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Abstract. GIS-based deterministic models may be used for

landslide susceptibility mapping over large areas. However,

such efforts require specific strategies to (i) keep computing

time at an acceptable level, and (ii) parameterize the geotech-

nical data. We test and optimize the performance of the GIS-

based, 3-D slope stability model r.slope.stability in terms of

computing time and model results. The model was devel-

oped as a C- and Python-based raster module of the open

source software GRASS GIS and considers the 3-D geom-

etry of the sliding surface. It calculates the factor of safety

(FoS) and the probability of slope failure (Pf) for a num-

ber of randomly selected potential slip surfaces, ellipsoidal

or truncated in shape. Model input consists of a digital eleva-

tion model (DEM), ranges of geotechnical parameter values

derived from laboratory tests, and a range of possible soil

depths estimated in the field. Probability density functions

are exploited to assign Pf to each ellipsoid. The model calcu-

lates for each pixel multiple values of FoS and Pf correspond-

ing to different sliding surfaces. The minimum value of FoS

and the maximum value of Pf for each pixel give an estimate

of the landslide susceptibility in the study area. Optionally,

r.slope.stability is able to split the study area into a defined

number of tiles, allowing parallel processing of the model on

the given area. Focusing on shallow landslides, we show how

multi-core processing makes it possible to reduce computing

times by a factor larger than 20 in the study area. We further

demonstrate how the number of random slip surfaces and the

sampling of parameters influence the average value of Pf and

the capacity of r.slope.stability to predict the observed pat-

terns of shallow landslides in the 89.5 km2 Collazzone area

in Umbria, central Italy.

1 Introduction

Landslide susceptibility is the spatial probability of landslide

occurrence, based on local terrain conditions (Brabb, 1984;

Guzzetti et al., 1999). The susceptibility to landslides can

be determined using statistical and physically based models

(Guzzetti et al., 1999; Van Westen, 2000; Guzzetti, 2006; Van

Westen et al., 2006). Most commonly, modelling of the spa-

tial probability of shallow landslides for small catchments re-

lies upon the use of physically based (“deterministic”) mod-

els (Van Westen et al., 2006). These models build on the limit

equilibrium concept, resulting in a factor of safety (FoS; Car-

son and Kirkby, 1972; Crozier, 1986; Duncan and Wright,

2005) of the failure surface. FoS is given by the dimension-

less ratio between the resisting (stabilizing) forces and the

driving (destabilizing) forces.

In combination with a raster GIS, FoS calculations most

commonly build on the assumption of a planar slope of

infinite length, with the potential failure surface parallel

to the topographic surface (infinite slope stability model;

Van Westen and Terlien, 1996; Burton and Bathurst, 1998;

Xie et al., 2004a; Baum et al., 2008; Godt et al., 2008;

Mergili et al., 2014; Raia et al., 2014). However, the infinite

slope stability model is well suited only for shallow slope

stability in frictional materials, and is less appropriate for
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cohesive materials (Mergili et al., 2014). It is suitable only

for sufficiently large length-to-depth ratios of landslide re-

lease areas (Griffiths et al., 2011a; Milledge et al., 2012; Ti-

wari et al., 2014).

To evaluate the stability/instability conditions of slopes

susceptible to deep-seated landslides, the zone above a

known, inferred or hypothetical failure surface is divided into

vertical slices of equal or different sizes. The resisting (stabi-

lizing) forces R and the driving (destabilizing) forces T are

computed for each slice, and summed up linearly to obtain

a single value of FoS for the entire slope. First applied to

2-D cross-sections (Duncan and Wright, 2005), this type of

model was extended to 3-D topographies and failure surfaces

(e.g. Hovland, 1977; Hungr, 1987; Hungr et al., 1989). More

details are given in Mergili et al. (2014). Few attempts were

made to develop sliding-surface models applicable at the re-

gional scale, coupled to GIS (Reid et al., 2000; Xie et al.,

2003, 2004b, c, 2006; Marchesini et al., 2009; Jia et al.,

2012). A recent study of Mergili et al. (2014) indicates that,

also for shallow landslides, more complex slip surface mod-

els might perform slightly better in reproducing the observed

landslide areas than the infinite slope stability model.

The broad-scale GIS implementation of sliding surface

models faces two major challenges: (i) the spatial distribu-

tion of the geotechnical and geometric parameters is uncer-

tain; and (ii) a very large number of possible slip surfaces has

to be tested using a reasonably fine pixel spacing, requiring

strategies to keep computational times at an acceptable level.

Geotechnical uncertainty is due to inherent spatial and

temporal variability of terrain materials (Hicks and Spencer,

2010; Suchomel and Mašin, 2010; Griffiths et al., 2011b)

but also due to limitations of laboratory analysis (Di Mat-

teo et al., 2013). It can affect also the geometric uncertainty,

i.e. the depth and shape of the failure surface. Predefining the

failure surface in a deterministic way most likely leads to an

overestimation of FoS or to an underestimation of the slope

failure probability (Griffiths et al., 2011b).

Various probability density functions (PDFs) have been

used to describe the uncertainty of the geotechnical and ge-

ometric parameters. Most frequently, log-normal and normal

distributions are assumed but, in some cases, also uniform or

exponential functions have been used (e.g. Raia et al., 2014;

Husein Malkawi et al., 2000; Griffiths et al., 2011b; Wang,

2012; Gorsevski et al., 2006; Gui et al., 2000; El-Ramly et al.,

2005; Petrovic, 2008).

A considerable amount of literature has been published

on the uncertainty of geotechnical parameters and slip sur-

face geometry. Recently, Johari et al. (2013) introduced five

classes of probabilistic methods that have been used for the

analysis of the stability of slopes. He defined these classes as

(i) random sampling (Monte Carlo simulation), (ii) analytic

methods, (iii) approximate methods, (iv) response surface

method and (v) stochastic finite element method (see Johari

et al., 2013, and references therein for detailed descriptions

of each method). Even though a number of researchers have

tried to demonstrate that the methods pertaining to the last

four classes can perform reasonably well and in a faster and

more efficient way, there is broad agreement that the Monte

Carlo approach remains the best method (e.g. Low, 2007;

Husein Malkawi et al., 2000; Wong, 1985; Ishii and Suzuki,

1987; Tan et al., 2013).

Existing examples and practices of exploiting parallel

computing in GRASS GIS show relevant progress in the

topic and are worth being considered for a vast number of

applications (Sorokine, 2007; Liu et al., 2009; Alvioli et al.,

2013). Such parallel codes are implemented with a variety of

techniques and ideas. Given the design of the present work (C

code wrapped into a GRASS GIS module written in Python,

see Sect. 2.2) they may act on three different levels of the

overall implementation, namely (i) at the global GIS level,

(ii) at the script level and (iii) at the level of the main code.

At the global GIS level, a few examples of integration of

GRASS GIS and other GIS software tools into Grid, cloud

or similar distributed computing environments are known

(e.g. Huang et al., 2011; Aji et al., 2013; Agarwal et al.,

2012; Wang et al., 2013). Nevertheless, the mentioned ex-

amples suffer from the problem that they are not of sufficient

widespread use and the underlying implementation is not al-

ways reproducible since the corresponding middleware is not

disclosed to the community. In other cases, pursuing such

a strategy would require a higher-level expertise on the end

user side, preventing potentially interested researchers from

using the code.

On the other hand, GRASS GIS allows the use of script,

a list of calls to the numerous software modules (written in

Bash or Python) to be executed sequentially. Scripting can be

exploited for simple and effective parallelization by properly

adopting a strategy which is usually dictated by the particular

problem one is trying to solve (see e.g. GRASS Wiki, 2014).

In the case of parallelization at the main code level, one

can in principle choose to work within message-passing in-

terface or OpenMP schemes, known to be extremely effective

when applicable. As a matter of fact, no or very few working

examples of such GRASS GIS parallel modules exist, leav-

ing room for unpredictable inconveniences both at the stage

of developing the code and at run time.

In the present work, we propose an implementation of

a 3-D sliding surface model where the study area is par-

titioned into overlapping tiles, processed in parallel on

a multi-core computer. For our experiment, we use the

model r.slope.stability, a further development of r.rotstab

(Mergili et al., 2014), to demonstrate strategies to opti-

mize model performance in terms of computing time and

of the quality of the model results. r.slope.stability was im-

plemented as a raster module of the open source software

package GRASS GIS (Neteler and Mitasova, 2007; GRASS

Development Team, 2014). GRASS GIS is well suitable for

the task due to its open structure, modular design, and the

compatibility with various programming languages. Further,

GRASS GIS is frequently used as the basis for GIS-based
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models related to mass movements (Mergili et al., 2012a, b,

2014; Gruber and Mergili, 2013). Our parallel implemen-

tation is performed at the Python level, whereas the core

of the model is written in C. The model code and a user

manual can be obtained from the model’s web site http:

//www.slopestability.org. The present work largely builds on

r.slope.stability 20140520 (20 May 2014), GRASS 6.4 and

R 3.0.2.

In the following sections, we first introduce the 3-D

(strictly speaking, 2.5-D, as the vertical dimension is repre-

sented by attributes, not by coordinates) slope stability model

r.slope.stability (Sect. 2). We then present the study area and

the data used in the experiment (Sect. 3), and we define the

framework for testing the performance of the software in

terms of quality of the model results and computing time

(Sect. 4). Next, we present (Sect. 5) and discuss (Sect. 6) the

results before concluding with the key messages of the work

(Sect. 7).

2 The r.slope.stability model

2.1 Modelling approach

The r.slope.stability model evaluates the slope stability con-

ditions for a large number of randomly selected ellipsoidal or

truncated slip surfaces (Fig. 1). The ellipsoidal slip surfaces

are defined by the geographic coordinates of the centre, the

length of the three half-axes ae, be and ce, the aspect α, the

inclination β, and the offset of the ellipsoid centre above the

terrain zb. The ae half-axis follows the steepest slope, and ce

is aligned perpendicular to the terrain surface. ae, be and ce

are derived from landslide lengthL, landslide widthW , max-

imum depth of the bottom of the ellipsoid D, β and zb (see

Fig. 1b). Simple pseudo-random numbers, generated sepa-

rately for each parameter of each ellipsoid, are used to define

the centre coordinates as well as the values of L, W , D and

zb, constrained by user-defined minima and maxima for each

parameter. Testing a sufficiently large number of ellipsoids

ensures a proper repartition of the ellipsoids over the study

area, and the consideration of a large variety of possible el-

lipsoid dimensions. The tested slip surfaces correspond well

to ideal ellipsoids only for reasonably small pixels in rela-

tion to the ellipsoid size (Mergili et al., 2014). When using

larger pixels, the shapes of the tested slip surfaces represent

systems of discrete plane surfaces strongly depending on the

discretization of the pixels. For the modelling of more realis-

tic shallow failure surfaces, r.slope.stability can use truncated

ellipsoids to consider the bottom of soil, shallow weak layers,

or shallow discontinuities bounded by hard bedrock as pos-

sible failure surfaces. As a consequence, more than one slip

surface may be associated with each ellipsoid (Mergili et al.,

2014).

Figure 1. Typical ellipsoid used as slip surface in r.slope.stability:

(a) ground plot, (b) longitudinal section, (c) forces acting at each

column. The factor of safety is computed for the ellipsoid bottom

and (as shown in the figure) for the combination of the ellipsoid bot-

tom and each intersecting layer bottom. The geotechnical, hydraulic

and geometric details are outlined by Mergili et al. (2014).

To compute FoS, r.slope.stability adopts a modified ver-

sion of the 3-D sliding surface model of Hovland (1977), re-

vised and extended by Xie et al. (2003, 2004b, c, 2006):

FoS=

∑(
c′ ·A+

(
G′ cosβc+Ns

)
tanφ′

)
cosβm∑

(G′ sinβm+ Ts)cosβm
. (1)

In Eq. (1), the upper term corresponds to the resisting forces

R, and the lower term corresponds to the driving forces T . R

and T are summed over all columns C of the slip surface. c′

(N m−2) is the effective cohesion, A (m2) is the 3-D area of

the slip surface of the considered pixel, G′ (N) is the weight

of the moist soil, βc is the inclination of the slip surface at

the considered column, ϕ′ is the effective internal friction

angle, and βm is the apparent dip of the slip surface at the

considered column in the direction of α. Ns and Ts (N) are

the contributions of the seepage force to the normal force and

the shear force. No inter-column forces or external forces,

such as seismic loading, are considered by the model. The

geotechnical, hydraulic, and geometric principles of the FoS

calculation are discussed in detail by Mergili et al. (2014).

Upon completion of the slope stability calculation for all

the slip surfaces, each pixel in the modelling domain is in-

tersected by various slip surfaces, and each slip surface is

associated with a value of FoS. For each pixel, the lowest

value of FoS of all the intersecting slip surfaces is taken as

the representative FoS.

Compared to the r.rotstab model (Mergili et al., 2014),

r.slope.stability introduces the following innovations:

1. An improved data management strategy to meet the

standards of GRASS GIS, including built-in functions

for model validation and graphic presentation.
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2. The ability to fully exploit multi-core computers.

3. The ability to consider complex systems of geological

layers, relevant for the modelling of deep-seated land-

slides.

4. The ability to compute the slope failure probability Pf in

addition to FoS, based on the statistical distribution of

c′, ϕ′ and, for truncated ellipsoids, the truncated depth

d . Four types of PDFs can be used: rectangular, normal,

log-normal or exponential (see Sect. 4).

Points (1) and (2) are explained in Sect. 2.2, and point (3) is

not exploited in this work. The rationale of point (4) relies

on the high natural variability of the geotechnical and geo-

metric parameters, resulting in an uncertain definition of the

horizontal and vertical distributions of c′ and ϕ′ (see Sect. 3).

A map of FoS building on data from a single site, or a lim-

ited number of sites, may fail to account for the details of

the landscape. To overcome this limitation, we adopt an ap-

proach to compute the slope failure probability Pf. This ap-

proach allows considering the full range of measured values

of c′ and ϕ′. The statistical properties of the parameters are

assumed constant in space (see Sect. 6). A range of values of

the truncated depth d can be considered, which is particularly

useful for modelling shallow landslides in soils of uncertain

depth. This approach is implemented in the following three

steps:

1. Computing the arithmetic mean µ, standard deviation

σ , minima and maxima of c′, ϕ′ and d. The number

of statistic samples n of parameter combinations to be

considered is defined by the user.

2. c′, ϕ′ and d are varied as a function of the defined min-

ima, maxima and intervals in order to exploit the full

range of possible parameter values. The variation of d

builds on truncating the ellipsoid at various depths. FoS

is computed for each combination using Eq. (1), build-

ing the ratio of the sums of the shear resistances and

the shear forces over all columns of the ellipsoid (see

Fig. 1).

3. The slope failure probability Pf for the ellipsoid is com-

puted as a function of the fraction of parameter combi-

nations where FoS< 1, related to all the tested parame-

ter combinations:

Pf =

n∑
i=1

fi ·wi, (2)

where fi = 1 for FoSi < 1, fi = 0 for FoSi ≥ 1, andwi is

the weight assigned to the parameter combination i (see

below). The sum of wi over all parameter combinations

n is 1.

At the end, the largest value of Pf out of all intersecting

slip surfaces is taken as the value representative for each

pixel.

The sample of parameters to be tested has to represent

the probability of occurrence of the parameter combination.

In order to explore the influence of choosing different sam-

pling strategies on the model results, we test three contrasting

strategies. Figure 2 illustrates the strategies, using a sample

size of n= 100 for two normally distributed, arbitrary pa-

rameters. Strategy (a) shows random sampling of parame-

ter combinations: 100 parameter combinations are randomly

sampled, where the probability of a parameter combination

to be sampled directly relates to the product of the probability

densities of the parameter values. Strategy (b) shows random

sampling of parameters. Here, 10 values of each parameter

are randomly sampled, where the probability of a parameter

value to be sampled directly relates to its probability den-

sity. All possible pairs of sampled parameter values are then

considered, resulting in 100 tests. Strategy (c) shows equal

density sampling. Ten values of each parameter are sampled,

equally distributed along the cumulative density function as-

sociated to each parameter (see Fig. 2d). This ensures that the

distribution of samples reflects the PDF. All possible pairs of

sampled parameter values are then considered, resulting in a

total number of 100 tests.

Panels (a) and (b) represent the two possible ways to use

a Monte Carlo approach – the most established strategy –

whilst (c) represents a deterministic approach. As the sam-

ple is fixed in the deterministic approach, it has to be deter-

mined only once at the beginning of the entire computation.

The wi (see Eq. 2) represents the product of the cumulative

density intervals associated with the values of the combined

parameters (see Fig. 2d). This means that the edge samples

are down-weighted as they only represent half of the area un-

der the PDF, compared to the other samples. For the Monte

Carlo approaches, the sample is determined separately for

each ellipsoid tested, and wi = 1/n.

In the present work, this approach is applied to three (c′,

ϕ′, d) instead of two (c′, ϕ′) parameters.

2.2 Computational implementation

r.slope.stability is a raster module of the open source soft-

ware package GRASS GIS 6.4 (Neteler and Mitasova, 2007;

GRASS Development Team, 2014). The software exploits

the Python programming language for data management,

pre-processing and post-processing tasks. The slope stabil-

ity model itself (see Sect. 2.1) is implemented as a C code

(sub-module r.slope.stability.main). r.slope.stability also in-

cludes a built-in validation and presentation module. Out-

put maps and plots are produced using R, a free software

environment for statistical computing and graphics (R Core

Team, 2014). The logical framework of r.slope.stability is il-

lustrated in Fig. 3.
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Figure 2. Sampling of parameters for computing slope failure probability. We test the sampling strategies (a), (b), and (c). For clarity,

sampling of two normally distributed arbitrary parameters is shown. In reality, we sample three parameters (c′, ϕ′ and truncated depth)

according to different types of statistical distributions (see Sect. 4 for details). Panel (d) illustrates how the cumulative density function is

employed for equal density sampling.

Figure 3. Logical framework of r.slope.stability. Plain text denotes

steps directly implemented in the module r.slope.stability, and text

in boxes denotes sub-modules. Italic letters indicate the program-

ming environment used for the modules.

The numerical implementation presented in this work ex-

tends the applicability of the slope stability model to large

study areas. This requires a very large number of ellip-

soids to be tested. Assuming a test site with an area of

As= 100 km2, average ellipsoids of length Lavg= 100 m and

width Wavg= 80 m, and an average number of ellipsoids per

pixel (the “density” of ellipsoids) de= 1000, the total number

of ellipsoids ne to be tested sums up to roughly 16 million,

ne ≈ de

As

(π/4) ·Lavg ·Wavg

. (3)

The pixel spacing used for the slope stability model has to

be small enough to capture the geometry of the assumed

slope failure, which may fall into a very broad range of sizes

(see e.g. Alvioli et al., 2014, and references therein). Given

a study area of 100 km2 and a pixel size of 5 m, four mil-

lion pixels need to be processed. The potentially large num-

ber of pixels in combination with the large number of el-

lipsoids, and the complex processing of each ellipsoid, pose

challenges in terms of (i) computer memory and (ii) com-

puting time. We combine two strategies to overcome these

computational challenges:

1. In the C programming environment, raster data sets are

commonly held in memory as arrays. This allows a fast

and efficient access to each pixel. If the data sets become

too large, or if too many large arrays are held in mem-

ory at the same time, the available memory may be ex-

ceeded, causing the model execution to fail. We use the

GRASS GIS Segment Library (GRASS Development

Team, 2014) to avoid this problem. The library enables

storage and use of very large raster data sets indepen-

dently from the available computer memory, however

at the expense of computing time. r.slope.stability.main

uses the GRASS Segment Library for data input, prepa-

ration, and output. For ellipsoid-specific computations,

where a lot of data covering a smaller number of pixels

have to be accessed frequently, it uses arrays by default.

In this study, we apply a segment size of 16× 16 pix-

els to all computations, maintaining 16 segments in

memory. As the most time-consuming operations of

www.geosci-model-dev.net/7/2969/2014/ Geosci. Model Dev., 7, 2969–2982, 2014
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Figure 4. Collazzone study area, Umbria, central Italy. IDs of sam-

ple points correspond to IDs listed in Table 2.

r.slope.stability make only limited use of the GRASS

Segment Library, preliminary studies have shown that,

within a certain range, the computing time displays a

weak dependence on changes in those settings.

2. To reduce the computing time when modelling the slope

stability of large areas, r.slope.stability provides the op-

tion to divide the study area into a user-defined num-

ber of tiles processed in parallel, if the code is run on

an ordinary multi-processor or multi-core machine (see

Fig. 3). In this case, r.slope.stability.main is run sepa-

rately for each tile. The final result is obtained by col-

lecting and combining the results for the single tiles.

To ensure a full coverage of the study area, an over-

lap between the tiles of at least the maximum ellipsoid

dimension is required. Each tile is sent to a free com-

puting core as soon as one is available, and until all

the tiles are processed. This procedure is implemented

in the way that the r.slope.stability.py module produces

a batch file for each tile. The batch file calls the sub-

module r.slope.stability.multicore, which is then used

to launch r.slope.stability.main with the tile-specific pa-

rameters (see Fig. 3); the actual parallel processing is

performed in the Python part of the module, exploiting

the “Threading” Python library (a higher-level thread-

ing interface) and the “Queue” Python module (a class

for managing the “producer-consumer” problem able to

block execution until all the items in the queue have

been processed).

We note that neither the use of the GRASS Segment Library

nor multi-core processing affect the model results in terms of

FoS or Pf.

Table 1. 5th and 95th percentiles of length L, width W , and the

L/W ratio for selected shallow landslides mapped in the Collaz-

zone area. L is measured in the direction of the steepest slope.

Percentile L (m) W (m) L/W

5th 16 15 0.38

95th 129 125 2.85

For our experiments we use a 48-core (AMD Opteron,

frequency of 2.2 GHz and cache of 512 KB) computer

with 140 GB of RAM and running a 12.04 LTS Ubuntu

GNU/Linux OS with the 3.5.0-26-generic kernel image.

3 Study area and data

We test the r.slope.stability code in the Collazzone area, Um-

bria, central Italy (Fig. 4). Covering an area of 89.5 km2, this

hilly area ranges from 145 m a.s.l. along the Tiber River flood

plain, to 634 m a.s.l. at Monte di Grutti. Various types of con-

tinental sediments, Pliocene to Pleistocene in age, cover the

area. Landslides are frequent and abundant in the Collaz-

zone area, and a detailed landslide inventory (Fig. 4) is avail-

able along with geologic and morphologic information and

maps (Guzzetti et al., 2006a, b, 2009; Ardizzone et al., 2007;

Galli et al., 2008; Rossi et al., 2010; Fiorucci et al., 2011).

Intense or prolonged rainfall periods are the primary natu-

ral triggers of landslides in the area (Ardizzone et al., 2013),

followed by rapid snow melt (Cardinali et al., 2000). Recent

landslides are most frequent in cultivated areas, indicating a

relationship with agricultural practices.

In the present work we focus on shallow landslides, con-

sidering an inventory of 2381 landslides (Fig. 4) for model

evaluation (see Sect. 5). The 5th and 95th percentiles of land-

slide length L, width W , and of the L/W ratio for selected

shallow landslides are used for constraining the randomiza-

tion of possible slip ellipsoids (Table 1). As most landslides

in the area are not very mobile, we use the entire landslide

areas instead of the scarps only.

Most commonly, the sliding surface of shallow landslides

coincides with the lower boundary of the soil which, in cul-

tivated areas, we define as the layer disturbed by agricultural

practices. Statistics of soil depth ds in the continental sed-

iments of the Collazzone area were obtained from a set of

90 measurements, considering the lower boundary of the Cv
horizon, where present. Analysis of the measurements re-

sulted in an arithmetic mean of the soil depth µ= 0.60 m,

with a standard deviation σ = 0.27 m. The minimum soil

depth measured in the area was zero, and the maximum soil

depth was 1.22 m.

Figure 4 illustrates that landslides are rare where hard

bedrock crops out (hatched areas), and abundant in the con-

tinental sediments (all other areas). In the present work, we

consider all areas with hard bedrock outcrops as uncondi-
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Table 2. Geotechnical key parameters derived for 13 samples

from the Collazzone study area (see Fig. 4 for location of the

sites). γd = dry specific weight (kN m−3), c′= effective cohesion

(kN m−2), ϕ′= effective angle of internal friction (degree). Arith-

metic mean µ and standard deviation σ are listed.

ID γ d c′ ϕ′ USDA class

1 17.5 0.0 40.1 no data

2 15.3 0.0 33.6 no data

3 14.7 0.0 31.8 sand

4 15.8 24.5 25.9 sandy loam

5 16.8 2.8 30.1 loam

6 no data 4.5 35.1 loamy sand

7 17.6 0.0 35.4 no data

8 16.2 11.0 21.3 silty clay

9 15.8 5.7 26.5 silty clay

10 15.9 13.1 42.4 silty clay

11 15.6 6.7 27.6 clay loam

12 14.3 8.3 18.1 no data

13 14.6 13.2 20.5 silty clay

µ 15.8 6.9 29.9

σ 1.0 7.2∗ 7.5

∗ For the exponential distribution applied to cohesion, the

standard deviation is set to the mean instead of using the

value given in the table.

tionally stable, and concentrate to the areas where continen-

tal sediments crop out. The geotechnical characteristics of

the continental sediments in the study area were estimated

using direct shear tests on 13 samples taken from a variety

of lithological conditions (Table 2, see Fig. 4). The variation

of geotechnical parameters within each class is considerable,

partly exceeding the variation between the classes. For this

reason, we decide not to consider separate sets of geotechni-

cal parameters for the different lithological classes present in

the study area. Instead, we explore the statistics of the param-

eters for the entire area with continental sediments. The same

approach is used for the parameterization of the soil depth.

In addition to the landslide inventory, soil depths, and

the geotechnical data, we use a 5 m× 5 m digital elevation

model (DEM) derived by the automatic interpolation of 10

and 5 m contour lines, obtained from 1 : 10 000 scale topo-

graphic base maps.

4 Model parameterization

In this work, we consider only shallow slope stability, trun-

cating the ellipsoids at the depth of the soil. We set the dry

specific weight of the soil γd = 15.8 kN m−3 (see Table 2),

and the saturated water content 2s= 40 vol.%. Within a rea-

sonable range of values, both parameters are not decisive for

the outcome of the slope stability computation. Instead, FoS

and Pf are most sensitive to the effective cohesion c′, the ef-

fective angle of internal friction ϕ′, the depth of the potential

Table 3. Constraints and assumed statistical distribution of geotech-

nical parameters and soil depth for the generation of a slope

failure probability Pf map. c′= effective cohesion (kN m−2),

ϕ′= effective angle of internal friction (degree), d = soil depth (m).

c′ ϕ′ d

Minimum 0.0 18.1 0.10

Maximum 24.5 42.4 1.22

Assumed distribution Exponential Log-normal Log-normal

failure surface d and the water status of the soil. We use the

following parameterization for computing Pf (see Eq. 2):

1. We calculate the arithmetic mean of c′ from field data

reported in Table 2. Then, we assume an exponential

PDF to model the variability of c′ (El-Ramly et al.,

2005; Petrovic, 2008).

2. For ϕ′, we assume a log-normal PDF (El-Ramly et al.,

2005) with parameters (mean and standard deviation)

derived from field data (see Table 2).

3. As commonly observed for shallow landslides in the

Collazzone area, the maximum slip surface depth – at

which all ellipsoids are truncated – is set to the soil

depth. A log-normal PDF is used to model the variabil-

ity of truncated depth.

4. We further assume the hydraulically most unfavourable

case of fully saturated soil with slope-parallel seepage.

A separate map of FoS is computed, considering the most

probable values (modes) of c′, ϕ′ and truncated depth d ,

deriving those from their respective PDF: c′= 0 kN m−2;

ϕ′= 27.3◦; d = 0.46 m.

Table 2 lists a range of c′= 0–24.5 kN m−2 and ϕ′= 18.1–

42.4◦. These values are used to constrain the variation of the

parameters during r.slope.stability runs. For c′ and ϕ′, this

range is justified by the rule-of-thumb values given by Prinz

and Strauss (2011) for the possible range of geotechnical pa-

rameters for various soil types: for the continental sediments

in the Collazzone area the relevant ranges would be c′= 0–

25 kN m2 and ϕ′= 15–45◦. For the soil depth d, the maxi-

mum of 1.22 m corresponds reasonably well to the approxi-

mately 1.3 m maximum depth of disturbance by agricultural

practices observed in the Collazzone area (Mergili et al.,

2014). Table 3 summarizes the parameters’ minima, maxima,

and assumed statistical distributions used for the computa-

tion of Pf. The geotechnical parameterization is kept constant

for all the tests.

Table 4 lists the parameters tested, and the settings ap-

plied in our numerical experiments. The ellipsoid size is con-

strained according to Table 1. The maximum depth of the

bottom of the ellipsoid is constrained with D= 2.5–10 m.

Considering all the combinations of the parameter values
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listed in Table 4 would result in a very large number of model

runs, with excessive computing times. We therefore divide

the task into two parts:

1. Multi-core processing: influence of multi-core process-

ing on the computing time of r.slope.stability for the

entire Collazzone area (Fig. 4). A few combinations of

the number of tiles t , and the number of processors p

given in Table 4 are tested for de= 100 and 2500, and

dx = dy = 5 m.

2. Factor of safety and slope failure probability: influence

of de and – in the case of Pf – sample size n (number of

tested values of c′, ϕ′ and d) and sampling strategy (see

Fig. 2) on the model results (average value of Pf and

correspondence with observed shallow landslides). Part

of this test is performed for a subset of the Collazzone

area (see Fig. 4). All possible values of de and n given

in Table 4 are considered.

5 Results

5.1 Test 1: multi-core processing

The gain in computing time due to parallel processing is most

easily summarized by the speedup Sp:

Sp =
T0

Tp

=
1

fs+ fp/p
, (4)

where p is the number of processes, T0 is the execution time

of the sequential algorithm, Tp is the execution time of the

parallel algorithm with p processes, fs is the sequential frac-

tion, summarizing the overhead, or irreducible serial part, of

the code, and fp is the parallel fraction (fs+fp= 1). Sp=p

or fs= 1−fp= 0 would indicate a linear (or ideal) speedup.

In such a case, the efficiency

Ep =
T0

p · Tp

(5)

would be 1, with fs> 0 and Ep< 1 in the case of

r.slope.stability due to (i) shared use of the RAM by multiple

cores; (ii) non-optimized sequential use of cores; (iii) oper-

ations such as creating tiles and combining the results from

each single tile. Further, the total area to be processed in-

creases with t due to the overlap between the tiles.

We now show the patterns of fs, Sp and Ep when using

r.slope.stability to compute FoS for the entire Collazzone

area at a pixel size of 5 m× 5 m, constraining the ellipsoid

size according to Table 1. Figure 5 clearly illustrates that the

values of fs, Sp and Ep depend on t , p and de. Figure 5a–

c illustrate fs, Sp and Ep for de= 100. The graphs clearly

reflect high values of fs for high values of t . Consequently,

speedup and efficiency are highest with relatively low values

Figure 5. The serial fraction of code fs, speedup Sp and efficiency

Ep, plotted against the number of processes p for different values

of the number of tiles t and average number of ellipsoids per pixel,

de. See text for further explanations.

of t (42). fs is much lower with de= 2500, resulting in opti-

mum values of Sp and Ep using a large number of tiles (see

Fig. 5d–f). These observations are easily explained by the

fact that speedup and efficiency are turned down with large

values of t by the high cost of combining the results from the

different tiles into one set of raster maps for the entire study

area. The relative impact of this effect – and therefore also

fs – decreases with increasing values of de. With de= 2500,

the optimum speedup and efficiency are observed with 182

tiles. Sp does not follow a linear increase with p, reflected in

decreasing values of Ep with p (see Fig. 5c and f). This phe-

nomenon is most likely explained by the shared use of the

RAM by multiple cores.

There is, of course, no gain in terms of speedup at p> t

(not shown in Fig. 5). However, for the lower values of t ,

speedup becomes constant with increasing p already at

p< t . This observation reflects a non-optimized sequential

use of cores. Particularly with low values of p or t , and vary-

ing numbers of null cells among the tiles, it likely happens

that one core is assigned much more work load than another.

This type of effect, illustrated by the irregular patterns of Ep
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Table 4. Parameters tested for their influence on model performance. Subscripts x and y refer to the x and y directions.

Parameter Description Tested values

Pixel size dx = dy (m) Length of one side of one pixel, all pixels

have square shapes

5, 10, 20, 40

“Density of ellipsoids” de Average number of tested ellipsoids touch-

ing each pixel

100, 500, 2500, 12 500

Ellipsoid size Constraints for the randomization of ellip-

soid dimensions

See text for details

Sample size n (number of tested

values of c′, ϕ′ and d)

Number of samples used for computing Pf 33 (27), 63 (216), 93 (729), 123 (1728), 153 (3375)

Sampling strategy Strategy for parameter sampling for Pf Fig. 2a, b, c

Number of tiles t Number of tiles the study area is divided

into (tx x t,y)

1, 2 (1× 2), 6 (2× 3), 12 (3× 4), 20 (4× 5),

30 (5× 6), 42 (6× 7), 56 (7× 8), 72 (8× 9),

90 (9× 10), 110 (10× 11), 132 (11× 12), 156

(12× 13), 182, (13× 14), 210 (14× 15), 240

(15× 16)

Number of processors p Number of processors to be used for the

computation

1, 2–42 in steps of 2

at lower values of t , is smoothed out at high values of t ,

where load balance is roughly done automatically. This phe-

nomenon also results in increasing values of Sp for t >p.

For de= 2500, the absolute values of Tp reduce from

110 000 s for t = 1 and p= 1 to 4700 s with t = 182 and

p= 42. However, the effects of considering other study ar-

eas, different pixel sizes or different ellipsoid dimensions

on Tp have to be noted. In principle, we expect a near-

linear dependency of Tp on the number of pixels to be pro-

cessed. However, increasing the pixel size results in an under-

proportional gain of Tp. Areas of null cells due to the irregu-

lar shape of the study area cause computations on ellipsoids

or entire tiles to break in an early stage of processing. This

leads to a relative increase of operations not depending on

the number of pixels.

We further expect that the computing time does not de-

pend on the dimensions of the ellipsoids: a given value of de

means that all pixels of the study area have to be considered

for approx. de times (see Eq. 3). If larger ellipsoid dimensions

are chosen, fewer ellipsoids need to be processed. However,

larger ellipsoids have a higher chance to be cancelled as they

touch areas with null cells rather than smaller ellipsoids. As a

consequence, Tp decreases with larger ellipsoids. In the spe-

cific setting considered here, doubling the constraints of L

and W given in Table 3, resulting in a fourfold increase in

size of an average ellipsoid, decreases the computing time

by 11 % whilst executing the model with halved values of L

and W , leading to a quarter of the original average ellipsoid

size, increases the computing time by 21 %.

5.2 Factor of safety and slope failure probability

Next, we compute FoS for shallow landslides in the study

area with values of de= 100, 500, 2500 and 12 500. We eval-

uate the modelling results against observed shallow landslide

areas (see Fig. 4). Larger values of de result in a more con-

servative prediction in terms of FoS – if more ellipsoids are

tested, the chance is higher for each pixel that at least one slip

surface is associated with FoS< 1 (Fig. 6). All tests result in

a successful rather than unsuccessful prediction, even though

the false prediction rates are significant. There is no opti-

mum value for de, per se. Strictly speaking, de∼∞ would

be needed – as the rate of positive predictions may increase

also at very high values of de, there will always be a trade-

off between the computing time and the quality of the results.

However, we note that, in this example, the overall quality of

the prediction does not increase with larger values of de (i.e.

the polygon does not significantly shift towards a successful

prediction), indicating that most areas with FoS< 1 were de-

tected at earlier stages of the computation, and the additional

areas with FoS< 1, detected at later stages of the computa-

tion, consist equally in true positive and false positive pre-

dictions. For the purpose of the present study, we consider

de= 2500 a sufficiently reasonable approximation.

We compute slope failure probability for a subset of the

Collazzone area (see Fig. 4) with five different sample sizes,

applying each of the sampling strategies (a), (b) and (c) intro-

duced in Fig. 2. The c′, ϕ′ and d are sampled. We assume that

the accuracy of the results increases with increasing values of

de and n. However, so does the computing time. Therefore,

we attempt to identify those values where the results con-

verge – i.e. the ideal values in terms of accuracy and time ef-

ficiency. We take the average value of Pf over the study area

as reference. Figure 7a illustrates how the average value of

Pf increases with increasing de. It further indicates the sam-

ple size n needed for convergence, i.e. the value of n where

the average Pf remains constant when n is further increased.

Equal density sampling (c) performs best whilst random sam-
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Figure 6. Influence of de on the performance of r.slope.stability

in terms of prediction rates, building on FoS. Pixels representing

observed shallow landslide areas (observed positives, OP) with a

modelled value of FoS< 1 represent true positive predictions (TP).

OP pixels with FoS≥ 1 represent false negative predictions (FN).

Pixels not representing observed shallow landslide areas (observed

negatives, ON) with a modelled value of FoS< 1 represent false

positive predictions (FP). Finally, ON pixels with FoS≥ 1 represent

true negative predictions (TN).

pling of parameters (b) is not a valid alternative: with a very

high number of tested ellipsoids, it is likely that at least one

of the random samples is biased towards low values of c′ and

ϕ′. Therefore, on the logarithmic scale used in Fig. 7a, av-

erage Pf steadily increases with increasing de. This effect is

less pronounced for larger values of n, but it could only be

diminished by testing excessively large samples, i.e. at the

cost of a very long computing time. Sampling strategy (a),

with randomly sampled parameter combinations, is less sus-

ceptible to these effects as the samples are better distributed

within their range (see Fig. 2). Still, with the assumptions

tested, the curves converge at a higher average of Pf and flat-

ten out more slowly than the curves for equal density sam-

pling. Further, strategy (a) is highly inefficient. With simi-

lar values of de and n, the computing time is roughly 20–25

times longer than for strategy (c). The reason for this phe-

nomenon is that the number of truncated depths to be tested

is n with strategy (a) and the cubic root of n with the other

strategies. Hence, with (a), the geometry of a much larger

number of slip surfaces has to be built than for (b) and (c),

which is costly in terms of computing time, given the current

implementation of r.slope.stability.

Independently of the sampling strategy, the average slope

failure probability decreases with the number of samples. For

the strategies (a) and (b), this is a result of the lower ten-

dency of outliers with larger sample sizes, which is more pro-

nounced with (b) than with (a). With sampling strategy (c),

it is a result of the fact that an exponential PDF is assumed

Figure 7. Slope failure probability computed with r.slope.stability.

(a) Evolution of Pf for a subset of the Collazzone study area (see

Fig. 4) with increasing value of de. The outcomes of the sam-

pling strategies (a), (b) and (c) introduced in Fig. 2 are compared.

(b) ROC plot relating Pf obtained with equal density sampling

(strategy c) to the observed shallow landslide areas in the entire

Collazzone study area for different values of n and de.

for c′. With lower sample sizes, the relative weight of the

minimum value c′= 0 kN m−2 is higher than with higher val-

ues of n, resulting in higher values of Pf.

Among all the tests shown, we expect (c) equal density

sampling with n= 153 to perform best in terms of accuracy.

All results shown in Figs. 7b and 8 therefore build on sam-

pling strategy (c). With de= 12 500, n= 153 yields an av-

erage Pf= 0.094. n= 123 and de= 12 500 yields an average

Pf= 0.095. In a certain range, reducing n and de affects mod-

erately the model results, but improves significantly the com-

putational efficiency. Setting n= 93 and de= 12 500 gives an

average Pf= 0.097, saving 75 % of the computing time, and

setting n= 93 and de= 2500 gives an average Pf= 0.090,

saving 95 % of the computing time. Given the level of un-

certainty in the geotechnical parameterization, reducing the

values of n and de can be a strategy for the computation of

very large areas, keeping the computing time within reason-

able limits. Even though we do not recommend using values

of n< 93 and de< 2500, Fig. 7b shows that, within a certain

range, changes of n and de do not affect significantly the ca-

pability of the model to reproduce the patterns of observed

landslide/non-landslide areas in terms of the area under the

ROC curve AROC. This indicates that changes of the results

for larger values of n and de affect equally areas with low and

high values of Pf.

Figure 8a illustrates the modelled distribution of FoS in

the study area, and Fig. 8b portrays the spatial patterns of Pf.

Table 5 summarizes the evaluation outcomes and computa-

tion times for FoS and Pf for all the parameter combinations

considered in Figs. 6 and 7b.

6 Discussion

Exploiting multi-processor computing environments enables

the execution of complex slope stability models for reason-
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Table 5. Characterization of model results and computing times. Prediction rates: TP= true positive, TN= true negative, FP= false positive,

FN= false negative.

Description TP TN FP FN Tp (s)

FoS, de= 100 4.1 % 63.9 % 27.5 % 4.5 % 1300

FoS, de= 500 4.5 % 60.7 % 30.7 % 4.1 % 1900

FoS, de= 2500 4.8 % 58.6 % 32.9 % 3.8 % 4900

FoS, de= 12 500 5.0 % 57.1 % 34.4 % 3.6 % 20 000

Description AROC Pf≥ 0.1 Pf≥ 0.2 Pf≥ 0.3 Tp (s)

Pf, n= 33, de= 500 0.684 19.1 % 6.2 % 2.2 % 2600

Pf, n= 33, de= 2500 0.682 19.8 % 6.9 % 2.8 % 8800

Pf, n= 93, de= 500 0.695 8.9 % 3.7 % 1.2 % 13 700

Pf, n= 93, de= 2500 0.694 9.5 % 4.3 % 1.7 % 63 700

Figure 8. Spatial patterns of shallow slope stability in the Col-

lazzone study area, computed with r.slope.stability applying equal

density sampling (strategy c). (a) FoS for de= 2500. (b) Pf for

de= 2500 and n= 93.

ably large areas within an acceptable amount of time. This

strategy allows testing large numbers of slip surfaces and

looping over many combinations of geotechnical parameter-

izations. With equal density sampling of the parameters, a

sample size of n∼ 153 is sufficient to provide convergence

of the probability of failure, Pf, results. These findings are

valid for shallow landslides where three parameters (c′, ϕ′

and d) are sampled.

With the reduction of computing time, the remaining key

challenge for broad-scale slope stability modelling consists

in the parameterization of the input data. Earlier studies in

the Collazzone areas used statistical models to estimate land-

slide susceptibility. Rossi et al. (2010) have discretized their

results for a 79 km2 subsection of the Collazzone Area at

the level of slope units. The analysis of the statistical model

validation performances shows values of AROC ranging from

0.71–0.75, depending on the method. When discretizing the

results of Pf yielded with r.slope.stability (n= 93, de= 2500)

to the same slope units as those used by Rossi et al. (2010),

the value of AROC increases to 0.77, indicating that, despite

the uncertain geotechnical and geometric parameters, the

physically based model slightly outperforms the statistical

ones. However, (i) the results are not fully comparable due to

different sets of landslides used for validation and (ii) a better

understanding of the spatial distribution of the geotechnical

and geometric parameterization is needed to improve the re-

liability of landslide susceptibility and hazard maps.

In the present work, we assume constant statistical prop-

erties (µ, σ , minimum, maximum) of the geotechnical pa-

rameters c′ and ϕ′ and of the soil depth d over the relevant

part of the study area. Even though, in this specific case, we

can well justify this generalization, it may be too simplistic

in other cases. The ability to better constrain the geotechni-

cal parameters would possibly also allow to reduce the size

of the statistical sample and therefore the computing time.

We further assume independent statistical properties of c′

and ϕ′. However, this is a rough simplification as these pa-

rameters – representing the offset and inclination of the linear

regression in the Mohr–Coulomb diagram – are often nega-

tively correlated. A future challenge will consist in finding

an appropriate way to build PDFs considering the interde-

pendency of the two parameters.

A further limitation consists in the assumption of fully sat-

urated soil with slope-parallel seepage. The computed values

of Pf are therefore only valid for this worst-case assumption

in terms of slope hydraulics. Partial saturation is more diffi-

cult to treat from a geotechnical point of view and shall be

the subject of future studies.

Finally, the PDFs that were used in the study may be im-

proved. Whilst the density functions for d and ϕ′ are reason-

ably well supported by the empirical observations, the expo-

nential PDF used for c′ was derived for soils with a high con-

tent of sand and silt (El-Ramly et al., 2005; Petrovic, 2008).

For clay, a log-normal function seems to better describe the

observations. A joint, two-variable PDF depending on both

c′ and ϕ′ may by hypothesized. Such a function is expected
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to yield significantly less conservative results. Given a suffi-

ciently large data set, we suggest using the PDF for ϕ′ and

couple the function for c′ to the tested value of ϕ′. An ap-

propriate geotechnical parameterization requires a detailed

knowledge of the area under investigation. As an example,

if deep-seated slope stability is considered, this understand-

ing should include the strike and dip directions of bedding

surfaces (Santangelo et al., 2014).

7 Conclusions

We have described and tested r.slope.stability, a multi-core

numerical GRASS GIS implementation of a 3-D slope sta-

bility model for large areas, highlighting (i) the gain in com-

puting time, and the consequent applicability to large areas,

and (ii) the possibility of modelling the spatial probability

of slope failures, based on the natural variability of geotech-

nical characteristics of the soils. Using commonly available

multi-core hardware, the use of parallel processing may re-

duce running times by a factor larger than 20. Our parallel

implementation is transparent to the r.slope.stability user in

GRASS GIS, since it is based on the automatic partitioning

of the study area in tiles, processed in parallel. The modelling

results are presented for the entire area, and validated against

observed landslides.

We conclude that parallel processing enables the applica-

tion of complex slope stability models for large areas in a rea-

sonable amount of time. A remaining challenge for this type

of task is the geotechnical parameterization of the area un-

der investigation. In the present paper, we have demonstrated

a simple approach to compute slope failure probabilities by

using PDFs of c′, ϕ′, and d. This approach is considered suf-

ficient for the purpose of the present work. The model re-

sults reasonably correspond to the distribution of observed

shallow landslides in the Collazzone area. However, we have

identified a considerable potential for improvement with re-

gard to (i) regionalization of the parameters, (ii) considera-

tion of the interrelation of c′ and ϕ′ and (iii) optimization of

the PDFs used.
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