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Abstract. We examine 19 datasets with measurements
of landslide volume,VL, for sub-aerial, submarine, and
extraterrestrial mass movements. Individual datasets in-
clude from 17 to 1019 landslides of different types, includ-
ing rock fall, rock slide, rock avalanche, soil slide, slide,
and debris flow, with individual landslide volumes rang-
ing over 10−4 m3

≤VL≤1013 m3. We determine the prob-
ability density of landslide volumes,p(VL), using kernel
density estimation. Each landslide dataset exhibits heavy
tailed (self-similar) behaviour for their frequency-size dis-
tributions, p(VL) as a function ofVL, for failures exceed-
ing different threshold volumes,V ∗

L , for each dataset. These
non-cumulative heavy-tailed distributions for each dataset
are negative power-laws, with exponents 1.0≤β≤1.9, and
averagingβ≈1.3. The scaling behaviour ofVL for the en-
semble of the 19 datasets is over 17 orders of magnitude,
and is independent of lithological characteristics, morpho-
logical settings, triggering mechanisms, length of period and
extent of the area covered by the datasets, presence or lack
of water in the failed materials, and magnitude of gravita-
tional fields. We argue that the statistics of landslide volume
is conditioned primarily on the geometrical properties of the
slope or rock mass where failures occur. Differences in the
values of the scaling exponents reflect the primary landslide
types, with rock falls exhibiting a smaller scaling exponent
(1.1≤β≤1.4) than slides and soil slides (1.5≤β≤1.9). We
argue that the difference is a consequence of the disparity in
the mechanics of rock falls and slides.

1 Introduction

Landslides are caused by meteorological and geophysical
triggers, and by human actions. Despite landslides being
frequent and widespread, the statistics of landslide size are
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not fully determined and remain poorly understood (Stark
and Hovius, 2001; Malamud et al., 2004b; Van Den Eeck-
haut et al., 2007). In this work, we exploit 19 datasets listing
measurements of landslide size to determine the probability
density of landslide volume,p(VL). Results provide empir-
ical evidence that the non-cumulative distribution of land-
slide volumes obeys a self-similar behaviour across 17 or-
ders of magnitude. The finding has implications for landslide
modelling (e.g., Hergarten and Neugebauer, 1998; Katz and
Aharonov, 2006; Juanico et al., 2008), for landscape analysis
(e.g., Hovius et al., 1997; Stark and Hovius, 2001; Malamud
et al., 2004a; Korup, 2006; Guzzetti et al., 2008, 2009), for
the determination of landslide hazard (Guzzetti et al., 2005,
2006), and as a starting point for the adoption of a quantita-
tive scale of landslide magnitude, based onVL (Malamud et
al., 2004b; Guzzetti et al., 2009).

We organize this paper by first giving a background to cu-
mulative and non-cumulative frequency-size distribution for-
mulas, and past studies that have examined the statistics of
landslide volumes (Sect. 2). We follow this be a description
of the 19 datasets used in this paper (Sect. 3), frequency-size
analyses of the data (Sect. 4), discussion of the implications
of our results (Sect. 5), and finally our conclusions (Sect. 6).

2 Background

To determine the statistics of landslide sizes (i.e., area or
volume), investigators have used the cumulative or the non-
cumulative number-size distributions. Inspection of the liter-
ature (see below) reveals that, above a threshold, the cumu-
lative distribution of large and very-large landslide volumes
is generally well approximated by a negative power-law,

NL = rV −α
L (1)

where NL is the cumulative number of landslides,VL

the landslide volume,α the cumulative power-law scal-
ing exponent, andr a constant. The corresponding
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Table 1. Characteristics of datasets in the literature listing measurements of landslide volumes,VL, for which the density distributions were
estimated.

Sourcea Geographic area Number of Distribution Distributionc Volume range Fit range Units Landslide Triggere

landslides typeb typed

1 Japan 800 c NL=105.49
·V −0.85

L
4×102–106 103–106 m3 m r

2 Iceland 224 c NL∝V −α
L

1×106–4×107 m3 rs u
3 New Zealand 42 c NL∝V −α

L
1×106–5×108 m3 ra u

4, 5, 6 Alberta, Canada 409 c NLy∝V −0.72
L

1×10−6–1×101 10−1–101 m3 rf u

6 Highway 99, British Columbia 390 c NLy=0.77·V −0.43
L

1×10−2–8×104 1×100–8×104 m3 rf, rs m

6 BCR line, British Columbia 403 c NLy=0.12·V −0.40
L

1×10−2–2×104 1×100–2×104 m3 rf, rs m

6 Highway 1, British Columbia 226 c NLy=1.36·V −0.70
L

1×10−2–2×104 1×100–2×104 m3 rf, rs m

6 CP line, British Columbia 918 c NLy=1.13·V −0.65
L

1×10−2–3×104 1×100–3×104 m3 rf, rs m

7 Hong Kong 2811 c NL=2.33·V −0.79
L

1×10−2–1×105 3×100–1×105 m3 rf, m r

8 Grenoble, France 87 c NLy=4.2·V −0.41
L

5×10−1–1×106 5×101–1×106 m3 rf m

8 Arly gorges, France 59 c NLy=8.5·V −0.45
L

5×100–1×104 2×101–3×103 m3 rf m

8 Yosemite, USA 101 c NLy=4.5·V −0.46
L

1×100–1×106 5×101–1×106 m3 rf m

9 World wide 142 c NLy∝V −0.52
L

1×103–2×1010 3×107–2×1010 m3 rf u

9 Mahaval, La Ŕeunion 370 c NLy∝V −1.0
L

<9×106 m3 rf m
10 Storega, off shore Norway ≈60 c NL=29.6–14.2·logVL 1×10−2–1×103 1×10−2–1×102 km3 sm u
11 Queen Charlotte Islands, Canada 475 nc p(VL)∝V −1.87

L
≈1×102

−1.6×104 5×102–1.6×104 m3 df, ds † r

11 Queen Charlotte Islands, Canada 140 nc p(VL)∝V −2.94
L

≈1×102
−1.2×103 2×102–1.2×103 m3 df, ds ‡ r

12 Yosemite, USA 392 nc f (VL)=10·V −1.1
L

1×10−1–6×105 1×10−1–6×105 m3 rf, rs m

13 Umbria Marche, central Italy 155 nc f (VL)=0.1·V −1.2
L

9.9×10−5–2.0×102 9.9×10−5–2.0×102 m3 rf e

13 Balza Tagliata, Umbria, Italy 62 nc f (VL)=0.1·V −1.2
L

8.1×10−3–1.3×102 8.1×10−3–1.3×102 m3 rf e

13 Balza Tagliata, Umbria, Italy 1696 nc f (VL)=0.01·V −1.6
L

2.4×10−5–5.4×101 2.4×10−5–5.4×101 m3 rf* e

14 Multiple areas nc f (VL)=2.34·V −1.07
L

10−12–10−3 km3 rf m

15 Capilano watershed, Canada 2984 nc f (VL)∝V
−β
L

,1.1≤β≤3.6 1×101–2×10−5 m3 ss m

a 1, Fujii (1969); 2, Whalley et al. (1983); 3, Whitehouse and Griffiths (1983); 4, Gardner (1970); 5, Gardner (1983); 6, Hungr et al. (1999);
7, Dai and Lee (2001); 8, Dussauge-Peisser et al. (2002); 9, Dussauge et al. (2003); 10, Issler et al. (2005); 11, Martin et al. (2002); 12,
Guzzetti et al. (2003); 13, Guzzetti et al. (2004); 14, Malamud et al. (2004b); 15, Brardinoni and Church (2004).
b c, cumulative distribution; nc, non-cumulative distribution.
c NL, cumulative number;NLy , cumulative number or frequency per year;f (VL), frequency density;p(VL), probability density.
d rf, rock fall; rs, rock slide; ra, rock avalanche; ss, soil slide; df, debris flow; sm, submarine; m, multiple; u, unknown; †, primary failure; ‡,
sidewall failure; *, rock fragments.
e r, rainfall; e, earthquake; m, multiple events or triggers; u, unknown.

non-cumulative number-volume distributionNL
′ also fol-

lows a power-law,

NL
′
=

dNL

dVL

=−αrV
−(α+1)
L =sV

−β
L ≡f (VL)≡NLT p(VL) (2)

with dNL the number of landslides in the volume interval
[VL; VL+dVL] (i.e. in a “bin” of size dVL), β the non-
cumulative scaling exponent, ands a constant. Equation (2)
further shows that the non-cumulative number-volume dis-
tribution, NL

′, is equivalent to the frequency density ofVL,
f (VL). The corresponding probability density ofVL, p(VL),
is obtained by dividingf (VL) by the total number of land-
slides,NLT . For a non-cumulative power-law distribution
with exponentβ>1, the corresponding cumulative distri-
bution, obtained by integration or summing, has exponent
α=β–1 (Guzzetti et al., 2002).

We now discuss past literature that has examined the
frequency-volume distribution of landslides. A summary of
these 15 studies is given in Table 1. In this literature re-
view table, for each study, we have indicated geographic

area, number of landslides considered, whether the authors
used cumulative or non-cumulative frequency-volume statis-
tics and over which range they were fitting the data, size dis-
tribution found, the landslide type in their studies (rock fall,
rock slide, rock avalanche, soil slide, slide, debris flow, sub-
marine landslide) and the trigger of the landslides (rainfall,
earthquake).

Fujii (1969) was probably the first to investigate the statis-
tics of landslide size. Studying an inventory of 800 land-
slides caused by heavy rainfall in Japan, he obtained a cu-
mulative number-volume distribution that correlated with a
power-law relation,α=0.85 (Eq. 2). Whalley et al. (1983)
examined data for 224 large rockslides in Iceland. White-
house and Griffiths (1983) studied 42 rock avalanche de-
posits in the central Southern Alps of New Zealand. The
two datasets exhibited power-law scaling of the frequency
of VL, with a value forα not specifically given. Gard-
ner (1983) investigated rock falls and rock slides in Alberta,
Canada, and provided an exponential relationship for the fre-
quency ofVL. Hungr et al. (1999) have given a cumulative
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frequency-volume distribution for 1937 rock falls and rock
slides in south-western British Columbia, divided into four
subareas, exhibiting negative power-laws withα=0.5±0.2.
Dai and Lee (2001) examined 2811 landslides, mostly rock
falls, in Hong Kong in the period 1992–1997, and found
that the cumulative frequency-volume distribution followed
a negative power-law, withα=0.8. Dussauge-Peisser et
al. (2002) compiled rock fall inventories for the Grenoble
area and for the Arly gorges, France, and determined that
the cumulative frequency distributions of the rock fall vol-
umes exhibited negative power-law behaviour withα=0.41
and α=0.45, respectively. Dussauge et al. (2003) studied
a world-wide inventory of 142 rock falls, and an inven-
tory of 370 instrumental measurements of rock fall failures
at Mahaval, La Ŕeunion, and established that the cumula-
tive frequency-volume distributions were negative power-law
functions, withα=0.52 andα=1.0, respectively. Issler et
al. (2005) studied submarine debris flows in the Storega land-
slide area, off shore Norway, and found that the cumulative
number-volume distribution was approximated by a logarith-
mic relationship,NL=29.6−14.2 logVL, with VL in km3.

Martin et al. (2002) found that the non-cumulative prob-
ability density for the volume of shallow landslides in the
Queen Charlotte Islands, British Columbia, correlated with
a negative power-law relation, withβ=1.87 for primary
(open slope) failures, andβ=2.94 for gully (sidewall) fail-
ures. Guzzetti et al. (2003) analyzed a catalogue of histor-
ical rock falls in Yosemite National Park, USA, compiled
by Wieczorek et al. (1992), and determined that the non-
cumulative frequency density of rock fall volumes exhib-
ited power-law scaling, withβ=1.1. Guzzetti et al. (2004)
examined two inventories of earthquake induced rock falls
in the Umbria-Marche Apennines, Italy, and established
that the non-cumulative frequency density of rock fall vol-
umes obeyed power-law scaling, withβ=1.2. Malamud et
al. (2004b) re-examined the catalogues of rock falls available
for the Yosemite area (Wieczorek et al., 1992), for the Greno-
ble area (Dussauge-Peisser et al., 2002), and for the Umbria
region (Guzzetti et al., 2004), and gave a non-cumulative fre-
quency density distribution for all three data sets, over twelve
orders of magnitude, that was well approximated by a nega-
tive power-law, withβ=1.1. Brardinoni and Church (2004),
measured the volume of shallow landslides in the Capi-
lano watershed, British Columbia, and gave non-cumulative
frequency-volume relationships that followed power-law re-
lations, withβ=2.7 to 3.6.

Review of the literature reveals that the proposed empirical
distributions of landslide volumes obey almost invariably a
negative power-law scaling (Table 1). Variability exists in the
exponent of the power-law tails of the distributions. Part of
the variability is natural i.e., due to different landslide types
and local morphological and lithological settings. However,
part of the variability is fictitious, and caused by the different
methods used to collect the data and to estimate the distribu-
tions (White et al., 2008).

3 Available data

For our own analyses, we used 19 datasets available in the
literature with measurements of landslide volume,VL. We
summarize the characteristics of each of these datasets in Ta-
ble 2. Of the available datasets, 17 list the volumes of sub-
aerial landslides (A to O, Q to R, in Table 2), one lists sub-
marine failures (P), and one lists extraterrestrial mass move-
ments (S). Multiple types of mass movements are considered,
including rock fall, rock slide, rock avalanche, soil slide,
slide, and debris flow (Cruden and Varnes, 1996). The num-
ber of landslides in each dataset varies from 17 (O) to 1019
(J), and the volume of the individual landslides spans 17 or-
ders of magnitude, from 1.0×10−4 m3 (A) to 1.8×1013 m3

(S). The techniques used to measure individual landslide vol-
umes varies. For some datasets (e.g., A, B, C, D, O) indi-
vidual landslide volumes were measured in the field. For
other datasets (e.g., E, F, G, J, L, N) the landslide volume
was obtained by multiplying landslide length, width, and
depth measured in the field, on topographic maps, or from
aerial photographs (e.g., Simonett, 1967; Rice et al., 1969;
Rice and Foggin, 1971; Larsen and Torres-Sánchez, 1996,
1998; Baum et al., 2000; Barnard et al., 2001). For the other
datasets, the technique used to measureVL is unknown.

Measurements of landslide volume are affected by vari-
ous types of errors, which are difficult to quantify. For most
datasets, the error associated with the measurement ofVL

is unknown. Based on geomorphological evidence and field
experience, Guzzetti et al. (2009) argued that the error asso-
ciated with the measurement ofVL is within the same order
of magnitude as the measured volume. For this work, we
adopted a similar approach, and we attributed an uncertainty
to the measurements ofVL in each dataset, based chiefly on
the landslide type and on information on the method used to
obtainVL (Table 2). We assumed that the uncertainty de-
pends primarily on the difficulty in estimating the landslide
sub-surface geometry and depth. We divided the 19 datasets
in three groups, and attributed to each group a level of uncer-
tainty, expressed as a rangeI of possible values for the true
(unknown) landslide volume. Datasets listing landslide vol-
umes measured in the field or using quantities (i.e., length,
width, area) measured in the field or obtained through de-
tailed analysis of aerial photographs, were attributed a range
I=[0.5VL; 1.5VL], corresponding to an uncertainty of 50%.
Datasets reporting submarine or extraterrestrial landslides,
or landslides for which no information was available on the
method used to measure the landslide volume, were assigned
a rangeI=[0.2VL; 5VL], corresponding to a factor of five un-
certainty. Other datasets were attributed a rangeI=[0.5VL;
2VL], corresponding to a factor of two uncertainty. We ac-
knowledge that the adopted classification is heuristic and
somewhat subjective, but we maintain it provides a reason-
able proxy for the error associated with the measurement of
VL.
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Table 2. Characteristics of 19 landslide datasets used in this study, listed in ascending order of minimum landslide volume. Last two columns
show (i) the minimum landslide volumeV ∗

L
selected for the least-square linear fitting of the tail of the probability distribution, and (ii) the

corresponding scaling exponentβ of the negative power-law fit.

ID Sourcea Dataset Number of Range ofVL (m3) Ib Landslide Rock Triggere Age or periodf Threshold Slope
landslides,NLT min max min max typec typed V ∗

L
(m3) β±εg

A 1 Umbria-Marche, central Italy 133 1.0×10−4 2.0×102 0.5VL 1.5VL rf, rs s e 29 Sep–14 Oct 1997 1.0×10−1 1.3±0.0
B 1, 2 Balza Tagliata, Umbria, Italy 62 4.0×10−3 1.3×102 0.5VL 1.5VL rf s e 14 Oct 1997 1.0×10−1 1.4±0.0
C 3, 4 Grenoble, France 105 3.0×10−2 5.0×108 0.5VL 1.5VL rf s m 1935 to 1995 1.0×101 1.2±0.0
D 5 Yosemite, USA 379 5.0×10−2 1.1×107 0.5VL 1.5VL rf, rs i m 1867 to 2002 1.0×101 1.3±0.0
E 6 New Guinea 207 3.4×10−1 1.4×106 0.5VL 2VL sl m m m 1.0×102 1.2±0.0
F 7 Himalaya, India 338 5.0×10−1 4.0×105 0.5VL 2VL m m m m 1.0×102 1.5±0.0
G 8, 9 Southern California, USA 66 8.0×10−1 8.5×102 0.5VL 1.5VL ss, df m r 1965 to 1969 3.2×101 1.6±0.1
H 10 AVI archive, Italy 916 1.0×100 6.0×108 0.5VL 2VL m m m 1900 to 2000 1.0×103 1.2±0.0
I 3, 4 Arly gorges, France 25 5.0×100 1.0×104 0.5VL 1.5VL rf s, p m 1954 to 1976 1.0×102 1.2±0.1
J 11, 12 Puerto Rico, USA 1019 5.3×100 3.7×104 0.5VL 1.5VL ss, df v r ∼1950 to 1990 1.0×102 1.9±0.0
K 13, 14 Debris flow 46 1.0×101 3.8×109 0.5VL 2VL df u r m 1.0×107 1.3±0.0
L p.c. Tanaro valley, Northern Italy 100 2.4×101 8.4×103 0.5VL 1.5VL sl s r Nov 1994 3.2×102 1.8±0.1
M 15 World slides 404 7.5×101 2.9×1010 0.2VL 5VL m m m m 1.0×107 1.5±0.1
N 16 Washington, USA 20 7.6×101 1.1×106 0.5VL 2VL ss, df s r u 1.0×103 1.3±0.0
O 17 Peat slides, Shetland Is., UK 17 2.3×103 5.9×104 0.5VL 1.5VL ss s m u 6.3×103 1.6±0.1
P 18, 19 Submarine 43 6.0×103 5.0×1012 0.2VL 5VL sm s u u 1.0×1010 1.0±0.1
Q 19, 20 Non volcanic 153 3.0×104 2.1×1010 0.2VL 5VL df, ra m r u 1.0×107 1.1±0.0
R 19, 21 Volcanic 55 1.8×105 2.8×1010 0.2VL 5VL df, lh v m u 1.0×109 1.1±0.1
S 19, 22 Mars-Moon 28 2.0×108 1.8×1013 0.2VL 5VL ra, rs u u u 1.0×1010 1.0±0.0

a 1, Antonini et al. (2002); 2, Guzzetti et al. (2004); 3, Dussauge-Peisser et al. (2002); 4, Dussauge et al. (2003); 5, Wieczorek et al. (1992);
6, Simonett (1967); 7, Barnard et al. (2001); 8, Rice et al. (1969); 9, Rice and Foggin (1971); 10, Guzzetti and Tonelli (2004); 11, Larsen
and Torres-Śanchez (1996); 12, Larsen and Torres-Sánchez (1998); 13, Iverson (1997); 14, Iverson et al. (1998); 15, Guzzetti et al. (2009);
16, Baum et al. (2000); 17, Dykes and Warburton (2008); 18, Hampton et al. (1996); 19, Legros (2002); 20, Erismann and Abele (2001); 21,
Hayashi and Self (1992); 22, McEwen (1989); p.c., P. Aleotti, personal communication to FG (2002).
b uncertainty, expressed as a range of possible values for the true (unknown) landslide volume; see text for explanation.
c rf, rock fall; rs, rock slide; ra, rock avalanche; ss, soil slide; sl, slide; df, debris flow; lh, lahar; sm, submarine; m, multiple; u, unknown.
d i, intrusive; p, metamorphic; s, sedimentary; v, volcanic; m, multiple events or triggers; u, unknown.
e r, rainfall; e, earthquake; m, multiple; u, unknown.
f m, multiple dates or periods; u, unknown date or period.
g see Fig. 4;ε=0.0 indicates that the errorε is smaller than 0.05, andε=0.1 indicates that the error is 0.05≤ε≤0.09.

No rigorous definition exists for the completeness of a
landslide dataset (Malamud et al., 2004b; Guzzetti et al.,
2009). In this work, a complete dataset is a dataset for
which it is reasonable to assume that all landslides within the
range of volume allowed by the adopted measuring technique
were measured. Completeness of the 19 studied datasets de-
pends on the measurement technique. Datasets listing land-
slides caused by a single triggering event (Malamud et al.,
2004b), or obtained through direct field survey (e.g., A, B,
C, G, I, J, L, O), are considered, to a large extent, complete.
The Yosemite dataset (D), obtained through a systematic and
long-term record of rock falls and rock slides covering sev-
eral years (Wieczorek et al., 1992), is considered substan-
tially complete for the period 1980–2002, and incomplete
for the previous period (1867–1979) (Guzzetti et al., 2003).
Other datasets (e.g., E, F, H, K, M, N, P, Q, R, S) are in-
complete, and their degree of completeness remains undeter-
mined.

4 Data analysis

We analyzed the 19 landslide datasets individually to get es-
timates of the probability density of landslide volumep(VL),
and to establish similarities and differences between the
probability distributions. To minimize problems related to
the use of different statistical methods for the estimation of
the probability density ofVL, we selected a single method
and applied it to all the available datasets.

Inspection of the individual histograms obtained from the
raw data reveals that the non-cumulative distributions ofVL

exhibit many more small values than large ones, and appear
(even with some bins with no values) to decay as a heavy-
tail. An example for Umbria, Italy (dataset B) is shown in
Fig. 1. Heavy-tailed data are commonly evaluated on log-
arithmic scales (e.g., Newman, 2005; White et al., 2008).
Hence, we transformed theVL measurements taking the log-
arithm (base 10) ofVL, and obtained an ensemble of datasets
with −4.0≤logVL≤13.3. To estimate the probability density
of logVL, p(logVL), we adopted kernel density estimation
(KDE) (Silverman, 1986; Scott, 1992; Venables and Ripley,
2002). KDE replaces each value (in our case, each logVL
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Fig. 1. Histograms show the number of landslides,n, as a func-
tion of landslide volume,VL, for the Balza Tagliata dataset listing
NLT =62 earthquake induced rock falls in Umbria, central Italy (B
in Table 2). Upper panel(a) shows count and volume in linear co-
ordinates. Lower panel(b) shows count and volume in logarithmic
coordinates.

measurement) with an associated kernel function, character-
ized by a given shape and bandwidth. We experimented with
different kernel functions (i.e., Gaussian, triangular, rect-
angular) and bandwidths, and obtained optimally smoothed
curves using a Gaussian kernel, with bandwidth (standard
deviation) in the range between 0.3 and 0.5, depending on
the dataset. KDE was performed using the “density” func-
tion in the R software for statistical computing, release 2.6.2
(http://www.r-project.org/). The “density” algorithm dis-
tributed the mass of the empirical distribution on a regular
grid of n=10 000 points, used a fast Fourier transform to con-
volve the approximation with a discrete version of the kernel,
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Fig. 2. Probability density of the logarithm of landslide volume
p(logVL) as a function of logVL, shown in linear coordinates. Prob-
ability densities were obtained through kernel density estimation.
Letters A to S refer to dataset ID in Table 2. Letter Z refers to all
dataset landslide volumes combined into one dataset (dashed black
line).

and evaluated the density at selected bins through linear ap-
proximation (Silverman, 1986; Venables and Ripley, 2002).

Results of KDE are shown in Fig. 2 for the 19 considered
datasets (A–S), and for an additional dataset (Z, dashed black
line) that encompasses all the availableVL measurements
(4116 data). The inspection of Fig. 2 reveals (i) that sev-
eral of the shown probability density distributions, obtained
through KDE, are approaching symmetrical shapes, and (ii)
that the probability density for the cumulative dataset Z has
considerably longer tails. The latter is the result of the lim-
ited number of data for very small and very large landslides,
i.e., for small and for large logVL values.

In Fig. 2, the individual probability densities,p(logVL),
are smoother than the corresponding histograms, and satisfy
the normalization condition:

n∑
i=1

pi(logVL)
[
(logVL)i+1 − (logVL)i

]
= 1, (3)

wheren=10 000, andpi(logVL) is the probability density for
thei-th bin. Since we are interested in the probability density
of VL, p(VL), we transformedp(logVL). The probability
densityp(VL) has to satisfy the same normalization condi-
tion:

n∑
i=1

pi(VL)
[
(VL)i+1 − (VL)i

]
= 1 (4)
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Fig. 3. Probability densities of landslide volumes,p(VL), as a
function ofVL, shown in logarithmic coordinates (bottom and left
axes). The same plot shows the logarithm of the probability density
log(p(VL)) as a function of log(VL) in linear coordinates (top and
right axes). Letters A to S refer to dataset ID in Table 2. Letter Z
refers to all dataset landslide volumes combined into one dataset.

Considering Eqs. (3) and (4), we obtained:

pi(VL) =
pi(logVL)

[
(logVL)i+1 − (logVL)i

]
(VL)i+1 − (VL)i

(5)

wherepi(VL) is the probability density ofVL for thei-th bin.
Results of the transformation,p(VL) as a function ofVL, are
shown in Fig. 3 using logarithmic coordinates.

In Fig. 3, we observe that for volumes in the range
101 m3

≤VL≤109 m3, the probability densitiesp(VL) for
dataset Z (i.e. all data combined) obeys the general trend out-
lined by the ensemble of the probability density estimates
obtained for the 19 individual datasets. This general trend
tends towards a negative power-law with exponentβ≈1.3.
However, for very small (VL<101 m3) and for very large
(VL>109 m3) landslides, the probability densities for dataset
Z underestimates (i.e., are lower than) the densities obtained
for individual datasets. This is a consequence of the shape
of the density estimation for dataset Z (see Fig. 2), which
is conditioned by the comparatively low number ofVL mea-
surements for very small and very large landslides in the cu-
mulative dataset.

To better quantify the differences in the scaling of the tails
of the probability densities, we obtained fits of the tails of
the individual distributions, forVL greater than a thresh-
old volumeV ∗

L (Table 2). V ∗

L was selected for each dataset
through visual inspection. To account for problems associ-
ated with the fitting of data spanning multiple orders of mag-
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Fig. 4. Results of 100 simulations for each individual landslide
dataset A to S, that take into account the uncertainty on landslide
volumesVL (see Table 2, and text). For each individual dataset,
a rectangle shows: (i) (x-axis) the range of landslide volumesVL,
taking into consideration the rangeI of possible values for the true
(unknown) landslide volume; (ii) (y-axis) mean of the scaling ex-
ponentsβ of the power-law tail for the 100 simulations, with the
vertical height of the rectangle representing the standard deviation
of the β for those simulations. Colours show different landslide
types: red for rock falls and rock slides, green for slides and soil
slides, and white for other landslide types. Letters A to S refer to
dataset ID in Table 2.

nitude (e.g., the least square minimization criteria may not
work), VL and p(VL) were log-transformed (upper x-axis
and right y-axis in Fig. 3). A straight line was fitted to the
log-transformed data, which is entirely equivalent to a nega-
tive power-lawp(VL)∝V

−β
L (Eq. 2).

To account for the estimated error associated with the mea-
surement ofVL (Table 2), for each empirical dataset we con-
structed 100 synthetic datasets, each obtained by substitut-
ing the individual empirical measurements ofVL, with corre-
sponding synthetic values,VS . Each syntheticVS value was
obtained by randomly sampling from a uniform distribution
spanning a volume rangeI , determined by the correspond-
ing VL measurement (Table 2). Power laws were fitted to
the individual synthetic datasets, and statistics for the scaling
exponentsβ were determined (Table 2).

Figure 4 summarizes the results. For each landslide
dataset, the range of landslide volumesVL, including the es-
timated uncertainty, is shown along the x-axis. The corre-
sponding variation of the scaling exponentβ for each dataset
(i.e., one standard deviation centred on the mean value), is
shown along the y-axis. For substantially complete datasets,
β is related to the landslide type. Rock falls and rock slides
(A, B, C, D, I) exhibit lower scaling exponents (1.1≤β≤1.4)
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than slides and soil slides (G, J, L, O) (1.5≤β≤1.9). This is
an indication that the relative proportion of large landslides is
larger for rock falls, and smaller for slides. We attribute the
difference to a disparity in the mechanics of rock falls and
slides (Malanud et al., 2004b).

5 Discussion

Inspection of the 19 non-cumulative probability distributions
of landslide volume obtained for the individual datasets re-
veals significant similarities and some differences (Fig. 3).
Each individual dataset exhibits a distinct self-similar be-
haviour ofp(VL) as a function ofVL, for failures exceeding a
threshold size,V ∗

L (Table 2). The tails of the distributions are
reasonably well approximated by negative power-laws, with
1.0≤β≤1.9, average ofβ≈1.3, median 1.3, and standard de-
viation 0.3 (Table 2, Fig. 4). The scatter in the exponents
of the tails of the probability distributions is more limited
compared to the spread of the scaling exponents reported in
the literature (Table 1). We attribute the reduced scatter to
the technique adopted to obtain the probability density ofVL

and to fit power-laws to the (heavy) tails of the distributions.
Scatter in the value of the scaling exponents has multiple

reasons, including: (i) different landslide types, that reflect
different failure mechanisms (Cruden and Varnes, 1996),
(ii) the natural variability inherent to landslide phenomena,
and (iii) the number, quality, and completeness of the sin-
gle datasets (Stark and Hovius, 2001; Guzzetti et al., 2002;
Malamud et al., 2004b; Van Den Eeckhaut et al., 2007). The
scaling of the power-law fits are independent of time, and
of the period covered by the individual datasets that range
(where known) from tens of seconds for earthquake-induced
landslides (∼101 s, B), to a few hours for rainfall-induced
landslides (∼104 s, L), to multiple decades (∼109 s, C, D, G,
H, I, J) (Table 2).

Some dataset (e.g., A, G, N, P) exhibit a deviation of the
tail from the power-law behaviour, for the largest landslides
in each dataset. For these datasets, the power-law fit over-
estimates the probability density, i.e. the empirical density is
lower than the density modelled by the power-law fit. The
behaviour has been observed for other natural hazards, in-
cluding earthquakes (Turcotte, 1997). For landslides, it can
be the result of: (i) under-sampling of the largest events e.g.,
because of the lack of data, or because the temporal span of
a dataset is small compared to the frequency of large (rare)
events, and (ii) geometrical constrains, e.g., a landslide can-
not be larger than the slope where the failure occurs (Guzzetti
et al., 2002).

A few datasets (e.g., F, G, J, L) exhibit a “rollover” of
the probability densities for smallVL. This is similar to the
“rollover” identified in the frequency and probability den-
sity functions of landslide areas (e.g., Pelletier et al., 1997;
Stark and Hovius, 2001; Guzzetti et al., 2002; Brardinoni and
Church, 2004; Malamud et al., 2004b; Van Den Eeckhaut et

al., 2007). The “rollover” can be the result of under-sampling
of the smallest landslides (Stark and Hovius, 2001), or a geo-
morphological (physical) property of the landslides, marking
a change in the dominant processes that contribute to land-
slide formation and initiation (Guzzetti et al., 2002, 2008;
Katz and Aharonov, 2006; Malamud et al., 2004b). Datasets
showing a rollover contain landslides predominantly of the
slide type, whereas rock falls do not exhibit a rollover. We
attribute the difference to different failure mechanisms for
the two landslide types (Malamud et al., 2004b).

Small datasets withn≤55 (I, K, N, O, P, R, S) show multi-
ple deviations of the probability density from the power-law
fit. We attribute the irregularities in the density functions for
these datasets to the reduced size of the datasets, and to (par-
tial) failure of the kernel density estimation to capture the
landslide density.

In Fig. 3, the position of the individual probability density
estimates is influenced by: (i) the range ofVL, that controls
the placing along the x-axis, (ii) the scaling of the distribu-
tion, which is similar for most of the datasets, and (iii) the
normalization condition, expressed by Eq. (4). Location of
the distributions along the x-axis or the y-axis is not influ-
enced by the number of measurements in the datasets. In-
spection of Fig. 3 reveals that the ensemble of the density
functions clusters around a trending line that follows a neg-
ative power-law with a scaling exponentβ≈1.3, across 17
orders of magnitude, 10−4 m3

≤VL≤1013 m3. The finding
indicates a self-similar (fractal) (Turcotte, 1997; Turcotte et
al., 2002; Cello and Malamud, 2006) behaviour ofp(VL) as
a function ofVL, over a very large range of volumes. This
is in spite of lithological characteristics, morphological set-
tings, triggering mechanisms, length of period and extent of
the area covered by the datasets, presence or lack of water in
the failed soils and rocks, and intensity of gravitational fields
for extraterrestrial landslides (S) (Table 2). The scaling be-
haviour is the result of natural processes that control land-
slide volumes, and not an artefact introduced by the tech-
nique used to collect the samples, by the methods used to
measure landslide volumes, or by the number of data in the
individual datasets.

Further inspection of Fig. 3 reveals that the scaling of the
distributions covering small (e.g., A, B), or medium (e.g.,
I, J), or large (e.g., P, S) landslides is rather similar. This
is an indication that landslides of all sizes (in the range
10−4 m3

≤VL≤1013 m3) belong essentially to the same un-
derlying frequency-size distribution. In other words, for
landslide volumes the largest (“extreme”) failures pertain to
the same distribution as the other landslides. This finding is
important because it allows using a range ofVL for which
datasets are most abundant, of higher quality, or more com-
plete, to infer the scaling behaviour for other ranges ofVL

for which data are limited, and of poor or of uncertain qual-
ity. The fact that the 19 datasets individually cover only a
reduced portion of the entire range ofVL measurements is an
indication that single datasets are bounded by geometrical or
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geomorphological limits. As discussed above, the reduced
number of small landslides in a dataset is the result of a sam-
pling problem, or a change in the process that initiates the
landslides (Pelletier et al., 1997; Guzzetti et al., 2002; Mala-
mud et al., 2004b; Katz and Aharonov, 2006). Conversely,
the largest landslides in a dataset provide indication on the
largest slope failure that can be caused by an individual trig-
ger of given magnitude in an area (e.g., B in Table 2), or
the largest slope failure that can form in a given landscape
(Guzzetti et al., 2002, 2008).

We suggest that the distinct self-similar scaling behaviour
of landslide volumes across several orders of magnitude is
conditioned primarily on the geometrical properties of the
system (i.e., slope or rock mass), where slope failures occur,
and subordinately on the environmental (e.g., morphological,
lithological, geological, meteorological, climatic) conditions
that characterize the system. In other words, the statistics of
VL is controlled by the geometrical scaling (spacing, length,
persistence) of the discontinuities (e.g., bedding, lamination,
schistosity, fracture, cleavage, joint, fault) that control the
location and initial volume of the slope failures (Katz and
Aharonov, 2006). This is confirmed by the fact that rock falls
and rock slides have lower scaling exponents (1.1≤β≤1.4)
than slides and soil slides (1.5≤β≤1.9), a consequence of
the different mechanics of the two types of mass movements
(Cruden and Varnes, 1996).

Our finding represents an advancement in the understand-
ing of the statistics of landslides (Stark and Hovius, 2001;
Malamud et al., 2004b; Van Den Eeckhaut et al., 2007) that
can be used to confront physical (Katz and Aharonov, 2006)
and computer (Hergarten and Neugebauer, 1998, Juanico et
al., 2008) models of landslide sizes. The scale-invariant be-
haviour of landslide volume can prove useful to model ero-
sion rates and sediment fluxes in landscapes dominated by
mass-wasting processes (Hovius et al., 1997; Stark and Hov-
ius, 2001; Malamud et al., 2004a; Korup, 2006; Guzzetti
et al., 2008, 2009), where more detailed information is not
available. The statistics ofVL are also important for land-
slide hazard assessment (Guzzetti et al., 2005, 2006), and
specifically for modelling rock fall hazard (Guzzetti et al.,
2003, 2004). Lastly, we anticipate our results to contribute
to establish a physically-based magnitude scale for landslide
events, based on landslide volume (Malamud et al., 2004b;
Guzzetti et al., 2009).

6 Conclusions

Through kernel density estimation, we obtained the probabil-
ity densities of landslide volumes for 19 datasets, which in-
cluded sub-aerial, submarine and extraterrestrial mass move-
ments. Analysis of the probability densities,p(VL), indi-
cates that each dataset exhibits negative power-law scaling of
p(VL) as a function ofVL, for landslides exceeding a thresh-
old volume. The ensemble of the probability density esti-

mates obtained for the individual datasets follows a negative
power-law (scale invariant trend) with exponentβ≈1.3, in
the range 10−4 m3

≤VL≤1013 m3. This behaviour ofp(VL)

over 17 orders of magnitude is in spite of local geomorpho-
logic settings, triggering mechanisms, length of period and
extent of the area covered by the datasets, presence or lack
of water in the failed soils and rocks, and intensity of grav-
itational fields. We suggest that the self-similar behaviour
of landslide volumes is controlled primarily by the geome-
try and abundance of the discontinuities in the soil and rock
mass where landslides initiate. Differences in the scaling ex-
ponent of the density distributions reflect differences in the
landslide types, with rock falls systematically exhibiting a
steeper tail (1.5≤β≤1.9) than slides (1.1≤β≤1.4). The dif-
ference reflects a disparity in the mechanical behaviour of
rock falls and slides.

Our results advance the understanding of the statistics of
landslide volumes, and can contribute to the validation of
physical (Katz and Aharonov, 2006) and computer (Her-
garten and Neugebauer, 1998; Juanico et al., 2008) mod-
els of landslide sizes, to regional studies of landslide hazard
(Guzzetti et al., 2003, 2004, 2005, 2006), and to the mod-
elling of erosion and sediment fluxes in landslide dominated
landscapes (Hovius et al., 1997; Stark and Hovius, 2001;
Malamud et al., 2004b; Korup, 2006; Guzzetti et al., 2008,
2009). The research is also a starting point to establish a
physically-based scale for landslide events, based on land-
slide volume (Malamud et al., 2004a; Guzzetti et al., 2009).

Appendix A

The KDE script

To determine the probability density of landslide vol-
ume, p(VL), the author MTB prepared a script for the
R free software environment for statistical computing,
release 2.6.2 (http://www.r-project.org/). The follow-
ing are available for download through the journal
Web site, and at the universal resource locator address
http://geomorphology.irpi.cnr.it/tools/stat-ls/pdf-ls-vol:
(i) the script KDE landslidevolumes.r, (ii) two ex-
ample datasets Data volumem3 UmbriaMarche.txt,
Data volumem3 BalzaTagliata.txt, (iii) a file with illustra-
tive resultsOutput.pdf. The two demonstrative datasets are
provided as text files, and list datasets A and B in Table 2.
The script can be customized to analyze different landslide
volume data.
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