set of inputs (e.g., the environmental factors). The main limitation of 
artificial neural networks lays in the fact that is very difficult – if not impossible – to know 
why they work for any given set of data and for any given calibration set. This restrains the 
possibility of using findings obtained with a neural network prepared for an area to a 
neighbouring area. Also, the role, functionality and significance of the weights and of the non-
linear calibration functions are difficult to interpret. Artificial neural networks have been 
applied to landslide susceptibility mapping by, e.g., Arora et al. (2004), Lee et al. (2003a, 
2003b, 2004), Ermini et al. (2005), Ferentinou and Sakellariou, (2005), Gómez et al. (2005) 
and Wang et al. (2005).  

Expert systems are computer programs capable of exploiting complex information to make 
decisions based on a set of rules. Decisions taken by expert systems include categorization, 
i.e., selection between alternatives (Michie et al., 1994). Rules used in expert systems can be 
established a priori, or defined by the same system that “learns” from errors. In principle, 
index based landslide susceptibility methods (for which “slope instability rules” are known) 
are suited for the implementation in an expert system framework (Guzzetti et al., 1999a). 
Particularly interesting is the possibility of establishing rules to cope with “special cases”, or 
individual instability conditions that cannot be captured by, e.g., statistical or physically based 
models. Inspection of the literature indicates that only a few authors have attempted to 
implement rule-based expert systems for landslide susceptibility zonation (Al-Homoud and 
Masanat, 1998; Al-Homoud and Al-Masri, 1999; Pistocchi et al., 2001). This is probably 
because the effort is not justified by the result obtained. An expert system is mostly suited 
when decisions (e.g. categorization) have to be taken repeatedly. This is usually not the case 
for landslide susceptibility assessments. When a susceptibility model is prepared and 
validated, it can be used for years without the need for any further processing. 

Following the widespread availability of GIS technology and of user friendly statistical 
packages, statistical models have become the method favoured by many investigators to 
determine landslide susceptibility. However, review of the most recent literature – which is 
abundant (Uromeihy and Mahdavifar, 2000; Dai et al., 2001; Dai and Lee, 2003; Olhmacher 
and Davis, 2003; Ercanoglu and Gokceoglu, 2002; 2004; Çevik and Topal, 2003; Gorsevski et 
al., 2003; Lee, 2004; Lee et al. 2003a; 2003b; 2004; Santacana et al., 2003; Wu et al., 2004; 
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Ayalew et al., 2004) – reveals that many investigators are interested chiefly in applying 
different statistical methods, and much less concerned in: (i) collecting detailed, high quality 
information related to slope failures, (ii) identifying new environmental parameters useful to 
the assessment of landslide susceptibility, (iii) validating quantitatively the model results, (iv) 
explaining the geomorphological aspects of terrain zoning for landslide susceptibility 
assessment, or (v) in the examination of the socio-economical implications of the 
susceptibility models. This is rather unfortunate because it leads investigators to focus on the 
tool (a classification technique) rather than on the target (an optimal landslide susceptibility 
assessment). Also disappointing is the fact that in the copious literature on landslide 
susceptibility assessment very few attempts to quantitatively compare susceptibility models 
prepared by different methods, critically evaluating their advantages and limitations, are 
available (Carrara et al., 1992; 1995; Chung and Fabbri, 1999; Pistocchi et al., 2002; Lee, 
2004; Süzen and Doyuran, 2004a). 

6.2.3.5. Process based models 
Process based (deterministic or physically based) models for the assessment of landslide 
susceptibility rely upon the understanding of the physical laws controlling slope instability. In 
general, due to lack of information or poor understanding of the physical laws controlling 
landslide initiation and development, only simplified, “conceptual” models are considered. 
These models are indirect and provide quantitative results, which may or may not be suited for 
quantitative landslide hazard assessment depending on the types of output. Review of the 
literature reveals that process based models are developed mostly to study a particular type of 
landslide (e.g., shallow soil slips, debris flows, or rock falls), or to investigate the effect of a 
specific trigger, i.e., an intense rainfall period or an earthquake. 

When applied to the prediction of shallow rainfall-induced landslides, process based models 
attempt to extend spatially the simplified stability models widely adopted in geotechnical 
engineering. These models calculate the stability of a slope using parameters such as normal 
stress, angle of internal friction, cohesion, pore water pressure, seismic acceleration, external 
weights, etc. Most commonly, computation results in a factor of safety, i.e., an index 
expressing the ratio between the local stabilizing and driving forces. Values of the index 
greater than 1.0 indicate stability of the slope, and values less than 1.0 identify unstable 
conditions. A safety factor of exactly 1.0 indicates the meta-stable condition produced by 
equivalence of the stabilizing and driving forces. When applied over large areas, local stability 
conditions are generally evaluated by means of a static stability model, such as the well known 
‘‘infinite slope model’’, where the local equilibrium along a potential slip surface is 
considered. For simplicity, the slip surface is assumed planar, at a fixed depth, and most 
commonly parallel to the topographic surface, and some assumed value of pore fluid pressure 
is selected. More advanced models include seepage from neighbouring areas. Other models 
couple the infinite slope stability model with more or less complex rainfall infiltration models 
(Ward et al., 1981, 1982; Okimura and Kawatani, 1987; Benda and Zhang, 1990; Dunne, 
1991; Hammond et al., 1992; van Ash et al., 1999; Montgomery and Dietrich, 1994; Dietrich 
et al., 1995; Terlien et al., 1995, Dymond et al., 1999; Gritzner et al., 2001; Borga et al., 
2002a; Crosta and Frattini, 2003; Crosta and Dal Negro, 2003; D’Odorico and Fagherazzi, 
2003; Lan et al., 2005). Most commonly, distributed models for the stability of slopes are 
based on a raster representation of the landscape and exploit GIS-raster technology, including 
map algebra, to implement the models, which generally relay heavily on a digital 
representation of the terrain (i.e., a DTM). Alternative approaches are based on topographic 
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units and stream tube elements, which are hydrological, vector based representations of the 
terrain. Some of the most advanced distributed models for the stability of slopes and the 
forecast of shallow landslides take as input the surface and sub-surface information on 
lithological, hydrological and geo-mechanical conditions, including the depth of the shear 
surface and of the water table at the beginning of the simulation, and a measured or inferred 
rainfall pattern (in space and time). These models run in incremental time steps and estimate 
the location and the time of the expected slope failures. With this respect, the results of such 
models are superior to a simple susceptibility assessment. 

Specific, physically based models were developed for predicting the effects of seismic shaking 
on the stability of slopes over large areas, or to explain the known distribution of seismically 
induced landslides (Jibson et al., 1998; Miles and Ho, 1999; Luzi, 2000; Luzi and Pergalani, 
2000; Jibson and Jibson, 2001; Lin and Tung, 2004; Paléz et al., 2005). Some of the most 
reliable approaches extend the Newmark method designed for estimating the stability of dams 
or embankments subject to seismic shaking to the stability of individual slopes (Newmark, 
1965; Wieczorek et al., 1985; Wilson, 1993). When applied to large regions, these models are 
based on a grid partitioning of the terrain. Potential landslides are considered as rigid bodies 
subject to seismic acceleration, ascertained from measured or synthetic accelerographs. For 
each grid cell, the cumulative displacement of the rigid block subject to seismic acceleration is 
computed. If an established threshold is exceeded, a grid cell becomes unstable and a landslide 
occurs. Displacement thresholds depend on the type of landslide, and are decided largely 
based on the experience of the investigators. Rock falls require a smaller displacement to fail 
than large, deep-seated slides. Groundwater conditions can also be considered. 

Physically based models to simulate rock fall processes were developed by van Dijke and van 
Westen (1990) and by Guzzetti et al. (2002a). The latter model uses a DTM and spatially 
distributed information on the location of the source areas of rock falls, and of the energy lost 
at impact points and where boulders are rolling, to simulate in three dimensions rock fall 
phenomena for areas ranging from a few thousands of square meters to several hundreds of 
square kilometres (Guzzetti et al., 2002a, 2003b). Results of the model include: (i) the extent 
and location of the areas potentially subject to rock falls, and (ii) estimates of the maximum 
velocity and of the maximum distance to the ground of the falling rocks. This information can 
be combined to obtain quantitative estimates of landslide hazards (Crosta and Agliardi, 2004; 
Guzzetti et al., 2004b). 

6.2.4. Susceptibility methods and mapping units 
Susceptibility methods and mapping units are conceptually and operationally interrelated 
(Carrara et al., 1995). Table 6.2 summarizes the main correlations. In direct susceptibility 
mapping, the geomorphological unit of reference is implicitly defined by the interpreter who 
maps the portions of the territory that are subject to different geomorphological hazards 
(Hansen, 1984). In all other cases (i.e., grid-based modelling, unique condition units, slope-
units, geo-hydrological units, topographic units), the mapping unit is explicitly defined by the 
operator before the investigation begins. In general, grid cells are preferred for heuristic (Pike, 
1988; Mejıa-Navarro et al., 1994), statistical (Carrara, 1983; van Westen, 1994; Chung and 
Fabbri, 1999; Lee and Min, 2002; Remondo et al., 2003; Pinter and Dean Vestal, 2005) and 
process based or simulation (Mark, 1992; Terlien et al., 1995, Di Gregorio et al., 1999a, 
1999b; Dymond et al., 1999; Guzzetti et al., 2002a; Crosta and Frattini, 2003) modelling. 
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Unique condition units have been applied to both heuristic (van Westen, 1993) and statistical 
methods (Carrara et al., 1995; Chung et al., 1995; Chung and Fabbri, 1999; Guzzetti et al., 
1999a; Ercanoglu and Gokceoglu, 2004; Lee et al., 2004). Slope units and geo-hydrological 
units have been used in statistical models (Carrara et al., 1991; 1995; Guzzetti et al., 1999; 
Ardizzone et al., 2002; Cardinali et al., 2002b), whereas topographic units have been used in 
physically based models (Montgomery and Dietrich, 1994). Municipalities were used by 
Guzzetti et al. (2004) to evaluate landslide and flood hazard in Italy. Census zones were used 
by Guzzetti et al. (2003a) to evaluate the number and percent of the population subject to 
landslide risk in the Perugia Municipality, in Umbria.  
Table 6.2 – Relationships between mapping units and methods for landslide susceptibility assessment. 

 DIRECT 
MAPPING 

ANALYSIS OF 
INVENTORIES

INDEX 
BASED STATISTICAL PHYSICALLY 

BASED 
Grid cell      
Terrain unit       
Unique condition unit      
Slope unit      
Geo-hydrological unit      
Topographic unit      
Geographical unit      

6.3. Probabilistic model for landslide susceptibility 

As explained at the beginning of this chapter (§ 6.1), landslide susceptibility is the probability 
of geographical occurrence of slope failures. It is the probability that any given region will be 
affected by landslides, given a set of environmental conditions. In an important paper, Chung 
and Fabbri (1999) proposed a probabilistic model for landslide susceptibility. They considered 
the following (here slightly modified) propositions:  

F: “a given region will be affected by landslides” (6.7)

and 

L: “a given region has been affected by landslides”. (6.8)

These authors then proposed that landslide susceptibility, S (which they called landslide 
hazard) in a region r is expressed as the following joint conditional probability: 

S = P[F|v1(r), v2(r), …, vm(r)] (6.9)

where v0(r), v1(r), … vm(r) are the m conditionally independent environmental variables, given 
the condition expressed by F.  

Chung and Fabbri (1999) investigated five methods to estimate the joint conditional 
probability in equation 6.9, including: (i) direct estimation, (ii) Bayesian estimation, (iii) 
regression modelling, (iv) modified Bayesian estimation, and (v) modified regression 
modelling. 

In their simplest model, the probability of future landslides in a region is given by the past 
distribution of landslides in the same region, or P[F|v1(r), v2(r), …, vm(r)] = [L|v1(r), v2(r), …, 
vm(r)]. However, these authors showed that this simple estimator performed poorly when it 
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comes to estimating future landslides in their study area. In their second model, Bayesian 
estimation (equations 6.5 and 6.6) was used to determine S based on the prior probability of 
landslide occurrence, and on bivariate conditional probability functions, which were obtained 
from the known distribution of past landslides (i.e., using proposition L, equation 6.8). In their 
third model the probability of future landslides was obtained through multivariate regression. 
The conditional joint probability that a region r will be affected by a landslide was regressed 
against the bivariate conditional probabilities that a landslide will occur given a thematic 
environmental variable. Again, not knowing beforehand the distribution of future landslides, 
the bivariate conditional probabilities between landsliding and each of the available 
environmental factors were obtained from the known distribution of (past) landslides. In their 
fourth and fifth models, Chung and Fabbri (1999) proposed to modify the estimates obtained 
through Bayesian reasoning and multivariate regression modelling based on some kind of 
expert knowledge, which was available to them. This was obtained by using modified 
bivariate conditional probability functions obtained from experts instead of the bivariate 
conditional probability functions obtained in a GIS from the past distribution of landslides. 
Experts may or may not have used (or known) the past distribution of landslides to establish 
their estimates. 

A similar probabilistic model to ascertain landslide susceptibility is now proposed. Adopting 
proposition F, “a given region will be affected by landslides” (6.7), and knowing m 
environmental factors v1, v2, …, vm which are related to slope instability in the region, 
landslide susceptibility is 

S = P [F is true, given { morphology, lithology, structure, land use, etc. }] (6.10)

The statement is a rephrase of equation 6.9, where S is the conditional probability that a region 
r will be affected by future landslides given a set of m independent environmental variables v1, 
v2, …, vm in the same region. As before, the problem with this proposition is that the future 
distribution of landslides is unknown to the investigator. At the beginning of a landslide 
susceptibility assessment, only past landslides in a region are known (e.g., through landslide 
mapping). Hence, terrain classification can be made only on the basis of the known 
distribution of past slope failures. Adopting proposition L, one can write the counterpart of 
equation 6.10 for the past distribution of landslides. This becomes 

D = P [L is true, given { morphology, lithology, structure, land use, etc. }] (6.11)

or 

D = P[L|v1(r), v2(r), …, vm(r)] (6.12)

where D is now the conditional probability that the region r was affected by landslides given 
the same set of known independent environmental variables, v1, v2, …, vm. 

In § 6.2.3 it was shown that the spatial probability of known (past) landslides can be estimated 
using a variety of classical statistical techniques. Using DA or LRA, the probability assigned 
to any given region (i.e., to each terrain mapping unit) is the probability that the region 
pertains to one of two mutually exclusive groups, namely: (i) the group of mapping units 
having landslides, G1, or (ii) the group of mapping units free of landslides, G0, given the set of 
independent environmental variables used in the analysis. A straightforward deduction is to 
assume S = D, and S= P[r∈G0] = 1-P[r∈G1], or 
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P [F | v1(p), v2(p), …, vm(p)] = P [L | v1(p), v2(p), …, vm(p)]  (6.13)

In other words, if a region pertains to the group of terrain units having known (i.e., past) 
landslides because of the local environmental setting, it is likely that the same region will 
experience slope failures again in the future (even if we don’t know when). Equally, if a 
region pertains to the group of terrain units free of (known) past landslides, it is unlikely that 
the same region will experience mass movements in the future. 

6.3.1. Discussion 
The proposed probabilistic models for landslide susceptibility can predict the spatial 
occurrence of future landslides under the general assumption that in any given area slope 
failures will occur in the future under the same circumstances and because of the same 
conditions that caused them in the past. This is a geomorphological rephrase of the well-
known postulate “the past is the key to the future” (§ 6.2.1). However, it is not certain that the 
postulate applies to landslides. New, first-time failures occur under conditions of peak 
resistance (friction and cohesion), whereas reactivations occur under intermediate or residual 
conditions. It is well know that terrain gradient is an important factor for the occurrence of 
landslides. An obvious effect of a slope failure is to change the morphology of the terrain 
where the failure occurs. In addition, when a landslide moves it may change the hydrological 
conditions of the slope. It is also well known that landslides can change their type of 
movement and velocity with time. Lastly, landslide occurrence and abundance are a function 
of environmental conditions that vary with time at different rates. Some of the environmental 
variables are affected by human actions (e.g., land use, deforestation, irrigation, etc.), which 
are also highly changeable. As a consequence of these complications, each landslide occurs in 
a distinct environmental context, which may have been different from the past and that might 
be different in the future (Guzzetti et al., 1999a).  

Despite these limitations, it is reasonable to assume that the postulate holds “statistically”, i.e., 
that in the investigated area future landslides will occur in general under the same 
circumstances and because of the same conditions that triggered them in the past. This means 
accepting the equality expressed by equation 6.13. When a landslide susceptibility assessment 
is attempted in any given area, this equality has to be shown correct. Alternatively, limits for 
the equality have to be identified. This can be done explicitly or implicitly. An explicit 
demonstration of the equality may come from the analysis of multi-temporal inventory maps 
or from archive inventories. If the type and abundance of landslides does not change 
significantly in the study area with time, then the assumption can be made that the equality 
holds, and that the spatial probability of future slope failures (S) can be obtained from the 
spatial probability of past landslides (D).  

An implicit demonstration may come from geomorphological inference. If in an area only 
rainfall induced landslides are expected, and the distribution of past rainfall induced landslides 
is known in detail, the latter can be used to predict the former. However, the distribution of 
past rainfall induced landslides may not predict accurately landslides triggered by earthquakes 
or snowmelt in the same region. It should be understood that in many areas the past 
distribution of known landslides is the result of different triggers, including intense or 
prolonged rainfall periods, earthquakes and snowmelt events, and that most commonly, a 
geomorphological inventory does not distinguish the triggers of the landslides. This limits our 
ability to test the equality in equation 6.13. In order to apply the probabilistic models one has 
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to further assume that our knowledge of the distribution of past failures is reasonably accurate 
and complete, i.e., that the landslide inventory is reliable (§ 6.2.1). All these simplifications 
are needed to make the problem tractable, and should always be considered when interpreting 
and using the results of a susceptibility model. 

6.4. Landslide susceptibility in the Upper Tiber River basin 

In this section, I present and discuss the results of a landslide susceptibility model prepared for 
the Upper Tiber River basin. The model exploits all the available geographical information on 
landslides and on the thematic environmental factors presented in § 2.3, and relies on the 
probability model of landslide susceptibility discussed in § 6.3.  

To obtain landslide susceptibility the basin – which extends for 4098 km2 – was first 
subdivided into ~ 16,000 slope units (§ 6.2.2). For each slope unit, a set of morphometric and 
hydrological parameters useful to explain the spatial distribution of landslides were then 
obtained from the available DTM (e.g., Carrara et al., 1991, 1995). Tests were made to 
calibrate the size of the slope units with the dimension of the landslides. Due to the large 
extent of the basin, calibration was not straightforward and required several iterations. To limit 
the unrealistic condition of landslides falling in two or more slope units, slope units 
corresponding to first order channels were selected relatively large (i.e., ~ 20 hectares). Next, 
the slope units were further subdivided based upon the main rock types cropping out in the 
basin (§ 2.3). This allowed splitting the slope units characterized by two (or more) rock types, 
corresponding to different morphological settings and landslide types and abundances, in 
distinct mapping units. In the end, the procedure subdivided the Upper Tiber River basin into 
more than 28,600 geo-hydrological units (§ 6.2.2), which became the mapping unit of 
reference for the statistical assessment of the landslide susceptibility. 

Using GIS technology, a large set of geo-environmental variables (139 variables) derived from 
the available thematic maps was assigned to each mapping unit. The data set contained: (i) two 
variables showing the percentage of deep seated and shallow landslide area, (ii) 17 
morphometric variables, describing the slope unit and its drainage line (e.g., area, slope, 
aspect, stream order, contributing area, etc.), obtained from the DTM, (iii) 21 litho-technical 
variables, obtained by grouping, based upon the relative abundance of hard vs. weak rocks, the 
35 lithological types cropping out in the basin, (iv) five geological structure variables 
describing dip of bedding, obtained from the information on the bedding attitude, (v) six 
variables describing the interaction between the bedding attitude and slope aspect, and (vi) ten 
variables describing land use. To these primary variables, obtained directly from existing 
thematic maps, were added 45 variables obtained through the combination of primary 
variables or geographical operations. Of the added variables, 8 refer to the morphology of the 
slope, 31 to the interaction between lithology and bedding attitude, and 6 to the interaction 
between bedding attitude and land use. 

Since in the Upper Tiber River basin most of the shallow landslides are spatially associated 
with deep-seated failures (i.e., landslide persistence is high, § 4.4), only one model that 
included both type of movements was prepared. Using as dependent variable the 
presence/absence of landslide deposits in each mapping unit, a linear discriminant function 
weighted on the mapping unit area was developed. Of the 139 independent input variables 
(i.e., not considering the variables describing the percentage of landslide area), 41 entered into 
the discriminant model (Table 6.3). Of these variables, 12 refer to lithology, 9 to bedding 
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attitude and its interactions with the local slope, 11 are morphometric, 2 describe 
microclimatological conditions, and 7 describe land use or its interaction with lithology. 

Table 6.3 – Upper Tiber River basin. Variables selected by a stepwise linear discriminant function as 
the best predictors of the occurrence of landslides in the 28,600 geo-hydrological mapping units in 

which the basin was partitioned. Most important standardized discriminant function coefficients 
(SDFC) are shown in bold. Negative or positive sign of the coefficients indicates variables contributing 

toward stability (green) or instability (red), respectively. Variables grouped in five thematic sets. 
Within each set, variables listed according to the value of the SDFC, from low (stability) to high 

(instability) values. For lithology, numbers in parenthesis refer to codes listed in the “Photo-Geological 
and Landslide Inventory Map of the Upper Tiber River Basin, Italy” of Cardinali et al. (2001). 

 VARIABLE DESCRIPTION  SDFC
Coarse to fine grained alluvial and fan deposits (2, 2b, 3) CPOAF -.470
Well-bedded limestone (31, 33, 34, 36) CCALS -.245
Thick and massive sandstone (22) CTTM -.042
Thick and massive sandstone and calcarenite (14, 15) CTUM .020
Stratified pelitic layers, minor arenaceous levels (19) CTTP .040
Massive peridotite, gabbros and basalt (28, 29) CLIM .060
Calcareous, marly and clayey turbidites (26) CLIPL .062
Clay with chaotic structure (25) CTTC .063
Argillite and siltstone locally with chaotic structure (27) CLIC .116
Chaotic mixture of clay and exotic rock elements (12) CTUC .192
Fine-grained lake and fluvial deposits (6, 7) CPOSA .195

Li
th

ol
og

y 

Very old (ancient) landslides PALEO .259
Massive structure MASS -.067
Bedding dipping less than 5° I0_5 .024
Bedding dipping away the slope free face FRA_P .037
Interaction between fluvial-lake deposits and bedding attitude CPOREG .054
Interaction between the Liguria Complex and bedding attitude CLIFRA .059
Bedding dipping between 15° and 35° I15_35 .060
Interaction between siltstone and sandstone and bedding attitude CTUPLTRA .069
Interaction between Umbria Terrigenous Complex and bedding attitude CTUTRA .135B

ed
di

ng
 a

nd
 st

ru
ct

ur
e 

Interaction between Tuscan Terrigenous Complex and bedding attitude CTTTRA .148
Terrain-unit mean slope angle squared SLO_ANG2 -.772
Standard deviation of terrain-unit slope angle ANG_STD -.245
Index of terrain-unit micro-relief  R -.138
Convex-concave profile down slope COV_COC -.072
Standard deviation of terrain-unit length LEN_STD -.056
Concave profile down slope CONV .021
Concave-convex profile down slope COC_COV .029
Standard deviation of terrain-unit elevation  ELV_STD .041
Terrain unit mean elevation ELV_M .128
Terrain-unit area SLO_ARE .296

M
or

ph
ol

og
y 

Terrain-unit mean slope angle SLO_ANG .962
Terrain-unit aspect facing S-SW TR3 -.045

A
sp

ec
t 

Terrain-unit aspect facing N-NE TR1 .067
Interaction between forested area and Carbonate Complex  CCABO -.193
Urban area AE .047
Area free of vegetation cover AN .051
Olive groves and vineyards CACOLPV .072
Forested area BO .156
Pasture PA .203

La
nd

 u
se

 

Cultivated area SASS .224
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In Table 6.3, the standardized discriminant function coefficients (SDFC) show the relative 
importance of each variable as a predictor of slope instability. Variables with large coefficients 
(in absolute value) are strongly associated with the presence/absence of landslides. The sign of 
the coefficient tells if the variable is positively or negatively correlated to the stability of the 
mapping unit. As an example, the outcrop in a mapping unit of chaotic clay and silty rocks 
(CLIC), lake and fluvial silt and clay (CPOSA), flysch deposits dipping parallel to the slope 
(CTUTRA, CTTTRA) or toward the slope free face (CLIFRA), favours the probability of 
occurrence of landslides. To the contrary, well bedded limestone (CCALS) or massive 
sandstone (CTTM) cropping out in a mapping unit are in favour of its stability. 

A peculiar case arises for the slope of the mapping unit that exhibits a curvilinear relationship 
with landslide occurrence. Landslide frequency increases with slope gradient to a threshold, 
above which the landslide density decreases (in Table 6.3 compare SLO_ANG and 
SLO_ANG2). This is a typical condition in the central Apennines, and elsewhere (Iwahashi et 
al., 2003). The abundance (area) of landslides, and in particular of deep seated slides and 
slide-earth flows, increases with increasing terrain gradient up to a maximum value, where 
landslide area is most abundant, and then it decreases rapidly with increasing slope. Reasons 
for this behaviour are found in the relationship between lithology, strength of the rocks, and 
slope instability. 

Figure 6.1 shows a reduced version and an enlargement of a portion of the obtained landslide 
susceptibility map for the Upper Tiber River basin (a digital version of the susceptibility map 
and of the maps showing the digital information used to construct the model is available at 
http://maps.irpi.cnr.it/website/tevere/tevere_start.htm). In the map, landslide susceptibility is 
shown in seven classes, from very low (dark green) where landslides are not expected, to very 
high (red) where abundant landslides are expected (see also Table 6.5). The enlargement 
shows the good matching between the predicted susceptibility class and the presence or 
absence of landslides in each mapping unit. 

A quantitative comparison between the discriminant model and the landslide inventory map 
(Table 6.4) reveals that the statistical model explains correctly the occurrence of landslides in 
76.3% of the mapping units in the basin. For the remaining 23.7% of the mapping units, the 
model provides a prediction in contrast with the geomorphological inventory map. The 
efficiency of the model can be measured by the number of mapping units correctly classified 
by the model. Four cases are possible (Table 6.4): (i) mapping units predicted as stable and 
without landslides (green), (ii) mapping units predicted as unstable and with landslides (red), 
(iii) mapping units predicted as unstable but without landslides, and (iv) mapping units 
predicted as stable but with landslides. Mapping units pertaining to the first class (green, case 
i) are areas characterized by a geo-environmental setting prone to the stability of the slope, and 
where the geomorphologist has not observed landslide features. These areas should be 
considered stable. Mapping units pertaining to the second class (red, case ii) are characterized 
by geo-environmental factors prone to slope instability, and where the geomorphologist has 
identified one or several landslides. These areas should be considered unstable. Mapping units 
pertaining to the third and fourth classes (grey) are cases erroneously attributed by the model, 
where a disagreement exists between the geomorphological inventory map and the model 
prediction. In the first case (iii) landslides were not identified by the interpreter because of 
mapping errors or because landslide features were cancelled by erosion or human action. In 
these areas additional field investigations are needed to establish the presence/absence of 
landslides and to determine the actual susceptibility conditions. The second case (iv) refers to 
landslides occurred due to factors not included in the model, or due to errors in the input 
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thematic data (Carrara et al., 1992, 1995; Ardizzone et al., 2002). Also for this class detailed 
investigations are required to evaluate the landslide susceptibility. 

 

Figure 6.1 – Upper Tiber River basin. Maps showing spatial probability of landslide occurrence, in 
seven classes, from very low (dark green) where landslides are not expected, to very high (red) where 

landslides are expected to be abundant. See also Table 6.5. Lower maps are enlargements of the 
susceptibility map, without (left) and with (right) landslides.  
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Table 6.4 – Upper Tiber River basin. Comparison between mapping units classified as stable or 
unstable by the statistical model and the mapping units free of and containing landslides in the 

geomorphological inventory map. The overall correct classification is equal to 76.3%. 
 

  PREDICTED GROUPS (MODEL) 

  GROUP 0 
STABLE MAPPING UNITS 

GROUP 1 
UNSTABLE MAPPING UNITS 

G
RO

U
P 

0 
 

MAPPING UNITS FREE OF 
LANDSLIDES IN INVENTORY MAP 

69.4 % 
(case i) 

30.6 % 
(case iii) 

AC
TU
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U
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(IN
VE

N
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RY
) 

G
RO

U
P 

1 

MAPPING UNITS CONTAINING 
LANDSLIDES IN INVENTORY MAP 

14.7 % 
(case iv) 

85.3 % 
(case ii) 

 
Overall percentage of mapping units correctly classified equal to 76.3%. 

Table 6.5 lists correlations between: (i) the seven probability classes of landslide 
susceptibility, (ii) the extent and percentage of terrain in each susceptibility class, (iii) the 
extent and percentage of landslide area in each class, and (iv) the percentage of terrain unit 
having landslides in each susceptibility class. It should be noted that the class in the 
probability range 0.45-0.55 (yellow in Figure 6.1 and in Table 6.5) shows unclassified 
mapping units. These mapping units are not areas where susceptibility is “intermediate”. 
Instead, for these units the statistical model, based on the available environmental thematic 
information, was not capable of clearly deciding if the terrain was stable or unstable. Hence, 
the mapping units are ranked as of uncertain susceptibility, and they require further 
investigation or additional thematic data to be classified. 

 

Table 6.5 – Upper Tiber River basin. Probability classes of landslide susceptibility, extent and 
percentage of mapping units, extent and percent of landslide area, and percentage of mapping unit 

having landslides, in each susceptibility class. Colours refer to susceptibility classes shown in Figure 
6.1. 

  PROBABILITY 
CLASS 

EXTENT OF 
MAPPING UNIT 

EXTENT OF 
LANDSLIDE AREA 

MAPPING UNIT 
HAVING LANDSLIDES 

  % km2 % km2 % % 

 < 20 1246.81 30.43 10.33 2.48 0.83 

 20 – 35 287.45 7.01 10.88 2.61 3.78 

 
IN
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Y  

 35 – 45 171.82 4.19 12.59 3.02 7.33 

UNCLASSIFIED  45 – 55 219.98 5.37 16.39 3.94 7.45 

 55 – 65 337.15 8.23 31.23 7.52 9.26 

 65 – 80 845.66 20.64 112.48 27.02 13.30 

 
IN
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G
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Y  

 80 – 100 988.94 24.13 222.31 53.41 22.48 
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6.4.1. Discussion 
I now discuss the problems encountered in the production of the susceptibility model for the 
Upper Tiber River basin, and I examine the validity of the assumptions under which the 
susceptibility model holds, which largely condition its applicability. The discussion is based 
upon the results of the Upper Tiber River basin susceptibility mapping experiment, but some 
of the conclusions are general and applicable to other areas, in Italy and elsewhere. 

The two principal assumptions of the proposed landslide susceptibility model are: (i) that 
landslides will occur in the future under the same circumstances and because of the same 
factors that produced them in the past (§ 6.2.1), and (ii) that landslide abundance is controlled 
by – and can be inferred from – the local known geo-environmental conditions.  

The first assumption requires that the landslide predisposing factors (the geological and 
environmental conditions) “remain the same in the future” in order to cause similar slope 
failures. But, for how long in the future must conditions not change? The statistical model 
does not indicate a temporal validity for thee susceptibility forecast. This is common for 
susceptibility maps. Landslide susceptibility assessments do not incorporate the time 
component of a landslide hazard assessment (which is why they are called susceptibility 
models), and quite often do not even provide a temporal framework for the validity of the 
prediction, limiting their applicability (§ 9.3), and reducing the possibility of establishing if (or 
two what extent) the main assumptions hold in the investigated area. A solution is to establish 
the validity of the susceptibility model based on: (i) external information on landslides (e.g., 
an archive inventory of slope failures, or quantitative information on landslide age, etc.), (ii) 
the expected validity of the susceptibility map for any practical application (e.g., the time 
frame of a building code or land use regulation to which the susceptibility map is expected to 
contribute), or (iii) the engineering lifetime of structures and infrastructure that can be affected 
by landslides (e.g., from tens to few hundreds of years).  

When the expected temporal validity of the susceptibility model is established, the problem 
becomes that of investigating the possibility that the predisposing factors will change in the 
considered period, affecting landslide susceptibility. Assuming a validity of the model 
between 50 and 100 years (which is reasonable for the Upper Tiber River basin), it is safe to 
imagine that geological factors (including lithology, structure and seismicity) will not change 
significantly in such a short geological time. In the established period, morphological changes 
can occur due to stream erosion, landslides and human actions, but extensive modifications are 
not reasonably probable. Inspection of Table 6.3, which lists the variables entered into the 
statistical model, shows that the majority (34 out of 41) of thematic variables are not expected 
to change significantly in the considered period. Accordingly, landslide susceptibility is not 
expected to change in the period. However, if significant geological and morphological 
changes should occur, the model should be abandoned, or at least revaluated. 

Further inspection of Table 6.3 reveals the presence of seven variables describing land use 
types that entered into the susceptibility model, some with high SDFC. These variables may 
change significantly in the considered period. Changes in land use, including logging, are 
known to affect landslide frequency and abundance (Guthrie, 2002; Glade, 2003). Qualitative 
estimates of land use change in Umbria indicate a reduction of about 20-25% of the forest 
coverage since 1950, in favour of cultivated and abandoned land. In the same period, 
agricultural practices have changed, largely aided by powerful mechanical equipments. 
Cardinali et al. (2000), investigating recent snowmelt induced landslides in Central Umbria (§ 
3.3.3.2), suggested that areas recently deforested for agricultural purposes are more prone to 
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landslides. If land use changes significantly in the basin, landslide susceptibility will change 
accordingly. Important is the fact that the obtained susceptibility model does not incorporate 
variables describing land use changes (e.g., variable showing areas previously covered by 
forest that were cleared, and as a result suffered landslides). New variables showing areas of 
land use change should be introduced in the model to describe the possible initiation of 
landslides.  

In the Upper Tiber River basin, landslides are mostly rainfall induced and snowmelt induced. 
Rainfall is correlated with elevation, and the mean elevation of the mapping unit is considered 
in the model. Snowmelt is controlled by elevation and slope exposure, two variables also 
included in the model. Despite, meteorological factors are not explicitly included into the 
susceptibility model (as in any other model of this type). Changes in the frequency or intensity 
of the driving mechanisms will not affect (at least not in the considered period) susceptibility, 
but it may affect the rate of occurrence of landslide events. 

Lastly, the susceptibility model aims at describing the known distribution of landslides, i.e., 
the available landslide inventory map. If the landslide inventory is erroneous or incomplete, 
the susceptibility model will be negatively affected. Determining the degree to which lack of 
information in the landslide inventory affects the susceptibility model is no trivial task. Minor, 
non-systematic errors in the inventory will not affect the model significantly. To the opposite, 
if the statistical model is robust it will compensate for the lack of landslide information in the 
inventory. Systematic inconsistencies in mapping the landslides will affect severely the 
susceptibility model. The model was constructed to forecast the probability of spatial 
distribution of shallow and deep-seated slides and slide earth flows (the most common type of 
mass movements in the Upper Tiber River basin). Other types of landslides, including debris 
flows shown in the “Photo-Geological and Landslide Inventory Map of the Upper Tiber River 
Basin, Italy” (Cardinali et al., 2001), are not considered by the model. 

6.5. Verification of a landslide susceptibility forecast 

A forecast should always be verified (Jollifee and Stephenson, 2004). Models for landslide 
susceptibility are forecasts of the spatial occurrence of landslides, and their performance 
should be tested. Unfortunately, this is rarely done. Inspection of the literature reveals that 
only recently have authors started to publish susceptibility models together with their 
quantitative verifications (Chung and Fabbri, 1999; Zinck et al., 2001; Lee et al., 2002, 2003; 
Chung and Fabbri, 2003; Remondo et al., 2003a; Santacana et al., 2003; Lee, 2004; Chung 
and Fabbri, 2005; Guzzetti et al., 2005a,d; Moreiras, 2005). In recent papers, Chung and 
Fabbri (2003, 2005) and Fabbri et al. (2003) have defined the problems (and the 
misunderstandings) associated with the verification/validation of statistical models for the 
assessment of multivariate landslide susceptibility. Their indications are applicable to 
susceptibility assessments prepared using all types of methods.  

In general, a susceptibility assessment (i.e., a prediction of landslide spatial occurrence) should 
be tested: (i) against the information used to prepare the forecast, and (ii) against the future, 
when it finally happens. The former is a way of investigating the “goodness of fit” of the 
susceptibility model. The second aims at testing the ability of the model to actually predict 
future landslides. In general it is easier to obtain higher levels of model fit than to achieve 
similar levels of prediction performance. However, the latter is more important for practical 
purposes. A decision maker willing to include landslide susceptibility in a land use or building 
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code is more interested in the performance of the susceptibility model with time (i.e., the 
aptitude of the model to predict future landslides) and less in how well the same model fits the 
known distribution of past slope failures. A susceptibility model can also be tested outside the 
area where it was prepared. This involves testing the exportability of the model to 
neighbouring areas. 

The goodness of fit of index based models can be ascertained by counting and comparing the 
percentage of landslide area in each susceptibility classes. A higher susceptibility class is 
expected to contain a larger percentage of landslide (unstable) area than a lower susceptibility 
class. For statistical models, measures of goodness of fit are obtained by preparing 
contingency tables showing the number of cases correctly classified and by comparing them 
against the cases that were misclassified by the model. Since two different types of errors can 
occur (i.e., mapping units free of landslides classified as unstable (error type 1); and mapping 
units having landslides which are classified as stable (error type 2), models can be calibrated 
to reduce one type of error (usually error type 2), depending on the user requirements (Carrara 
et al., 1995; 1999). Alternatively, a graph showing the model success rates can be prepared 
(Chung and Fabbri, 1999; 2005; Guzzetti et al., 2005a,d). The graph shows the percentage of 
the study area (in the x-axis) against the cumulative distribution function of landslide area in 
each predicted susceptibility class (y-axis). A straight diagonal line starting from the origin of 
the graph represents a model with a very low degree of success. Rapid deviation of the success 
rate curve from the diagonal line indicates a model with a higher performance. These graphs 
can also be used to test heuristic models and process based susceptibility models. For the 
latter, an a priori decision has to be made whether a given stability condition is considered 
representing a landslide or not. As an example, if a distributed model of shallow slope stability 
computes the factor of safety at each grid cells, all the cells with a value of the factor of safety 
equal or less than 1.0 can be considered as having a landslide, and tested against the inventory 
of past landslides. 

Testing a model prediction against the future is more tricky task, as (in theory) it involves 
waiting for the future to happen. For many practical applications, including landslide 
susceptibility assessments, one has not the luxury to wait for the future to materialize and the 
prediction to self validate. To the opposite, one needs to have a measure of the model ability to 
predict the future before the model is used. To reach this goal several strategies can be 
adopted, all of which involve exploiting some sort of temporal information on landslide 
occurrence (Chung and Fabbri, 1999; 2003; Guzzetti et al., 2005a,d). Where an event 
landslide inventory map is available, the map can be easily compared in a GIS with a 
susceptibility model prepared with any of the discussed methods. Contingency tables and 
prediction rate curves can be prepared to evaluate the model performance. Prediction rate 
curves are similar to success rate curves, the difference being that the former are prepared 
using the new landslides, i.e., the landslides which have occurred after the model was prepared 
(Chung and Fabbri, 1999). Statistical models are more flexible. Where landslides for at least 
two periods are available (e.g., from the interpretation of aerial photographs of different dates), 
one can establish susceptibility levels using only slope failures which occurred before a 
selected date, i.e., the “past” landslides, and then test the result against the distribution of the 
landslides occurred after that date, i.e., the “future” landslides (Chung and Fabbri, 1999). 
Where a multi-temporal inventory map is available, the process can be repeated several times, 
studying the temporal variation of the model capability to predict future landslides (Guzzetti et 
al., 2005a). 
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Testing the exportability of a susceptibility model is also a difficult task. In principle, a sound 
susceptibility model developed for a representative area (the training area) should be capable 
of predicting landslide susceptibility in other areas, provided the environmental conditions 
which lead to slope instability don’t change significantly. In practice, the usefulness of the 
approach is very limited for most, if not all, the proposed susceptibility methods. For the 
geomorphological approach, application to neighbouring or distant area is meaningless. Being 
a direct method, landslide susceptibility has to be assessed independently for each new area. 
The only advantage being that the experience made in one area may help the investigator in 
compiling the susceptibility assessment in the new area. All indirect methods are based on the 
collection and use of a (often large) set of environmental factors related to slope instability, 
including the distribution of past and present slope failures (i.e., the landslide inventory). 
When this information is available, it is more convenient to exploit it to prepare a more 
general model, rather than to attempt to apply a model constructed using a geographical sub-
set of the thematic information. However, the geographical operation can be useful to test the 
spatial robustness of a model. This can be achieved in different ways. One technique consists 
in first preparing a susceptibility model for the entire study area, i.e., using the total number of 
mapping units, and then to prepare a number of different susceptibility models using randomly 
selected sub-sets of mapping units (Carrara et al., 1991b). Comparison of the model 
performances provides indication on the robustness of the original model, and may help 
identifying problems with specific areas and/or peculiar environmental conditions. A slightly 
different approach consists in splitting the total number of mapping units in two sub-sets, a 
training set and a target set. A susceptibility model is prepared using the information of the 
training set, and it is then applied against the mapping units that represent the validation set 
(Chung and Fabbri, 2003). A still different approach consists in subdividing the study area 
beforehand into two sub-areas. A susceptibility model is constructed using the information 
available for one of the two areas, and then an attempt is made to apply (or test) the result in 
the neighbouring area. The method, which in principle appears appealing, quite easily results 
in practical problems that limit its application. If a new rock type or land use class are present 
in the target area but were not present in the training area, if the abundance of landslides 
differs in the two areas, or if the combination of the environmental factors changes in the new 
area, the exportability of the constructed model may become impossible, or 
geomorphologically meaningless. 

6.5.1. An example of the verification of a landslide susceptibility model 
For the Collazzone area (§ 2.4), the availability of a multi-temporal landslide inventory map, 
of information on recent landslide events, and on detailed thematic data, allows for a good 
opportunity to prepare a landslide susceptibility model and to verify it, using different 
techniques. 

6.5.1.1. Susceptibility model for shallow landslides in the Collazzone area 
A susceptibility model for shallow landslides in the Collazzone area was prepared adopting the 
same statistical classification method (i.e., discriminant analysis), a similar terrain subdivision 
(i.e., slope units), and a similar set of environmental thematic data used to obtain the landslide 
susceptibility model for the Upper Tiber River Basin (§ 6.4). To ascertain landslide 
susceptibility, the study area was first partitioned into 894 slope units, starting from a 10 m × 
10 m DTM. As the dependent variable for the statistical analysis, the presence or absence of 
shallow landslides in the 894 slope units was used. The distribution of landslides was obtained 
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from a revised version of the multi-temporal landslide inventory map available for the study 
area (§ 3.3.4.1). The landslide map used for the statistical analysis shows 1759 shallow slope 
failures, covering 5.77 km2, 7.32% of the study area (Figure 6.2.A).  

A set of 46 independent thematic variables were used in the statistical analysis, including 
morphological, hydrological, lithological, structural, bedding attitude, and land-use 
information. A step-wise discriminant function selected 16 (out of 46) variables as the best 
predictors of the presence (or absence) of landslides in the 894 slope units in which the study 
area was partitioned. In Table 6.6, the standardized discriminant function coefficients (SDFC) 
show the relative importance of the 16 variable as a predictor of slope instability. Variables 
with large coefficients (in absolute value) are strongly associated with the presence or the 
absence of landslides. The sign of the coefficient tells if the variable is positively or negatively 
correlated to instability of the mapping units. 

Table 6.6 – Variables selected by a stepwise discriminant function as the best predictors of landslide 
occurrence in the Collazzone area. Variables with large standard discriminant function coefficients 

(SDFC), in absolute value, are shown in bold. 

Variable description Variable SDFC 
Slope unit mean terrain gradient  SLO_ANG -0.398 
Slope unit elevation standard deviation  ELV_STD -0.370 
Slope unit length  SLO_LEN -0.287 
Slope unit terrain gradient (upper portion)  ANGLE3 -0.282 
Cultivated area SS -0.276 
Bedding dipping out of the slope FRA -0.241 
Convex slope (down slope profile) CONV -0.135 
Travertine  TRAVERTI 0.105 
Slope unit facing S-SE TR2 0.133 
Slope unit drainage channel order ORDER 0.140 
Alluvial deposit ALLUVIO 0.144 
Gravel GHIAIA 0.179 
Slope unit terrain gradient standard deviation ANG_STD 0.219 
Marl MARNE 0.285 
Down and across slope concave slope CC 0.303 
Limestone CARBO 0.833 
   

Inspection of Table 6.6 reveals that, based on the obtained susceptibility model, morphological 
variables associated with the presence of shallow landslides include mean slope angle 
(SLO_ANG), terrain gradient in the upper part of the slope (ANGLE3), slope length 
(SLO_LEN), and the standard deviation of elevation (ELV_STD). Other variables associated 
with unstable conditions include bedding planes dipping out of the slope free-face (FRA), and 
land use characterized by seasonal crops, e.g., wheat, maize, sunflower, and alfa alfa (SS). 
Lithological variables associated with stable conditions include the outcrop of layered 
limestone (CARBO), marl (MARNE), alluvial deposits (ALLUVIO), and travertine deposits 
(TRAVERTI). Other variables associated with the absence of landslides include down and 
across slope concave profile (CC), the standard deviation of slope angle (ANG_STD), and the 
order of the stream draining the slope unit (ORDER). 
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Figure 6.2.B portrays the obtained landslide susceptibility model. In the map, slope units are 
shown based on the probability that the unit pertains to the group of slope units containing 
landslides in the multi-temporal inventory map (Figure 6.2.A). If a slope unit has a high 
probability of containing a known landslide, the same slope unit is classified as landslide 
prone. Else, if a slope unit has a low probability of having known landslides, the slope unit is 
considered stable. Intermediate values of probability indicate the inability of the model to 
classify the slope unit, given the available thematic information. 

6.5.1.2.  Degree of model fitting 
The first question to ask when a landslide susceptibility model is prepared through a statistical 
classification technique is “how well the model has performed in classifying the mapping 
units?” This involves determining the degree of model fit. A straightforward way of testing 
model fit consists in counting the number of cases (i.e., the mapping units) correctly classified 
by the model. Table 6.7 shows the results for the model shown in Figure 6.2.A. 

 

Figure 6.2 – Collazzone area. (A) Multi-temporal landslide inventory map showing shallow landslides. 
Map prepared through the interpretation of various sets of aerial photographs taken in the period from 
1941 to 1997. Original map scale 1:10,000. (B) Map showing spatial probability of shallow landslide 

occurrence (landslide susceptibility). Study area subdivided into 894 slope units. Different colours 
indicate spatial probability in 5 classes, from low values (in green) where landslides are not expected, 
to high values (in red) where landslides are predicted abundant. Square bracket indicates class limit is 

included. Round bracket indicates class limit is not included. 

The susceptibility model shown in Figure 6.2.A. correctly classifies 688 (77.0%) of the 894 
slope units in which the study area was partitioned. The figure represents a measure of the 
“overall goodness of fit” of the model. Of the 688 correctly classified slope units, 239 were 
classified as “stable” and 449 were classified as “unstable” by the model. Of the 206 
misclassified cases, 121 were slope units free of landslides that were classified as “unstable” 
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by the model, and 85 were slope units that showed landslides in the inventory map and were 
attributed to the “stable” group by the model. The former may be the result of errors in the 
inventory map (e.g., unrecognized landslides, or landslides cancelled by erosion, land use 
changes, ploughing, or other human actions). The latter are slope units that have geological 
and environmental conditions typical of stable slopes, and where landslides took place owing 
to specific and unique conditions not accounted for by the model. 

Further inspection of Table 6.7 reveals that the susceptibility model is more efficient in 
correctly classifying slopes that have landslides, and less efficient in classifying slopes free of 
slope failures. The difference can be attributed to the larger number of slope units with 
landslides (59.7%) in the study area. 

Table 6.7 – Collazzone area. Comparison between slope units classified as stable or unstable by the 
statistical model (Figure 6.2.B) and slope units free of and containing landslides in the multi-temporal 

inventory map (Figure 6.2.A). Numbers in parenthesis show the number of slope units. 
  PREDICTED GROUPS (MODEL) 
  GROUP 0 

STABLE MAPPING UNITS 
GROUP 1 

UNSTABLE MAPPING UNITS 

G
RO

U
P 

0 
 

MAPPING UNITS FREE OF 
LANDSLIDES IN INVENTORY MAP 

66.4 % 
(239) 

33.6 % 
(121) 
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MAPPING UNITS CONTAINING 
LANDSLIDES IN INVENTORY MAP 

15.6 % 
(85) 

84.1 % 
(449) 

Overall percentage of mapping units correctly classified equal to 77.0%. 

An alternative way of measuring the reliability of the model – in terms of its ability to classify 
known landslides – consists in using Cohen’s Kappa index (Cohen, 1960; Hoehelr, 1999). For 
the purpose, I have rearranged the data shown in contingency Table 6.7. Table 6.8 shows the 
proportion (observed probability) of slope units in each of the four classification classes with 
the marginal probabilities, obtained by summation of the probabilities along the rows and the 
columns. Values in parentheses represent the expected proportions on the basis of chance 
associations, i.e., the joint probabilities of the marginal proportions. The Kappa index (κ) is 
obtained as: 

C

EC

P
PP

−
−

=κ
1

 1≤≤∞− x   6.14 

where, PC is the proportion of slope units correctly classified as stable or unstable (in our case, 
PC = 0.267 + 0.502 = 0.769), and PE is the proportion of slope units for which the agreement is 
expected by chance (in this case, PE = 0.146 + 0.381 = 0.527). Thus, in this case, κ = 0.513. 
Landis and Kock (1997) have suggested that for 600410 .. ≤κ≤ the strength of the agreement 
between the observed and the predicted values is moderate. Several other indexes can be used 
to measure the forecasting skill of classification. For a review see Mason (2003). 

Tables 6.7 and 6.8 provide a lumped estimate of model fit, but do not provide a detailed 
description of the model performance of the different susceptibility classes (Chung and Fabbri, 
1999, 2003). To determine this, one can conveniently compare the total area of known 
landslides in each susceptibility class with the percentage of area of the susceptibility class. 
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Table 6.8 – Comparison between the proportions of slope units classified as stable or unstable by the 
susceptibility model for the Collazzone area and the proportions of slope units free of and containing 

landslides in the multi-temporal inventory map (Figure 6.2.A). Marginal totals are obtained by 
summing proportions along the rows and the columns. Numbers in parenthesis represent the expected 
proportions on the basis of chance associations, i.e., the joint probabilities of the marginal proportions. 

  MODEL PREDICTION  

  
STABLE MAPPING 

UNITS 
UNSTABLE MAPPING 

UNITS MARGINAL TOTALS 

MAPPING UNITS FREE 
OF LANDSLIDES 

0.267 
(0.146) 

0.135 
(0.257) 

0.403 

LA
N

D
SL

ID
E 

IN
VE

N
TO

RY
 

MAPPING UNITS WITH 
LANDSLIDES 

0.095 
(0.216) 

0.502 
(0.381) 

0.597 

 MARGINAL TOTALS 0.362 0.638 1.000 

κ = 0.513, moderate agreement. 

Figure 6.3 shows the percentage of the study area ranked from most to least susceptible (x-
axis) against the cumulative percentage of landslide area in each susceptibility class (y-axis). 
The most susceptible 10.0% of the study area covers 19.5% of the landslide area shown in 
Figure 6.2.A, and the most susceptible 50.0% of the study area covers 72.7% of the total 
mapped landslides. Figure 6.3 also shows that 52.3% of the mapped landslides fall in the 
29.0% of the study area classified as highly susceptible (probability > 0.80), and that 87.0% of 
the mapped landslides fall in the 63.4% of the study area classified as susceptible or highly 
susceptible (probability > 0.80). Only 5.6% of the landslides shown in the multi-temporal 
inventory (Figure 6.2.A) are in areas classified as not, or as weakly susceptible (probability ≤ 
0.45) by the model. This is in agreement with the reduced number of mapping units (85, 
15.9%) having landslides and erroneously attributed to the “stable” group by the model (Table 
6.7). These figures provide a quantitative measure of the ability of the susceptibility model to 
match (i.e., “fit”) the known distribution of shallow landslides in the Collazzone area. 

 

Figure 6.3 – Analysis of the fitting performance of the landslide susceptibility model prepared for the 
Collazzone area shown in Figure 6.2.B. x-axis, cumulative percentage of the study area in classes of 

probability of landslide spatial occurrence, ranked from most (left, red) to least (right, green) 
susceptible. y-axis, cumulative percentage of landslide area in the susceptibility classes. 
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6.5.1.3. Ensemble of landslide susceptibility models  
To determine the reliability of the landslide susceptibility assessment shown in Figure 6.2.B, I 
propose an innovative method based on the preparation of an ensemble of landslide 
susceptibility models. The ensemble consisted of 350 different susceptibility models obtained 
from the same set of 46 independent thematic variables and the same multi-temporal landslide 
map (Figure 6.2.A), but using a different number of mapping units, from 268 (30%) to 849 
(95%) slope units. To obtain this ensemble, the following strategy was adopted. First, a subset 
containing 30% of the slope units (268 units) was obtained by random selection from the 
entire set of 894 slope units. The random selection was repeated 50 times, obtaining a group of 
50 different subsets, each containing 268 slope units. This collection of 50 subsets of slope 
units was named “group G30” (i.e., 30% selected slope units). Then, the selection procedure 
was repeated changing the number of the selected units. In this way, collections with 45%, 
55%, 65%, 75%, 85%, and 95% slope units were obtained. These collections, each listing 50 
subsets of slope units, became groups G45 (402 units), G55 (491 units), G65 (581 units), G75 
(670 units), G85 (760 units) and G95 (849 units). The obtained ensemble contained a total of 
350 subsets of slope units, i.e., 7 groups each containing 50 subsets. Landslide susceptibility 
models were then prepared for each subset of the ensemble, obtaining 350 different 
susceptibility models, i.e., 350 different forecasts of shallow landslide susceptibility in the 
Collazzone area.  

6.5.1.4. Role of independent thematic variables  
To assess model reliability, one must first considered the role of the (46) independent thematic 
variables used to construct the landslide susceptibility model. For the purpose, group G85 can 
be conveniently used. This group was obtained by randomly selecting (50 times) 760 slope 
units, i.e., 85% of the 894 slope units. For this group, Table 6.9 lists the number and the 
percentage of the models that selected (or did not select) the 46 variables, and whether the 
variables were selected as predictors of slope stability (S), or of slope instability (I). Inspection 
of Table 6.9 reveals that of the 46 considered variables, 38 (82.6%) entered in at least one of 
the 50 models encompassing G85, and 8 (17.4%) variables were never selected as predictors of 
landslide occurrence. Of the 38 selected variables, 15 (39.5%) were selected by 25 or more 
models, and 7 (18.4%) were selected by 45 or more models. 

The 50 stepwise discriminant functions constructed from G85 selected from as few as 11 
variables, to as many as 18 variables (modal value 14 variables). All the selected variables, 
with the exception of drainage magnitude (MAGN), were either always selected as positively 
(I, in Table 6.9) or always selected as negatively (S, in Table 6.9) associated with the presence 
of landslides. This is as an indication of the consistency of the role of the thematic variables in 
explaining the known distribution of landslides, which contributes to the reliability of the 
susceptibility model. 

Inspection of Table 6.9 further indicates that more than 75% of the prepared models used the 
same set of ten thematic variables. These variables included: four variables describing 
morphology (ELV_STD, ANG_STD, SLO_LEN, SLO_ANG), three variables describing 
lithology (CARBO, GHIAIA, MARNE), one variable for the attitude of bedding planes 
(FRA), one variable describing slope aspect (TR2), and one variable describing a land use type 
(SS). The ten variables are also present in Table 6.6, which lists the variables entered into the 
susceptibility model shown in Figure 6.2.B. Comparison of Table 6.6 and Table 6.9 reveals 
that, with the exception of AREN (i.e., presence of sandstone), all the 16 variables selected to 
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construct the susceptibility model shown in Figure 6.2.B are listed in Table 6.9 as the most 
selected variables. This is a further indication of the ability of the selected variables to explain 
the known distribution of landslides in the Collazzone area. 

Table 6.9 – Thematic variables selected, or not selected, by 50 discriminant functions as the best 
predictors of shallow landslide occurrence in the Collazzone area. Group G85 used for the analysis. In 

last column, “S” shows variables selected as predictor of slope stability, and “I” shows variables 
selected as predictor of slope instability. Standard discriminant function coefficients (SDFC) are those 
listed in Table 6.6 for variables selected as best predictors of landslide occurrence by the model shown 

in Figure 6.2.B. 
Variables SDFC Susceptibility models Predictor 

   # %  
Slope unit elevation standard deviation ELV_STD -0.370 50 100 I 
Limestone CARBO 0.833 50 100 S 
Bedding dipping out of the slope FRA -0.241 49 98 I 
Gravel GHIAIA 0.179 47 94 S 
Marls MARNE 0.285 47 94 S 
Slope unit terrain gradient standard deviation ANG_STD 0.219 45 90 S 
Slope unit length SLO_LEN -0.287 45 90 I 
Slope unit mean terrain gradient SLO_ANG -0.398 41 82 I 
Cultivated area SS -0.276 40 80 I 
Slope unit facing S-SE TR2 0.133 38 76 S 
Concave profile (down slope profile) CC 0.303 33 66 S 
Slope unit drainage channel order ORDER 0.134 30 60 S 
Alluvial deposit ALLUVIO 0.144 30 60 S 
Convex profile (down slope profile) CONV -0.135 27 54 I 
Sandstone AREN  25 50 S 
Travertine TRAVERTI 0.105 23 46 S 
Slope unit terrain gradient (upper portion)  ANGLE3 -0.282 21 42 I 
Forested area BOSCO  21 42 S 
Slope unit area SLO_ARE  13 26 I 
Slope unit drainage channel length LINK_LEN  10 20 I 
Index of slope unit micro-relief (terrain roughness) R  10 20 I 
Slope unit terrain gradient (lower portion)  ANGLE1  5 10 I 
Slope unit mean elevation ELV_M  4 8 I 
Concave slope profile (down slope profile) CONC  4 8 I 
Drainage channel mean slope  LNK_ANG  3 6 S 
Continental deposit CONTI  3 6 I 
Sand SABBIA  3 6 I 
Slope unit drainage channel magnitude MAGN  2 4 I/S 
Urban area URB  2 4 S 
Bedding dipping into the slope REG  2 4 S 
Bedding dipping across the slope TRA  2 4 I 
Slope unit facing N-NE TR1  2 4 I 
Standard deviation of terrain unit length LEN_STD  1 2 S 
Convex-concave profile (down slope profile) COC_COV  1 2 S 
Irregular slope profile IRR  1 2 S 
Clay  ARGILLA  1 2 I 
Cultivated area with trees SA  1 2 I 
Vineyards VIG  1 2 S 
Drainage basins total area upstream the slope unit AREAT_K 
Slope unit terrain gradient (intermediate portion)  ANGLE2 
Concave-convex profile (down slope profile) COV_COC 
Slope unit rectilinear profile RET 
Fruits trees FRUTT 
Pasture PASCOLO 
Slope unit facing S-SW TR3 

Variables were never selected as predictors of 
landslide occurrence 

Deposit of ancient landslide FRA_OLD  
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6.5.1.5. Model sensitivity 
Now that it has been established that the independent thematic variables are capable of (and 
consistent in) classifying the mapping units as stable or unstable slopes, I investigate the 
sensitivity of the susceptibility model to changes in the input data. In general, results of a 
robust (least sensitive) statistical model should not change significantly if the input data are 
changed within a reasonable range (Michie et al., 1994). To investigate the sensitivity of the 
susceptibility model to changes in the input data, I use the entire ensemble of susceptibility 
models, and study the variation in the overall percentage of slope units correctly classified by 
the 350 models. I consider three cases: (i) slope units selected by the adopted random selection 
procedure, and classified by the discriminant functions (selected units, i.e., “training” or 
“modelling” set”, Figure 6.4.A), (ii) slope units not selected by the random selection 
procedure, and classified by the discriminant functions constructed on the corresponding 
subset of selected units (non-selected units, i.e., “classification” or “validation” set, Figure 
6.4.B), and (iii) all slope units, irrespective of the fact that they pertained to the selected 
(training) or the non-selected (classification) sets (Figure 6.4.C). 

In Figure 6.4.A, the orange box plots show that an increase in the number of the selected slope 
units results in a decrease of the median (50th percentile) and in the variability (10th to 90th 
percentile range) of the model fit. This was expected. Given the large number of the available 
thematic variables (46), a reduced number of cases (268 mapping units for G30) allows for a 
(apparently) better model classification (mean = 78.36% for G30), at the expenses of model 
variability, which is large (std. dev. = 2.59% for G30). Further inspection of Figure 6.4.A 
indicates that a reduction in the percentage of slope units correctly classified, and in the 
corresponding scatter in the susceptibility estimates, becomes negligible for percentages of the 
considered slope units exceeding 75%. Thus, susceptibility models obtained using ~ 75% or 
more slope units do not differ significantly – in terms of the number of correctly classified 
units – from the model obtained using the entire set of 894 mapping units. This is an indication 
of the model ability to cope with significant (up to 25%) random variation in the input data. 

Figure 6.4.B provides similar results for the non-selected subsets. The overall model fit and its 
scatter increase with a decreasing number of non-selected units. Comparison of Figures 6.4.A 
and 6.4.B indicates that models prepared using the selected units result in a better 
classification (i.e., in a larger model classification) when compared to models obtained using 
the non-selected units. This was also expected. Any statistical classification provides better 
results on the training set, and performs less efficiently when applied to the validation set 
(Michie et al., 1994). Figure 6.4.C shows the result for the collection of the selected (training) 
and the non-selected (validation) subsets. The blue box plots show the cumulative effect of the 
slope units correctly classified in the training and in the validation sets. For this reason, the 
scatter around the median is reduced, particularly for proportions of slope units exceeding 
75%.  

6.5.1.6. Uncertainty in the susceptibility estimate of individual slope units 
The adopted approach to ascertain landslide susceptibility provides a unique (single) value for 
the probability of spatial occurrence of the known landslides (i.e., of landslide susceptibility) 
for each mapping unit (e.g., Figure 6.2.B). The approach does not provide a measure of the 
error (i.e., the uncertainty) associated with the probability estimate. This is a limitation, which 
can be possibly overcome by further analysing the results contained, e.g., in group G85 of the 
obtained susceptibility models. 
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Figure 6.4 – Sensitivity analysis for the landslide susceptibility model prepared for the Collazzone area 
shown in Figure 6.2.B. (A) training set, i.e., slope units selected by a random selection procedure and 
classified by 50 discriminant functions; (B) validation set, i.e., slope units not selected by a random 
selection procedure and classified by 50 discriminant functions constructed on the corresponding 

subset of selected slope units; (C) all slope units, encompassing the selected (training) and the non-
selected (validation) sets. In the box-plots, the central line shows 50th percentile (median); lower and 

upper limits of rectangle show 25th and 75th percentiles, respectively; lower and upper horizontal lines 
show10th and 90th percentiles, respectively; dots show outliers. 

G85 lists 50 susceptibility models that resulted in 50 different estimates of the probability of 
spatial occurrence of landslides for the 894 slope units in which the study area was partitioned. 
For each slope unit, Figure 6.5.A compares the mean value of the 50 probability estimates 
listed in group G85 with the single probability estimate obtained for the model shown in Figure 
6.2.B, the latter prepared using the entire set of 894 slope units. The correlation between the 
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two estimates of landslide susceptibility is very high (r2 = 0.9998), indicating that the two 
classifications are virtually identical. 

Based on this result, Figure 6.5.B shows for the 894 slope units ranked from low to high 
values of the probability estimate of landslide spatial occurrence, 2 standard deviations (2σ) of 
the same probability estimate. The measure of 2σ is low (< 0.05) for slope units classified as 
highly susceptible (probability > 0.80) or as largely stable (probability < 0.20). The scatter in 
the model estimate is larger for intermediate values of the probability (i.e., between 0.40 and 
0.60). This indicates that for the latter slope units, not only the model is incapable of 
satisfactorily classifying the terrain as stable or unstable, but also that the obtained estimate is 
highly changeable, and hence poorly reliable. 

 

Figure 6.5 – (A) For 894 slope units in which the Collazzone area was partitioned, the graph compares 
the mean value of the 50 probability estimates obtained from group G85 (x-axis) with the single 

probability value obtained for the susceptibility model shown in Figure 6.2.B (y-axis). Correlation 
coefficient, r2 = 0.9998. (B) Landslide susceptibility model error. For the 894 slope units in the 

Collazzone area, the graph shows the mean value of 50 probability estimates (x-axis) against two 
standard deviations (2σ) of the probability estimate (y-axis). Mean and standard deviation values 

obtained from group G85. Along the x-axis, slope units are ranked from low (left) to high (right) spatial 
probability of landslide occurrence. Blue line shows estimated model error obtained by linear 

regression fit. Correlation coefficient, r2 = 0.605. 

The variation in the model estimate shown in Figure 6.5.B can be modelled by the following 
equation (blue line): 

x.x.y 30803090 2 +−=  10 ≤≤ x  ).r( 60502 =  6.15 

where, x is the estimated value of the probability of pertaining to an unstable mapping unit 
(i.e., the landslide susceptibility estimate), and y is 2σ of the model estimate (Guzzetti et al., 
2005d).  

The value of 2 standard deviations (2σ) of the model estimate is a proxy for the susceptibility 
model error. Equation (6.15) can be used to estimate quantitatively the model error for each 
slope unit, based on the computed probability estimate. For each slope unit, Figure 6.6 shows 
the error associated with the probability estimate (i.e., to landslide susceptibility), computed 
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using equation 6.15. Figure 6.6 provides a quantitative measure of the error associated with the 
quantitative landslide susceptibility assessment shown in Figure 6.2.B. 

To further investigate the relationship between the predicted probability of spatial landslide 
occurrence and its variation (error), one can rank the 894 slope units based on the mean value 
of the computed probability estimates obtained from group G85. Figure 6.7, shows the rank of 
the slope unit (x-axis) against statistics of the probability estimates (y-axis). In the Figure, the 
thick red line shows the average value of the landslide susceptibility estimates, and the thin 
orange lines show ± 2σ of the estimate. The measure of 2 standard deviations varies with the 
predicted probability of spatial occurrence of landslides. The variation is small for slope units 
predicted as highly unstable, it increases to a maximum value towards the centre of the graph, 
where unclassified slope units are shown and it decreases again to small values for slope units 
predicted as highly stable. 

 

Figure 6.6 – Map showing estimated model error (2σ) for the landslide susceptibility model shown in 
Figure 6.2.B. Model error was computed using equation 6.15 and is shown here in 5 classes. Square 

bracket indicates class limit is included. Round bracket indicates class limit is not included. 
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Figure 6.7 – For 894 slope units, ranked from low (left) to high (right) susceptibility values (x-axis), 
the graph shows the probability of the spatial occurrence of landslides (y-axis). Thick red central line 
shows the average value for 50 landslide susceptibility estimates. Upper and lower orange lines show 

±2σ of landslide susceptibility estimate. 

6.5.1.7. Analysis of the model prediction skill 
The tests described in the previous sections were aimed at determining the (statistical) 
reliability and robustness of the susceptibility model (§ 6.5.1.2, § 6.5.1.5), and at estimating 
the error associated with the quantitative forecast (§ 6.5.1.6). All tests were performed using 
the same landslide information used to construct the susceptibility model (Figure 6.2.B), i.e., 
the multi-temporal landslide inventory map shown in Figure 6.2.A. A limitation of the 
performed tests lays in the fact that the tests do not provide insight on the ability of the 
susceptibility model to predict the occurrence of new or reactivated (i.e., “future”) landslides, 
which is the primary goal of any susceptibility assessment (Chung and Fabbri, 1999, 2003; 
Guzzetti et al., 1999, 2005c,d). 

To evaluate the ability of a susceptibility model to predict future landslides one must use 
independent landslide information (§ 6.5). For the Collazzane area, independent landslide 
information exists, and consists of two recent landslide event inventory maps. The first 
inventory shows 413 landslides triggered by rapid snowmelt in January 1997 (§ 3.3.3.2, Figure 
6.8.A). In the inventory, the area of individual landslides ranges from 75 m2 to 44,335 m2, for 
a total landslide area of 0.78 km2, 0.98% of the study area. The second event inventory shows 
153 landslides triggered by heavy rainfall in the period from October to December 2004 
(Figure 6.8.B). Area of the latter slope failures ranges from 51 m2 to 47,884 m2, for a total 
landslide area of 0.38 km2, 0.49% of the study area. 
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Figure 6.8 – Recent landslide event inventory maps for the Collazzone area. (A) Map showing 413 
landslides triggered by rapid snowmelt in January 1997 (§ 3.3.3.2; Cardinali et al., 2000; Guzzetti et 
al., 2003). (B) Map showing 102 landslides triggered by heavy rainfall in the period from October to 

December 2004. Original maps at 1:10,000 scale. 

In an attempt to determine the ability of the susceptibility model to predict future landslides, I 
now perform three tests. The first test consists in computing the proportion of the event 
landslide area in each susceptibility class, and in showing the results using cumulative 
statistics. Figure 6.9 shows the percentage of the study area, ranked from most to least 
susceptible (x-axis), against the cumulative percentage of the area of the triggered landslides 
in each susceptibility class (y-axis), for the snowmelt induced landslides in January 1997 
(dark-blue dashed line), and for the rainfall induced landslides in autumn 2004 (light-blue 
dotted line). Inspection of Figure 6.9 reveals that the most susceptible 10.0% of the study area 
contains 19.5% of the snowmelt induced landslide areas (Figure 6.8.A), and 18.4% of the 
rainfall-induced landslide areas (Figure 6.8.B). Further, the most susceptible 50.0% of the 
study area contains 84.5% of the snowmelt induced landslide areas, and 73.2% of the rainfall 
induced landslide areas. These figures provide a quantitative estimate of the model prediction 
skill. 

Inspection of Figure 6.9 indicates that the forecasting performance of the susceptibility model 
is better for the 1997 snowmelt induced landslides, and slightly poorer for the 2004 rainfall 
induced landslides. The difference can be attributed – at least partially – to the larger number 
of snowmelt induced landslides (Figure 6.8.A), a function of the different severity of the 
triggering events. In the study area, rapid snowmelt in January 1997 was a more severe trigger 
of landslides than the autumn 2004 rainfall period (Guzzetti et al., 2003). Figure 6.9 shows 
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that the prediction performance is similar (for rainfall induced landslides) or even higher (for 
snowmelt induced landslides) that the model fitting performance (Figure 6.3, and thin blue line 
in Figure 6.9). This is surprising, because the fitting performance of a landslide susceptibility 
model is usually higher that its prediction skill (Chung and Fabbri, 2003; Guzzetti et al., 
2005a,d). 
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Figure 6.9 – Analysis of the prediction skill of the landslide susceptibility model prepared for the 
Collazzone area and shown in Figure 6.2.B. x-axis, cumulative percentage of the study area in classes 
of landslide spatial occurrence, ranked from most (left) to least (right) susceptible. y-axis, cumulative 
percentage of the events landslide area in each susceptibility class. Thick dashed dark-blue line shows 

landslides triggered by rapid snowmelt in January 1997 (Figure 6.8.A). Thick dotted light-blue line 
shows landslides triggered by heavy rainfall in autumn 2004 (Figure 6.8.B). Continuous thin line 

shows model fitting performance (Figure 6.3). 

The remaining two tests explore further the relationship between the predicted susceptibility 
classes and the distribution and abundance of the triggered landslides. Figure 6.10.A shows 
that 65.6% of the snowmelt induced landslide areas in January 1997, and 54.7% of the rainfall 
induced landslide areas in autumn 2004 occurred in slope units classified as highly unstable 
(probability > 0.80). Further, 90.7% of the snowmelt induced landslide areas, and 88.2% of the 
rainfall induced landslide areas occurred in unstable or highly unstable slope units (probability 
> 0.55). Conversely, only 2.0% of the snowmelt induced landslide areas, and only 3.7% of the 
rainfall induced landslide areas where found in mapping units classified as highly stable 
(probability ≤ 0.20). Figure 6.10.B shows similar results, but considers the number of the 
triggered landslides. To obtain this statistics, the central point of each landslide polygon was 
identified in the GIS and the number of landslide central points in each slope unit was counted. 
About 57.0% of the snowmelt induced landslides, and 53.6% of the rainfall-induced landslides 
occurred in slope units classified as highly unstable (probability > 0.80). Conversely, only 
2.2% of the snowmelt induced landslides, and only 3.3% of the rainfall induced landslides 



 

Chapter 6  
 

 

154  
 

occurred in slope units classified as highly stable (probability ≤ 0.20). Figure 6.10 confirms 
the aptitude of the susceptibility model to predict where (i.e. in which slope unit) the snowmelt 
induced landslides occurred in January 1997, and where the rainfall-induced landslides 
occurred in autumn 2004. 
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Figure 6.10 – Collazzone area. Analysis of the relationship between the predicted susceptibility classes 
and the distribution and abundance of the triggered landslides. (A) Cumulative statistics of triggered 

landslide area (y-axis) in the susceptibility classes (x-axis). (B) Cumulative statistics of the number of 
triggered landslides (y-axis) in the susceptibility classes (x-axis). Dashed dark-blue lines show landslides 
triggered by rapid snowmelt in January 1997. Dotted light-blue lines show landslides triggered by heavy 

rainfall in autumn 2004. 

6.5.2. A framework for the validation of landslide susceptibility models 
In the previous section (§ 6.5.1), I have presented a detailed example of how the quality (i.e., 
reliability, robustness, degree of fitting and prediction skills) of a landslide susceptibility 
model can be assessed quantitatively (i.e., measurably). The adopted evaluation procedure 
included: (i) standard methods used to evaluate the “goodness of fit” of a statistical 
classification (e.g., Tables 6.7 and 6.8), (ii) tests proposed in the literature to determine the 
degree of model fitting (Figure 6.3) and the prediction skills (Figure 6.9) of a landslide 
susceptibility model (Chung and Fabbi, 2003), and (iii) a scheme designed to evaluate (Figure 
6.5) and to portray on a map (Figure 6.6) the error associated with the landslide susceptibility 
estimate obtained for each individual mapping unit. 

Based on the results obtained in the Collazzone area, and aided by the scarce literature on the 
validation of landslide susceptibility models (Carrara et al., 1992; Irigaray Fernández et al., 
1999; Ardizzone et al., 2002; Chung and Fabbri, 1999, 2003, 2005; Fabbri et al., 2003; 
Remondo et al., 2003), I propose a general framework for establishing the quality of a 
landslide susceptibility assessment, including an objective scheme for ranking the quality of 
the assessment. A landslide susceptibility model should be tested to: 

(a) Determine the degree of model fit, 
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(b) Establish the aptitude of the thematic information to construct the model, including an 
assessment of the sensitivity of the model to changes in the landslide and the thematic 
information used to construct the model, 

(c)  Determine the error associated with the probabilistic estimate obtained for each mapping 
unit, and 

(d) Test the skill of the model prediction to forecast “future” landslides. 

Determining the degree of model fit consists in establishing how well the model describes 
(i.e., matches) the known distribution of landslides. The task is easily performed in a GIS 
using the same landslide information used to construct the susceptibility model. For the 
purpose, contingency tables (e.g., Tables 6.4, 6.7 and 6.8), and cumulative statistics of the 
abundance of landslides in the susceptibility classes (e.g., Figure 6.3) can be prepared. 
However, for the test to be significant, the landslide information must be representative, 
accurate, and complete. 

To evaluate the role of the thematic information in the construction of the landslide 
susceptibility model (e.g., Tables 6.3 and 6.6), and to evaluate the model sensitivity (e.g., 
Figure 6.4), one can study the list of thematic variables entered (and not entered) in a set of 
discriminant classification functions constructed on a sub-set of randomly selected mapping 
units (e.g., group G85, for the Collazzone case study). In the proposed scheme, the random 
selection procedure accounted for the variability in the input data. 

The expected error (i.e., the level of uncertainty) associated with the probabilistic 
susceptibility estimate obtained for each mapping unit can be determined by investigating the 
variability of the obtained estimate in the mapping units. For the purpose, I have assumed that 
two standard deviations (2σ) of the model estimate was a reasonable measure of the model 
uncertainty, and modelled the expected error consequently (i.e., using equation 6.14). 
Alternative measures of model uncertainty can be adopted. 

Testing the ability of the susceptibility model to forecast new (i.e., “future”) landslides can 
only be accomplished using landslide information not available to construct the susceptibility 
model (Chung and Fabbri, 2003, 2005; Guzzetti et al., 2005a,d). In the Collazzone area, I 
obtained independent landslide information from two recent event inventory maps showing 
new slope failures triggered by rapid snow melting and by intense rainfall. Chung and Fabbri 
(2003, 2005) obtained a similar result by splitting a multi-temporal inventory in two temporal 
subsets, i.e., a training set containing landslide occurred before an established date, and a 
classification set showing landslides occurred after the established date. I maintain that the 
scheme adopted here is superior to the scheme used by Chung and Fabbri (2003, 2005). In the 
first scheme, to construct the susceptibility model the entire set of available information on the 
past landslides is exploited, and not a temporal (i.e., limited) subset of it. As a potential 
drawback, the scheme is more “severe”, as a much reduced number of landslides is used to 
ascertain the model prediction skill. 

Table 6.10 lists a set of criteria for ranking and comparing the quality of landslide 
susceptibility assessments. Based on the listed criteria, when no information is available on the 
quality of a landslide susceptibility model the obtained product has the lowest possible level of 
quality (level 0). This level of quality should be considered unacceptable. When estimates of 
model fit are available, the susceptibility assessment has the least acceptable quality level 
(level 1). When the error associated with the predicted susceptibility estimate for each 
mapping unit is established, the susceptibility assessment has a higher level of quality (level 
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2). Lastly, when the prediction skill of the model is known, the susceptibility assessment has a 
still higher quality rank (level 4). The proposed scheme allows for summing the individual 
quality levels. As an example, a susceptibility assessment for which the fitting performance 
(level 1) and prediction skill (level 4) were determined is quality level 5. When, for the same 
susceptibility assessment, the error associated with the predicted susceptibility for each 
mapping unit is established (level 2), the quality level becomes 7. Adopting the proposed 
scheme, the landslide susceptibility model prepared for the Collazzone area has the highest 
quality level (i.e., level 7).  

 

Table 6.10. Criteria and levels of quality for landslide susceptibility models and associated maps. 

Description Level

No information is available, or no test was performed to determine the quality and the prediction 
skill of the landslide susceptibility assessment.  0 

Estimates of degree of model fit are available. Tests were performed using the same landslide 
information used to obtain the susceptibility estimate. 1 

Estimates of the error associated with the predicted susceptibility value in each terrain unit are 
available. Tests were performed using the same landslide information used to obtain the 
susceptibility estimate.  

2 

Estimates of the model prediction performance are available. Tests were performed using 
independent landslide information, not used to obtain the susceptibility model. 4 

  

The criteria listed in Table 6.10 do not guarantee as such the quality of a susceptibility 
estimate. To obtain this, the results of specific tests must be matched against established 
acceptance thresholds. Defining such thresholds is not an easy task. Based on the experience 
gained in numerous landslide susceptibility assessments completed in southern (Carrara, 
1983), central (Carrara et al., 1991; 1995; 2003; Cardinali et al., 2002) and northern 
(Ardizzone et al., 2002; Guzzetti et al., 2005c) Italy, I propose a set of acceptance thresholds, 
and I compare the results of the performed tests to the proposed thresholds. 

I consider acceptable a susceptibility model with an overall degree of model fit greater than at 
least 75%, and I regard a classification as very satisfactory when the overall model fit is 
greater that 80%. Further, I consider an extremely high value of the overall model fit (e.g., ≥ 
90%) as an indication that the model matches too closely the original landslide inventory map 
(a case of model “over fitting”). When such case arises, the model prediction is virtually 
indistinct from a prediction made using solely the landslide inventory, making the model 
useless and unreliable. The case may arise, e.g., where the spatial distribution of landslides is 
“trivial” (i.e., very easy) to forecast, or where the number of mapping units is very small 
compared to the number of the explanatory variables (e.g., Campus et al., 1999). An additional 
indication of the quality of the model consists in a reduced number of mapping units with 
landslides erroneously classified as “stable” areas by the model. The overall fit obtained for 
the susceptibility model prepared for the Collazzone area is 77.0% (Table 6.7), and the 
proportion of mapping units with landslides erroneously classified as stable areas is 9.5% (85 
units). 
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A statistical model obtained using a reduced number of geomorphologically meaningful 
explanatory variables is “less expensive” and superior to a model which uses a very large 
number of variables. Further, use of a stable combination of variables provides for a robust 
model that can cope with (some) uncertainty in the input data. The discriminant function used 
to construct the susceptibility model for the Collazzone area shown in Figure 6.2.B selected 16 
of the 46 available thematic variables (34.8%). Analysis of Table 6.9 reveals that the selected 
variables are consistent in classifying the slope units as stable or unstable in a large number of 
models. This is an indication of the robustness of the obtained model. 

To appraise the fitting performance and the prediction skill of a landslide susceptibility model, 
Chung and Fabbri (2003) proposed comparing the proportion of landslide area in each 
susceptibility class (AL) with the proportion of the susceptibility class (AS) in the study area. 
For a successful classification, the “effectiveness ratio” AL/AS should be greater than one in the 
areas predicted as landslide prone by the model, and less than one in the areas predicted as 
stable by the model. A very effective prediction class has a ratio close to zero or very large, 
depending if the class predicts stability or instability. Where the effectiveness ratio is near one, 
the proportion of landslides in the susceptibility class is not different from the average 
landslide density in the study area, and the performance of the susceptibility class in 
determining the known (“fitting” performance) or the future (“prediction” skill) location of 
landslides is weak. Chung and Fabbri (2003) considered “effective” a susceptibility class with 
a ratio larger than at least 3 (unstable areas) or less than at most 0.2 (stable areas), and 
“significantly effective” a susceptibility class with a ratio larger than at least 6 or less than at 
most 0.1. These criteria are hard to match in complex areas where landslides are large and 
numerous, and where the landscape exhibits considerable geomorphological variability. For 
such areas, I consider “effective” a susceptibility class with a ratio larger than 1.5 or smaller 
than 0.5, corresponding to a 50% increase or a 50% decrease from the expected proportion of 
landslides in the susceptibility class.  

It should be clear that all the proposed acceptance thresholds are not absolute, fixed 
thresholds. The proposed limits were selected heuristically, based on the experience of the 
investigators. The acceptance criteria need to be tested in other areas and by different 
investigators. Depending on the geomorphological setting and the complexity of a study area, 
other investigators may select different thresholds.  

Lastly, I like to point out that the proposed framework for the evaluation of the quality of a 
landslide susceptibility model considers the most relevant sources of errors in a statistically 
based susceptibility assessment, but other factors resulting in errors that affect a susceptibility 
assessment exist. These factors include: (i) imprecision and incompleteness in the landslide 
information used to construct and test the susceptibility model (Carrara et al., 1992; Ardizzone 
et al., 2002; Galli et al., 2005), (ii) quality, abundance, precision and completeness of the 
thematic data used to obtain the susceptibility assessment (Carrara et al., 1992; 1999; Soeters 
and van Westen, 1996), (iii) characteristics and limitations of the statistical technique used to 
obtain the classification, including the experience of the investigator in applying the selected 
statistical tools (Carrara et al., 1992; Michie et al., 1994), and (iv) selection of the appropriate 
mapping unit (e.g., slope units, unique condition units, grid cells, etc., § 6.2.2) (Carrara et al., 
1995; Guzzetti et al., 1999a). All these factors require choices from the investigator, which 
inevitably introduce uncertainty in the susceptibility assessment. The levels of uncertainty 
introduced by the listed factors should also be established. 
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6.6. Summary of achieved results 

In this chapter, I have: 

(a) Demonstrated that a large territory can be subdivided based on its propensity to generate 
new or reactivated landslides, using reliable and reproducible methods. 

(b) Shown how to validate the performances and prediction skills of a landslide susceptibility 
forecasts. 

(c) Proposed objective criteria for ranking and comparing the quality of landslide 
susceptibility forecasts. 

This responds to Question # 5 posed in the Introduction (§ 1.2). 


