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Spatial information on the distribution of biomass is an important issue for monitoring and managing 
the environment. It is a prerequisite for successful forest fire management and for predicting fire 
intensity and fire behaviour, but estimates of biomass are time consuming and expensive and need to 
be done depending on size classes. We propose a method that takes into account the contemporary 
use of an allometric approach and remote sensed data from Very High Resolution (VHR) satellite 
images  to obtain distribution maps of biomass subdivided into different components while keeping 
plant-destructive collection of data to a minimum. To test the feasibility of distributing biomass into 
classes, we subdivided biomass into two size classes according to the size of leaves (thickness) and 
branches (diameter). This is an approach that can be adapted to both fuel classes or to estimation of 
the ligneaous component. We haphazardly selected eight areas, within the Site of Community 
Importance “Monteferrato e Monte Iavello” (Italy), where easy-to-measure characteristics (height, 
diameter, cover) of vascular plants were collected. Regression equations between easy-to-measure 
vegetation characteristics and biomass values were derived to estimate the biomass of each area in the 
two size classes. Then, we evaluated the relationships between the normalized difference vegetation 
index (NDVI) and the estimated biomass values for each area using regression equations and size 
class. The equations that resulted from the regression analysis were used to create maps of biomass 
using NDVI map. Such a procedure allows the identification of features otherwise lost when the 
vegetation is represented only by vegetation class labels. This includes the orientation of vegetation 
lines which may favor the spread of fire in a given direction; information that may be useful for hazard 
management and prevention. 
 
Key words: Allometric equation, Pinus pinaster, Erica scoparia, biomass size class, Very High Resolution 
(VHR) satellite imagery. 

 
 

INTRODUCTION 
 
It is known that anthropogenic climate change and in-
creasing human impact will lead to increased pressure on 
the environment, including natural and semi natural vege-

tation. Monitoring is considered essential and can be fre-
quent and even cheap if satellite images are used. Indices 
relative to the biomass (such as greenness index and 
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NDVI) are often used for evaluating biomass amount and 
vegetation health. This information is not enough and it is 
often necessary to have the distribution of biomass sub-
divided following some criteria. A common one, probably 
the most useful, is based on size classes which can help 
in estimating the amount of photosynthesizing biomass, 
or the amount of easy and quick to burn material, or the 
amount of ligneous material, which, once estimated at 
different time interval, can help the estimation of dead 
branches and trunk (this also important for fire hazard 
evaluation). In the case of biomass as fuel in wildfires 
biomass size, classes are important. Fires are predicted 
to potentially be more widespread and more frequent 
(Parry et al., 2007; Marlon et al., 2009) as the climate 
continues to be warm. Several studies indicate that the 
increase in the frequency of wildfires and the longer du-
ration of the fire season are linked to increased spring 
and summer temperatures (Westerling et al., 2006), changes 
in the pattern of precipitation (Flannigan et al., 2000), and 
development of high fuel loads associated with long-term 
fire suppression (Schoennagel et al., 2004). 

In the light of the scientific world’s diagnosis of new cli-
matic scenarios, wildfires in the Mediterranean basin 
represent a serious worry, considering that here wildfires 
are a common, and mostly human-induced feature where 
they have long played an important role in modifying ve-
getation patterns (Montenegro et al., 2004). Large-scale 
summer wildfires throughout the region have dramatically 
increased in the last few decades (Nunes et al., 2005; 
Bajocco and Ricotta, 2008; Catry et al., 2009; Ricotta et 
al., 2012), mainly as a consequence of rapid land-use 
changes (marginal rural land abandonment increasing 
fuel accumulation), socio-economic conflicts and compe-
ting interests, in conjunction with climatic warming which 
is reducing fuel humidity (Pausas and Vallejo, 1999). 

In this context, spatial information on the distribution of 
fuel load (biomass weight) is a prerequisite for successful 
forest fire management and for predicting fire intensity 
and fire behaviour (Rothermel, 1972; Gray and Reinhardt, 
2003). The fuel load determines the potential amount of 
heat that can be released during a fire, whereas the type 
and distribution of fuel elements affect their combusti-
bility. Fine fuels burn more readily than coarse ones. Fine 
fuels react faster to weather changes, particularly if these 
fuels are dead, and they play a major role in the initial 
stages of all fires (Baeza et al., 2002). Fuel models con-
sidering the different types of biomass (fine and coarse) 
are an important factor that should be taken into consi-
deration for fire planning, assessing fire risk, and impro-
ving fire prevention since fuel types may present com-
pletely different fire propagation rates and fire behavior. 

The feasibility of modeling fuel/biomass distribution by 
remote sensing data has been frequently discussed in 
several studies and estimates of fire hazard and distri-
bution maps of fuel have been provided (Vidal et al., 
1994; Vidal and Devaux-Ros, 1995; Burgan et al., 1996; 
Riano  et  al.,  2002;  Rollins et al., 2004; Lasaponara and  

 
 
 
 
Lanorte, 2007). Nevertheless, the use of remote sensing 
images has been based on the analysis of medium- to 
high-resolution sensors, such as Landsat TM data with-
out the subdivision of biomass into size classes.  

Generally, satellite data are expressed in the form of 
spectral indices that attempt to enhance the spectral con-
tribution of different features distributed over a surface. 
One of the most promising applications of satellite data is 
the estimation of biomass or primary productivity over time 
and space through satellite derived vegetation indices 
(Cihlar et al., 1991; Todd, 1998; Pettorelli et al., 2005). To 
be effective biomass estimators, spectral indices must be 
able to differentiate vegetation features; the characteristic 
reflectance pattern for green vegetation is low reflecting 
in the visible portion of the spectrum (particularly red) 
with a sharp increase in reflectance in the near-infrared 
portion. Vegetation indices respond to these expected dif-
ferences in near-infrared and red reflectance. These 
broad-band vegetation indices have shown to be well 
correlated with canopy parameters related to chlorophyll 
and biomass abundance. For example, the normalized 
difference vegetation index (NDVI) is calculated as the 
difference between near-infrared and red reflectance 
values divided by the sum of near-infrared and red reflec-
tance values. The Normalized Difference NDVI is a widely 
used surrogate of the amount (as green biomass) and 
vigor of vegetation at the surface (Tucker, 1979; Richardson 
et al., 1983; Christensen and Goudriaan, 1993). Previous 
studies have related NDVI values to different vegetation 
attributes such as plant biomass (Tucker et al., 1985; 
Persson et al., 1993; Hobbs, 1995), leaf area index (LAI) 
(Waring, 1983; Tucker et al., 1986; Gilabert et al., 1996), 
net primary production (NPP) (Tucker et al., 1981, 1983; 
Paruelo et al., 1997) and percentage of absorbed photo-
synthetically active radiations (APAR) (Asrar et al., 1984; 
Sellers et al., 1992). 

In particular, the use of correlations between NDVI and 
biomass has been found to be unstable (Richardson et 
al., 1983; Tucker et al., 1983; Christensen and Goudriaan, 
1993). This is because the reflection coefficients are pri-
marily determined by green foliage biomass and not the 
amount of dry matter (Christensen and Goudriaan, 1993). 
Thus, in order to assess the efficacy of NDVI in estima-
ting biomass size classes and their spatial distribution, 
field-based quantitative estimates of available living or 
dead vegetation weights are needed (Roussopoulos and 
Loomis, 1979; Mikaelian and Korzukhin, 1997; Sah et al., 
2004). 

An attractive means for estimating forest biomass is 
through the use of empirical allometric relationships 
(Whittaker and Woodwell, 1968; Usó et al., 1997). Allometry 
describes relations or mutual proportions between dif-
ferent plant organs or in general structural characteristics. 
Since measuring plant biomass in field conditions is labo-
rious and extremely time consuming, empirical relation-
ships or models are used to estimate the biomass from 
in-field, easily measurable, biometric variables such as
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Figure 1. Location of the SCI ―Monteferrato e Monte Iavello‖ (IT5140007) and the study area. 

 
 
 

stem diameter, height, crown diameters or volume and 
crown cover. They have been used to estimate the bio-
mass of trees, shrubs and herbaceous species in several 
environments (Assaeed, 1997; Ares and Fownes, 2000; 
Hierro et al., 2000; Zianis and Mencuccini, 2004; Northup 
et al., 2005; Pilli et al., 2006; Pokorný and Tomášková, 
2007; Oñatibia et al., 2010).  

The basic objective of this work was to develop a 
method for estimating biomass when subdivided into size 
classes and obtaining their distribution maps starting with 
the collection of simple vegetation characteristics and 
keeping the vegetation-destructive part of the sampling to 
a minimum. More specifically, this study aimed at: i) esti-
mating biomass through the use of an allometric model 
based on relationships between biomass and vegetation 
characteristics directly measured in the field in some 
sample areas, ii) evaluating the potential of Very High 
Resolution (VHR) images (like QuickBird) for estimating 

biomass/fuel, iii) assessing the reliability of NDVI index to 
spatialise values of biomass and fuel throughout the study 
area. 
 
 

MATERIALS AND METHODS 
 

Study area 
 

The study was carried out within the NATURA2000 site of commu-

nity importance (SCI) ―Monteferrato e Monte Iavello‖ (IT5140007; 
UTM32 667237E, 4867255N), located west of Florence, Tuscany 
(Figure 1). The SCI is approximately 1375 ha in area and ranges in 
elevation from 60 to 936 m a.s.l., with south slope exposure. Within 
this area, there are 530 ha of outcrops of ultramafic rocks with ser-
pentine where we focused our observations. Here elevation ranges 
between 61 and 420 m a.s.l. Mean annual rainfall is approximately 
1037 mm, October is the wettest month with 140 mm and July is the 
driest month with 31 mm. Mean annual temperature is 14.4°C. The 

average temperature of the coldest month (January) is 6°C and the 
average temperature of the warmest month (July) is 24.1°C 
(LaMMA and CSN, 2001). In the southern part of the SCI, there is 
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Figure 2. The four photographs illustrate different types of vegetation cover present in the study area. 

 
 
 
the Centre of Natural Science (CSN), which hosts an important  
volunteer group of fire control and prevention. 

The study area is characterized by evergreen mediterranean 

shrubland and woodland with dominance of the maritime pine 
(Pinus pinaster) (Figure 2), introduced from the 1

st
 half of the 19

th
 

century; some individuals of cypress (Cupressus sempervirens), 
and oak (Quercus ilex). Heather (predominantly Erica scoparia) 
dominates the shrub layer, with laurel (Laurus nobilis), rock rose 
(Cistus spp) and myrtle (Myrtus communis). The herbaceous 
vegetation is characterized by perennial grasses and forbs such as 
Brachypodium rupestre and B. pinnatum which grow under the tree 
and shrub canopy, and Helichrysum italicum, Alyssum bertolonii, 
Bromus erectus, Festuca spp., which are found in more xeric situa-
tions. Furthermore, exposed stones are common in places and 
ferns, lichens and mosses are also typically present (Figure 2). 

 
 
Field biomass sampling 
 

Ground data were collected to extract the allometric relationships 

between dry weight and easily measurable plant parameters (EMPP: 
such as diameter, height, crown diameters,  crown cover) in shrubs 
and herbaceous layers during the summer of 2011. 

In the study area, a series of shrubs (Erica scoparia) were ha-
phazardly selected to encompass a range of height, diameters, and 
crown forms, in order to obtain a sample of different size shrubs 
varying from smallest to largest. For each shrub, the following para-
meters were measured: i) two maximum crown diameters (taken at 
right angles to each other across the canopy of the shrub); ii) mean 
height obtained by  measurements taken at many  points, along  
transects running parallel or orthogonal to the major diameter (mini-
mum number of observations was 10 values over 2 transects) 

(Figure 3). Afterwards, shrubs were cut at ground level and the 
fresh biomass was weighed with a portable scale. 

A series of 60 x 60 cm plots were distributed with systematic 

sampling in the study area to collect herbaceous layer. For each 
sample, the percentage cover of herbaceous layer was estimated; 
all plant species were cut at ground level and weighed with a 
portable scale (1 g resolution). 

In order to correctly evaluate the amount of biomass, the vegeta-
tion mass was arbitrarily divided into two size classes using the 
value of 1 cm as the delimiter between fine and coarse biomass. 
The size group <1cm of diameter (shrub leaves and fine parts of 
branches and sprouts, and herbaceous species) includes material 
that can ignite quickly and burn completely in a short time and the 
size group >1 cm (shrub coarse material) is mainly made of large 
small to large branches which will burn for a longer period but will 
ignite less quickly (Deeming et al., 1972). Chopped shrub and 
herbaceous species were placed in nylon bags, labeled, and 
transferred to the laboratory for calculating dry weight (oven-dried 
at 100°C until constant weight was reached). All components were 
then weighted separately, in order to calculate fuel load and fuel 
moisture for each class. 

Then, for each sample of shrub and herbaceous species, we 
obtain: total biomass in g per each of the chosen dimension classes 
and their moisture content (water % of dry weight), the mean shrub 
height (m), two shrub diameters, area and volume of each shrub, 
percentage cover of herbaceous species. 

For the tree layer, allometric equations were found to exist for 
similar pine forests (Pinus pinaster) during the literature review 
(Giovannini et al., 2001) and were used during this study, assuming 

that they were applied here too. Giovannini et al. (2001) related 
DBH and tree dry weight, dividing the dry weight in three fractions: 
total tree, fine wood (diameter <5 cm) and leaves.  
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Figure 3. Top and side view of a typical shrub showing measurement technique used.

  
 
 
 

Spectral operations for estimating biomass patterns 

 

A QuickBird multispectral image (spatial resolution 2.4 m; spectral 
resolution from 450 nm to 890 nm: four bands), acquired on 9 
February 2009 (Figure 4), was pre-processed for both radiometric 
calibration and geometric corrections to ensure that each pixel in 
the image faithfully records the same type of measurement at the 
same geographic location over time (Kennedy et al., 2009) and to 
minimize the signal-to-noise ratio. Radiometric calibration included 
a linear transformation of the Image Digital Numbers (DNs) into Top 
of Atmosphere Radiance (TOARD) and then a non-linear trans-

formation of TOARD into TOA Reflectance (TOARF) values ranging 
into [0,1], with these considered a parent class of surface reflec-
tance values in an ideal (atmospheric-noise free) case (Baraldi et 

al., 2010). This assumption is made when ancillary data for 
atmospheric correction are not available. A geometric correction 

was performed in order to assign satellite images to their correct 
position on the Earth’s surface (georeferencing) using Ground Con-
trol Points (GCP) as known points with a polynomial warping func-
tion and a nearest neighbor resampling to the Datum WGS84/UTM 
coordinate system. 

From calibrated images, spectral indices can be extracted with 
the aim of enhancing the spectral contribution of vegetation while 
minimizing that of the background. The normalized difference 
vegetation index (NDVI) is one of the most widely used vegetation 

indexes and its contribution in satellite assessment and monitoring 
of global vegetation cover has been well demonstrated over the 
past two decades. It is defined as: 
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Figure 4. A true color image-map of the QuickBird scene acquired on 9 February 2009. 

 
 
 

NDVI = (RNIR – RRED)/( RNIR + RRED) 
 

Where, RRED, and RNIR represent surface reflectance averaged over 

visible (λ ∼0.6 μm) and NIR (near infrared) (λ ∼0.8 μm) regions of 
the spectrum, respectively. The NDVI is correlated with certain 
biophysical properties of the vegetation canopy, such as fractional 
vegetation cover, vegetation condition, and biomass. 
 

 
Assessing biomass in georeferenced areas using NDVI 
 

Once the allometric relationships between easy-to-measure plant 

parameters (EMPP) and biomass (dry weight) were established, we 
used them to estimate the biomass/fuel in georeferenced areas 
(polygons) with uniform vegetation types in terms of density. For 
each georeferenced area, we analysed the relationships between 
mean NDVI and estimated biomass values (fine and coarse) per 
unit area (t/ha) using linear regression models. 

Within each stand, two areas were randomly selected. Under-
story vegetation (herbaceous and shrub layers) in each area was 
collected in square plots (1 x 1 m) 2 m spaced along belt transects. 
The number of plots was proportional to extent area. For all shrubs 
rooted in the plots, the following easy-to-measure plant parameters 
(EMPP) were determined: the longest crown diameter, the crown 
diameter perpendicular to the longest, total plant height the crown 
height of live foliage and the basal diameter (stem diameter just 
above ground level). Percent coverage of species in the herba-
ceous layer was recorded. Within each area, we measured the DBH 
(trunk diameter at breast height) and the height for each tree. 

The regression models between EMPP and biomass values, allo-
wed us to estimate the total biomass (fine and coarse) for shrub 
and herbaceous layers for each area through the application of the 

regression equations. For the tree layer, the total pine dry weight, 
the fine wood fraction and coarse fraction were estimated by DBH 
measurements using allometric models developed for similar pine 

forest in Mediterranean area by Giovannini et al. (2001). The bio-
mass proportions were summed to give the tree biomass. 
 
 

Statistical approaches for estimating biomass 
 

Regression analyses were performed to determine the relationship 
between biomass and EMPP. The independent variables used 
were crown diameters (cd1, cd2), mean height (H), crown area (ca)  
of shrub plants and percentage cover of herbaceous plants. The 

dependent variables were fine, coarse and total biomass and were 
tested for normality of distribution using the Shapiro-Wilk test 
(Shapiro and Wilk, 1965), and if necessary transformation was made. 

Linear (Y = βo+ β1*X1) or non linear regression models (Y = dry 
weight of biomass in grams, X1…Xn are the respective explanatory 
variables in each model) were used to assess the choice of inde-
pendent variables and predictive equations selected based on 
adjusted R

2
 values and the significance (p-value) of the regression 

coefficients. GIS analyses were performed with GRASS (GRASS 
Development Team, 2011) and statistical analyses using R 2.13.1 
for Windows (R Development Core Team, 2011). 
 
 

RESULTS 
 

The allometric models based on regression equations 
models all resulted as statistically significant and explained 
between 66 (R

2
 = 0.66) and 93% (R

2
 = 0.93) of the varia-

bility in individual biomass (fine and coarse). In parti-
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Figure 5. Scatter plots between shrub fine, shrub coarse and mean high of shrub and between herbaceous biomass and percentage of 

herbaceous plants cover. 
 
 
 

 
 
Figure 6. Scatter plot between NDVI and fine and coarse biomass. 

 
 

 

cular, results of the regression analysis indicate that the 
mean height was the variable that best predicted fine and 
coarse shrub biomass (Table 1). The linear relationships 
with R

2
 above 0.7 were chosen as the best fitting equa-

tions to the predicted fine and coarse fuel biomass (Table 
1). Figure 5 shows the scatter plot of best relationships 
obtained by regression analyses: mean height of shrub 
plants plotted against fine and coarse shrub biomass dis-
played a positive trend as scatter is significant. Likewise, 
the scatter plot between percent cover of herbaceous 
plants and herbaceous biomass indicated a good rela-
tionship. These scatter plots can give an idea of the 
effecttiveness of EMPP in investigating its relationship 
with biomass. 

Allometric analysis showed that the percentage of 
coverage of herbaceous species is an effective allometric 
measure for predicting the biomass in the herbaceous 
vegetation layer, since the regression result was statis-

tically significant (Table 1). The NDVI index, performed 
on QuickBird images with Very High Resolution, con-
firmed itself as a good predictor of fine and coarse dry 
weights for estimating biomass/fuel in this area, as repor-
ted in Table 2. Figure 6 shows mean NDVI plotted against 
fine and coarse biomass. 

The coefficients results obtained from the regression 
analysis were used to distribute the fuel values on the 
area of interest and to create a fine-fuel map and coarse-
fuel map (Figure 7a, b). The fine fuel ranged from 0.02 to 
20 t/ha and the coarse fuel ranged from 0 to 320 t/ha. 

 
 

DISCUSSION 
 
The knowledge of how the distribution of natural biomass 
weights subdivide into size classes is important for impro-
ving current fire prevention and fire behavior modeling,
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Figure 7. Distribution of fine (A) and coarse (B) biomass (t/ha) in the study area. 

 
 
 

which can alleviate the negative impacts of fire on the 
ecosystem. It may also be important in order to follow the 
production of vegetation dead mass and other issue 
where leaves need to be separated by more ligneous 
components. Information on the spatial distribution of 

biomass weights in terms of fine and coarse types is 
essential for understanding where fuel is denser or where 
it is discontinuous and the different fire propagation rates 
and fire behavior. For example, a considerable part of the 
study  area  was depleted of vegetation, hence, following
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Figure 8. Detail of fine fuel map.

 
 
 

CORINE land cover classification or even a classification 
based on two-stage hierarchical system (Baraldi et al., 
2010; Blonda et al., 2011), it was classified as bare soil 
where no fuel would have been allocated. With this type 
of fuel distribution, it is clear that this underestimates the 
fine particles, the part of the vegetation that contributes 
most in the propagation of the forest fire. Furthermore, 
the model developed in this paper, allows the identifica-
tion of features otherwise lost when the vegetation is 
represented only by vegetation class labels. This includes 
orientation of vegetation lines which may favor the spread 
of fire in a given direction, information that may be useful 
for hazard management and prevention (Figure 8). 

Estimates of biomass and fuel loadings are necessary 
for many applications in the fields of fire management, 
ecology, biomass, and bioenergy research. However, the 
use of destructive sampling to provide these estimates is 
time consuming and expensive, and furthermore, in pro-
tected sites, there are strong restrictions on cutting vege-
tation, making difficult the acquisition of fuel distribution. 
In this paper, statistical regression models were used to 
derive allometric equations for biomass by fuel size cate-
gories. Numerous studies have assessed the relationship 
between vegetation structure and fuel biomass and among 
which some authors have reported that total bio-mass in 
shrubland ecosystem was closely related to height and 
vegetation cover (Ohmann et al., 1976; Buech and Rugg, 
1995; Fogarty and Pearce, 2000; Sağlam, 2008). The 
correlations of vegetation height provided in our study 
also coincide with that described by Fernandes (1998) in 
Portuguese shrubland and by Rittenhouse and Sneva 
(1977) of Wyoming big sagebrush. 

Available fuel biomasses are very important for the 
spreading and intensity of fire. In this study, average fine 
biomass was 3.8 t/ha, while average coarse biomass was 
47.5 t/ha and average total biomass was 38 t/ha. Similar 
results were found in some Mediterranean shrublands 
(Specht, 1969; Icona, 1993; Dimitrakopoulos, 2002; 

Sağlam, 2008).  

A close relationship was found in this study between 
NDVI and biomass, and consequently the vegetation 
index gave an indicator of fuel biomass. Numerous studies 
are now using NDVI as a proxy of vegetation productivity 
instead of performing direct vegetation assessments 
(Kerr and Ostrovsky, 2003; Pettorelli et al., 2007; 
Wittemyer et al., 2007). Studies have revealed some 
discrepancies regarding the shape of these relationships 
(quadratic, log-linear, linear relationships between NDVI 
and vegetation biomass (Hobbs, 1995; Gilabert et al., 
1996; Schino et al., 2003), respectively). However, due to 
the variety of statistical approaches used, it remains un-
clear whether these discrepancies reveal true biological 
differences, such as differences in plant community 
characteristics, or methodological concerns. 

In this study, the relationships found between NDVI and 
biomass was used to distribute the biomass values on 
the area for creating maps of fine and coarse biomass 
components. Maps, in particular, are essential for com-
puting fire hazard spatially and for assessing fire risk by 
their use in models simulating fire growth and intensity 
across a landscape (Keane et al., 2001). Biomass distri-
bution maps account for structural characteristics of 
vegetation related to fire behavior and fire propagation. 
Remote-sensing data is becoming the primary method in 
fuel classification and mapping efforts. Satellite sensors 
provide digital information that can easily be tied into 
other spatial databases using GIS analysis, which can be 
imported into fire behavior and growth models. 

Knowing the amount of biomass and other fuel charac-
teristics across a landscape is becoming increasingly 
important to fire managers as a new generation of fuel 
and fire management decision support systems come on 
line. With accurate fuel information, fire managers should 
be able to make better-informed decisions about ongoing 
wildland fires and fuel treatments. 

The originality of our study resides in the presentation 
of a new modeling approach that uses NDVI and field 
vegetation data to create distribution maps of biomass. It
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Table 1. Regression models for estimation of shrub biomass by Cd1 (first max diameter of crown shrub), Ca (Area shrubs), 
Ch (mean height of shrub), Hcover (herbaceous cover). 
 

Dependent 

Variables 
Predictor variables Constant and coefficients F R

2
Adj 

Shrub coarse biomass 

Cd1 
a: 3.49 

b: -11.37 
18.71 0.639** 

Ca 
a: 1.72 

b: -10.83 
20.53 0.661** 

Ch 
a: 0.01 

b: -0.512 
17.19 0.789** 

     

Shrub fine biomass 

Cd1 
a: 1.59 

b: -0.94 
50.11 0.830*** 

Ca 
a: 0.72 

b: -0.18 
25.83 0.713*** 

Ch 
a: 2.22 

b: -4.06 
150 0.937*** 

     

Herbaceous biomassb Hcover 
a: 0.09 

b: -1.07 
21.29 0.833** 

 

Significance code: ***,P<0.001; **, P<0.01. 
 
 

 
Table 2. Regression models for estimation of biomass by NDVI.  

 

Dependent 

variables 

Predictor 
variables 

Constant and 
coefficients 

F R
2 
Adj 

Fine biomass NDVI Mean 
a: 3.36 

b: -0.24 
17.4 0.701** 

Coarse biomass NDVI Mean 
a: 51.07 

b:-4.04 
9.01 0.612* 

 

Significance code: **, P<0.01; *, P<0.05) 

 
 
 
demonstrates that it is possible to spatially distribute 
several biomass characteristics by: 1) locally determining 
allometric relationships, 2) using them in a series of geo-
referenced polygons for evaluating local values of the 
chosen biomass characteristics, 3) determining relation-
ships between radiometric indices and the chosen bio-
mass characteristics using biomass and radiometric cha-
racteristics calculated in each polygon, and finally 4) 
using the radiometric indices to spread the biomass cha-
racteristics values  in the landscape. 

Particularly, in this study, the relationships found bet-
ween NDVI and biomass were used to distribute the 
biomass values on the area for creating maps of fine and 
coarse biomass components. Our model does not require 
the use of ancillary variables (Riaño et al., 2002) and is 
based on relationships between fine and coarse biomass 
and NDVI. Other authors used supervised classification 
techniques on low resolution imagery (such as Landsat 
TM) to generate the fuel maps and did not take into 

account fine and coarse fuel (Vidal et al., 1994; Vidal and 
Devaux-Ros, 1995; Burgan et al., 1996; Riano et al., 
2002; Rollins et al., 2004; Lasaponara and Lanorte, 
2007). 

In conclusion, in this study carried out in Pinus pinaster 
dominated sites, we developed a series of regression 
equations for predicting fine and coarse fuel biomass of 
species common in a Mediterranean region, mainly Erica 
scoparia. The regression models developed herein are 
suitable for predicting fuel biomass in similar shrub areas. 
Local and site-specific fuel biomass data should be used 
for more reliable fire behavior predictions. Given the 
range of the data on which the relationships were based, 
this study provides a valuable contribution to biomass 
research in general. However, it should be kept in mind 
that the range of fuel characteristics on which the rela-
tionships were based represents the range of conditions 
under which it is possible to use the relationships gene-
rated through this study. 
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