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Abstract

Using the high-energy color fluctuation formalism to include inelastic diffractive processes and taking into

account the collision geometry and short-range nucleon–nucleon correlations in nuclei, we assess various

manifestations of flickering of the parton wave function of a rapid proton in pA interactions at LHC energies

in soft QCD processes and in the special soft QCD processes accompanying hard processes. We evaluate

the number of wounded nucleons, Ncoll — the number of inelastic collisions of projectile, in these processes

and find a nontrivial relation between the hard collision rate and centrality. We study the distribution over

Ncoll for a hard trigger selecting configurations in the nucleon with the strength larger/smaller than the

average one and argue that the pattern observed in the LHC pA measurements by CMS and ATLAS for

jets carrying a large fraction of the proton momentum, xp, is consistent with the expectation that these

configurations interact with the strength which is significantly smaller than the average one — a factor of

two smaller for xp ∼ 0.5. We also study the leading twist shadowing and the EMC effects for superdense

nuclear matter configurations probed in the events with a larger than average number of wounded nucleons.

We also argue that taking into account energy–momentum conservation does not change the distribution

over Ncoll but suppresses hadron production at central rapidities.
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I. INTRODUCTION

Recently a very successful proton–lead run has been performed at the LHC which employed

several detectors with the acceptance of many units in rapidity. It was observed in [1] that interpre-

tation of pA data depends significantly on whether one uses as the input model for pA interactions

the Glauber model, which does not take into account fluctuations of the interaction strength, or

the color fluctuation (CF) approach of [2, 3] and that it is difficult to describe the data without

including such fluctuations. The color fluctuation formalism takes into account the space–time

evolution characteristic for the interaction of composite states in high energy processes in QED

and QCD. In particular, the Lorentz slowing down of interaction implies that an ultrarelativistic

composite projectile interacts with a target through configurations of partons whose characteristic

lifetime (the coherence length) becomes large at high energies and whose interaction strengths with

the target, σ, may significantly vary. The fact that the projectile can exist in the frozen fluctua-

tions/configurations of partons with different interaction cross sections is called ”flickering” in our

paper.

Small-size parton configurations with small σ in a meson wave function were observed in fixed-

target data on pion–nucleus collisions at FNAL and in electron–nucleus scattering at TJNAF (for a

recent review, see [4]). Fluctuations to ”large” nucleon configurations with the larger than average

σ are an unambiguous consequence of the CF approach [2]. Their contribution allows one to

explain the significant large-Ncoll tail in the distribution over the number of inelastic collisions,

Ncoll, indicated by the ATLAS data [1].

The aim of this paper is to analyze how fluctuations of the interaction strength, the momentum

conservation, the composite structure of hadrons, parton–parton correlations in the parton wave

function of a fast projectile hadron and presence of the superdense nuclear matter configurations

reveal themselves in the structure of final states in pA collisions at the LHC energies.

The paper is organized as follows. In Sect. II we explain that the large coherence length for the

interaction of fast nucleons (which is comparable at the LHC energies to the radius of an atom)

results in the necessity to take into account the significant cross section of diffractive processes

in proton–nucleon (pN) collisions. For proton–deuteron (pd) collisions, this leads to the Gribov–

Glauber model of nuclear shadowing for the total pd cross section [5]. Employing completeness over

diffractively produced states allows one to include effects of inelastic diffraction in the interaction

of projectile with any target. This approximation leads to the CF approach, which provides a

constructive method to calculate the interaction of projectile with any number of target nucleons.
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In addition, we explain how to include well understood properties of bound states in QCD into

the formulae of the CF approach. We review the basic formalism and present predictions for the

distribution over the number of inelastically interacting nucleons, Ncoll.

In Sect. III we evaluate fluctuations of Ncoll due to CF phenomena in soft QCD processes

accompanying a hard trigger. The developed formalism explicitly satisfies the QCD factorization

theorem for hard inclusive processes and allows us to evaluate the rate of hard processes as a

function of the number of wounded nucleons Ncoll taking accurately into account the difference of

the impact parameter geometry of hard and soft collisions. Significant deviations from the often

assumed linear dependence of the hard rate on Ncoll are observed.

In Sect. IV we discuss several strategies for observing effects of proton flickering in pA collisions

with a hard trigger. In particular, we argue that such studies would allow one to determine the

correlation between the x distribution of partons in the nucleon and the overall interaction strength

and, in particular, to test the hypothesis that the proton size is shrinking with an increase of x.

We compare distributions over Ncoll for triggers corresponding to the larger/smaller than average

interaction strength. In particular, we find an enhancement of the jet rate for the peripheral

collisions in which x of the proton is large enough so that smaller than average configurations in

the proton are selected. We discuss a connection of our results to the recent measurements at the

LHC using two large acceptance detectors (ATLAS and CMS), which studied the dependence of jet

production as a function of the centrality, which was defined via the measurement of the transverse

energy distribution in the nuclear fragmentation region. We argue that the pattern observed for

the forward jet production (along the proton direction) matches that for the interaction of the

proton CF with the strength, which is approximately a factor of two smaller than on average.

In Sect. V we consider effects of perturbative QCD (pQCD) evolution on color fluctuations for

fixed-x configurations in the nucleon. We evaluate the range of x at the low Q scale contributing

to the strength of fluctuations for the same x at the hard probe scale of the order of 100 GeV.

In Sect. VI we consider effects due to deviation of nuclear parton distribution functions (PDFs)

from the sum of nucleon PDFs which were neglected in the previous sections since they are small in

the currently studied kinematics. We focus on the limit when a trigger may select collisions where

the number of wounded nucleons exceeds significantly the average number of nucleons at small

impact parameters, which—due to the significantly higher local density—corresponds to selection

of configurations in the nucleus wave function for which the parton distribution is different from

the average one. We demonstrate that for these collisions, both nuclear shadowing and the EMC

effect are significantly enhanced, with the EMC effect probing local nucleon densities comparable
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to those in the cores of neutron stars.

In the Appendix we explain how to implement energy–momentum conservation according to

general principles of QCD and show that the formulae of the Gribov–Glauber model and the CF

approach for the total cross section and the number of wound nucleons are not modified. At the

same time, the formulae for the double hadron multiplicity in pd collisions (as well as for triple

and higher multiplicities in pA scattering) are modified by a model-dependent factor due to an

increase of the inclusive cross section with energy. This leads to violation of the Abramovski–

Gribov–Kancheli (AGK) cutting rules [6] for the inclusive hadron cross section.

II. COLOR FLUCTUATIONS FORMALISM FOR HADRON–NUCLEUS COLLISIONS

AT HIGH ENERGIES

In this section we summarize the framework for the quantitative description of flickering phe-

nomena in high energy processes which we refer to as the color fluctuation (CF) approach. This

framework allows one to take into account the contribution of the diffractive excitation of a projec-

tile proton and implement well-understood QCD properties of hadrons and their interactions. One

of such properties is presence of the significant fluctuations of the interaction strength, for a more

detailed discussion, see [7]. Several types of fluctuations are known at present: fluctuations of the

sizes and the shapes of the colliding hadrons, of number of interacting constituents, etc. Following

our previous papers we will refer to all these fluctuations as color fluctuations. In the physics of

fluctuation phenomena, a significant part of fluctuation effects can be evaluated in terms of the

dispersion of the interaction strengths which is calculable in terms of the cross section of inelastic

diffractive processes in pN scattering, see Eq. (3) below.

It has been understood long ago that in the case of high energy processes, the contribution of

the planar Feynman diagrams relevant for the Glauber approximation in non-relativistic quantum

mechanics is zero and that the dominant contribution arises from non-planar diagrams [8, 9].

Gribov suggested [5] to rewrite the sum of non-planar diagrams as the sum over diffractively

produced hadronic intermediate states.

The Gribov–Glauber model has been further generalized to take into account effects of the

compositeness of a projectile hadron in inelastic interactions with nuclei [2]. This generalization is

justified because at high energies it is possible to neglect effects of tmin 6= 0 (tmin is the minimal

kinematically allowed four-momentum transfer squared) in the production of diffractive excitations

of the projectile and, hence, to sum over produced diffractive states using the condition of com-
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pleteness:
∑

n |n〉 〈n| = I, where I is a unit matrix. The requirement of small −tmin ≤ 3/R2
A puts

a limit on the masses of the intermediate states, Mdiff , which in the case of nuclei corresponds to

M2
diff/s <

√
3/RAmN , (1)

or, equivalently, to the configurations in the projectile proton frozen over the coherent length lc:

lcoh =
s

mN (M2
diff −m2

N )
� 2RA , (2)

where mN is the nucleon mass; RA is the nucleus radius; s is the square of the center-of-mass

energy.

The first step in the derivation of CF formulae is to notice that the strength of the interaction

with n nucleons is modified as compared to the Glauber model by the factor of λn ≡ 〈σn〉 /σntot
which sums contributions of all diffractive intermediate states. The factors of λn can be expressed

in terms of the distribution over cross sections PN (σ), λn =
∫∞
0 dσ(σ/σtot)

nPN (σ), where PN (σ)

is the probability for a proton to interact with the target with the given cross section σ and

σtot =
∫∞
0 dσσPN (σ) is the total proton–nucleon cross section. The distribution PN (σ) depends

on the incident energy, which will be discussed later.

By construction, λ0 = λ1 = 1 due to the probability conservation and the definition of the total

cross section. The variance of the distribution PN (σ) is

λ2 − 1 =

∫ ∞
0

dσ PN (σ)

(
σ

σtot
− 1

)2

≡ ωσ =
dσ(p+p→X+p)

dt
dσ(p+p→p+p)

dt

∣∣∣∣∣
t=0

, (3)

where the sum over diffractively produced states X is implied. Equation (3) follows directly from

the optical theorem and the definition of PN (σ). It was derived originally in [10] within the

approach of [11]. The analysis of the fixed target data [12] indicates that the variance ωσ first

grows with energy reaching ωσ ∼ 0.3 for
√
s ∼ 100 GeV and then starts to decrease at higher

energies dropping to ωσ ∼ 0.1 at the LHC energies.

Thus in contrast to the case of lower energies, the cross section is calculable in terms of scattering

of frozen parton configurations in the wave function of a rapid projectile and then summing over

contributions of these configurations. In the case of averaging of quantities depending on one

variable σ, we may introduce the following unit matrix,
∫
dσδ(σ − σ(xi, ρi,t)), where xi and ρi,t

are the light-cone fractions and transverse coordinates of the partons, integrate over all variables

characterizing the wave function of the projectile, ψ, and obtain:∫
|ψ(xi, ρi,t)|2δ(σ − σ(xi, ρi,t))dτ = PN (σ) , (4)
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where dτ is the phase volume. This formula indicates that selection of certain parton configuration

in the projectile may influence the effective value of σ. Note also that the contribution of large

diffractive masses described by triple Pomeron processes is restricted by the kinematics M2
diff/s�

1/mNRA. Thus, at large s, participating parton configurations within the projectile are frozen

during collisions and the contribution of large diffractive masses can be included in Eq. (4). This

means that the CF approach also includes large diffractive masses corresponding to triple Pomeron

processes.

Important properties of PN (σ) follow from rather general reasoning:

(i) PN (σ) is positive and rapidly decreasing with an increase of σ to ensure finiteness of the

moments
∫
PN (σ)σndσ.

(ii) PN (σ) is a continuous function of σ with PN (0) = PN (σ → ∞) = 0, which follows from

applicability of pQCD at σ → 0, see the discussion below. Hence, PN (σ) should have a maximum

at σ = σ0 corresponding to an average configuration of partons in the nucleon, see Eq. (5) below.

Thus, σ0 is close to the observed total nucleon–nucleon (NN) cross section.

(iii) The distribution over σ around the average configuration is controlled by the variance ωσ.

The variance is expressed in terms of the cross section of inelastic diffraction at t = 0, see Eq. (3).

The data indicate that the variance first grows with energy reaching ωσ ∼ 0.3 for
√
s ∼ 100 GeV

and then starts to decrease for higher energies. The current LHC data on diffractive processes in

pp collisions are not sufficient to determine accurately ωσ directly from the data. Still the data are

consistent with the trend that the interaction at small impact parameters becomes practically black

and hence does not lead to inelastic diffraction. Overall, extrapolations from the lower energies and

an inspection of preliminary LHC data indicate that the ratio of diffractive and elastic cross sections

at t = 0 drops with energy and that ωσ(
√
s = 5 TeV) ≈ 0.1. (This is close to the extrapolation of

the pre-LHC data fit for ωσ by K. Goulianos [13] to LHC energies.) Naively this looks like a small

number but it corresponds to a rather broad distribution over σ. For example, modeling PN (σ)

by introducing two diffractive states of equal probability, one would find that they should have the

cross sections that differ by nearly a factor of two: σi = σtot(1±
√
ωσ). This indicates that even at

the LHC, the nucleon can interact with a significant probability both with the super large strength

∼ 130 mb and the significantly smaller than average strength ∼ 70 mb.

(iv) In the region of large σ one can use several generic considerations. Since the variance is

small at the LHC energies, the distribution around the maximum is comparatively narrow and in

practical calculations, the region of σ � σ0 gives a negligible contribution. Thus, a reasonable

approximation is take into account only small fluctuations around the average value of σ. Then, as
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in the classical and quantum mechanical theory of small fluctuations around average value, PN (σ)

in the vicinity of σ = σ0 should have the form close to the Gaussian distribution in σ. Note also

that models with different patterns of fluctuations such as, e.g., the model with two cross section

eigenstates but the same ωσ [3] and the model with PN ∝ exp[−c |σ − σ0| /σ0] lead to very similar

numerical results.

(v) At small σ, PN (σ) ∝ σ which follows from QCD quark models of the proton and approximate

proportionality of the cross section of interaction of small-size |3q〉 configurations with target nu-

cleons to the area occupied by color as follows from pQCD, see e.g.[14]. Under these assumptions,

the derivation is effectively reduced to the application of QCD quark counting rules. Note that

for a projectile meson, Pπ(σ) ∝ const at σ → 0 [12]. In perturbative QCD, the interaction cross

section of small-size configurations is small but grows with energy faster than that of average-size

configurations. As a result, PN (σ) is expected to decrease rather rapidly with s for fixed σ � σ0.

A competing parametrization of PN (σ) based on the Poisson distribution has been suggested

in [15] for RHIC energies. In this parametrization, PN (σ) ∝ σk−1 exp(−σ/θ), with k = 1/ωσ. For

RHIC (LHC), where ωσ ≈ 0.25 (0.1), this corresponds to PN (σ)|σ→0 ∝ σ3(σ9), which is much

faster than in the quark models where PN (σ)|σ→0 ∝ σ.

(vi) The resulting form of PN (σ) is a smooth interpolation between the small-σ and large-σ regimes.

In our numerical studies we use results of the theoretical analysis of [12] which determined first

three moments of In =
∫
σnPN (σ)dσ using the normalization condition for PN (σ), Eq. (3) for

the variance and the data on coherent diffraction off the deuteron and implemented the small-σ

behavior of PN (σ) expected in pQCD:

PN (σ) = γ
σ

σ + σ0
exp

{
−(σ/σ0 − 1)2

Ω2

}
, (5)

where Ω2/2 ≈ ωσ numerically. In the ωσ → 0 limit, Ω2 = 2ωσ and the parametrization of Eq. (5)

converges to δ(σ − σtot). The analysis [12] of the data on coherent diffraction off the deuteron at

Ep= 400 GeV shows that this distribution is approximately symmetric around σ = σtot.

Equation (5) is qualitatively different from PN (σ) suggested in [10] to describe pN scattering

using the pre-QCD idea that only wee partons are involved in the high energy hadron–hadron

interaction. In particular, instead of the behavior P (σ → 0) ∝ σ, the authors of [10] suggested

that PN (σ → 0) ∝ δ(σ).

For pA collisions at
√
s=5.02 TeV studied at the LHC, we use σtot = 93 mb and ωσ = 0.1

leading to γ = 0.0263914, σ0 = 86.4825 mb, and Ω = 0.51285. Although experimentally the

value of ωσ = 0.1 appears to be preferred for the energies probed in pA collisions at the LHC, in
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several cases we will illustrate sensitivity to the value of ωσ by presenting numerical results also

for ωσ = 0.2.

To evaluate the cross sections of the events where the number of collisions is exactly Ncoll, where

Ncoll is the number of target nucleons involved in the inelastic interaction with the projectile, one

needs the distribution over inelastic cross sections, Pinel(σinel). This distribution is calculable in

terms of PN (σ) since all above discussed restrictions on Pinel(σinel) and PN (σ) are the same except

for the normalization. Moreover, since experimentally the fraction 1− λ of the total cross section

due to elastic scattering is a rather weak function of the incident energy, it is natural to assume

that this is also true for each individual proton fluctuation. Thus, the variances of Pinel(σinel) and

PN (σ) are equal and one can restore Pinel(σinel) using the following relation:

Pinel(σinel = σ
σinel
σtot

) =
σinel
σtot

PN (σ) . (6)

In the discussed approximation one can rewrite σin(pA) as a sum of positive cross sections of

inelastic interactions with exactly Ncoll nucleons analogously to the case of the Gribov–Glauber

approximation of [16]. A compact expression for σin(pA) can be written, if internucleon correlations

in the nucleus and the finite radius of the NN interaction are neglected:

σhAin =

A∑
Ncoll=1

σNcoll
,

σNcoll
=

∫
dσPinel(σ)

A!

(A−Ncoll)!Ncoll!

∫
d2bx(b)Ncoll [1− x(b)]A−Ncoll , (7)

where x(b) = σT (b)/A and the normalization is
∫
d2bT (b) = A. This formula is a generalization

of the optical approximation to the relativistic domain where inelastic processes give the dominant

contribution to the total cross section. In the framework of the Gribov Reggeon calculus, the factor

of x(b)Ncoll corresponds to Ncoll cut Pomeron exchanges and the factor of [1− x(b)]A−Ncoll — to

A−Ncoll uncut Pomeron exchanges.

It is straightforward to include the effect of the finite radius of the NN interaction as the prob-

ability for two nucleons to interact inelastically while at a relative impact parameter b12, P (b12).

It is expressed through the profile function of NN scattering, Γ(b12), as P (b12) = 1−|1− Γ(b12)|2.

The resulting formula (an analogue of Eq. (25) of [16] written in the approximation when correla-

tions between nucleons are neglected) is essentially probabilistic reflecting the semiclassical picture

of high energy inelastic interactions with nuclei. The Monte Carlo (MC) which includes accurately

both geometry of the NN interactions and nuclear correlations was presented in [3]. It is used in

our numerical studies described below.
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Hence the probability of inelastic collisions with exactly Ncoll nucleons, PNcoll
, is simply:

PNcoll
= σNcoll

/σhAin . (8)

For the average number of collisions, one finds

〈Ncoll〉 =
A∑

Ncoll=1

NcollσNcoll
/σhAin = Aσin/σ

hA
in , (9)

which depends very weakly on ωσ [3] since the inelastic shadowing correction to σhAin is very small

because the pA interaction is nearly black at the LHC energies.

In terms of non-planar diagrams, energy–momentum conservation is automatically fulfilled.

This implies that taking into account energy–momentum conservation does not produce additional

factors in the formulae of the Gribov–Glauber and CF approaches for the total cross sections,

inelastic shadowing and hadron multiplicities at the rapidities close to the nucleus fragmentation

regions. In contrast, the formulae for the double, triple, etc. hadron multiplicities contain additional

suppression factors to satisfy energy–momentum conservation, see the discussion in the Appendix.

In the approximation of [16], σinel did not include inelastic final states with the nucleus breakup

but without hadron production. Correspondingly, in our case, when a particular configuration can

scatter elastically off a nucleon of the nucleus, the final states corresponding to the excitation of

the projectile without hadron production of the nucleus fragmentation are not included in σinel

in Eq. (7) (or its finite radius of interaction version). Namely, Eq. (7) does not include the cross

section of coherent inelastic diffraction, which is less than 1% of the total inelastic cross section

[17], and quasielastic scattering with the nucleus breakup. Incoherent diffraction is dominated

by scattering off the nucleus edge which is roughy equal to the product of the probability of the

interaction with one nucleon (∼ 20%, see Fig. 1) and the probability of single diffraction for a

given proton in inelastic pp collisions, which is ∼ 10 − 15%, leading to the overall probability of

incoherent diffraction of ∼ 2− 3%.

These contributions are also not included in the LHC pPb events samples – events without

rapidity gaps. This allows one to exclude the Coulomb excitation contribution which may reach

10% of the inelastic cross section [17]. This cut removes from the sample also most of the rapidity

gap events due to the inelastic diffraction dissociation of the proton and the nucleus. A type

of the events which is included in our definition of σinel but not in the experimental definition

is quasielastic scattering in which nucleon (nucleons) of the nucleus are diffractively excited. In

principle one needs to include this correction in the comparison of the calculations with the data,

although as we have seen above, in most of the cases it is a very small effect.
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The finite radius of the nucleon–nucleon interactions and short-range NN correlation effects

were implemented in the Monte Carlo procedure of Ref. [3]. The algorithm generates multi-nucleon

configurations in nuclei with correct short-range correlations of protons and neutrons developed

in [18] and uses the profile function for the dependence of the probability of inelastic NN collisions

on the relative impact parameter as given by the Fourier transform of the elastic pp amplitude and

S-channel unitarity. Fluctuations of the interaction strength are included by assigning incoming

protons the values of σ with the measure given by PN (σ).

In Ref. [3] a detailed comparison of the predictions for the number of wounded nucleons with

and without taking into account color fluctuations was presented. It was demonstrated that the

inclusion of fluctuations leads to a significant change of the distribution over the number of wounded

nucleons both for a fixed impact parameter and for the integral over impact parameters. A large

enhancement of the probability of the events with large Ncoll was observed (see Fig. 1).

As usual for the random phenomena, in a wide range of Ncoll, the probability distribution over

Ncoll (P (Ncoll)) is most sensitive to the value of the variance ωσ. In particular, the parametrization

of Eq. (5) and the two-state model were found to give very close results in a wide range of Ncoll.

The results of our numerical studies using the Glauber model (corresponding to ωσ = 0) and the

CF model with two values of ωσ (ωσ = 0.1 and 0.2) are presented in Fig. 1. The calculation is done

using the Monte Carlo algorithm developed by two of the present authors and described previously

[3]. The profile function was also scaled with σ to satisfy the condition that the interaction is black

at small impact parameters. One can see from the inset of Fig. 1 that our analysis demonstrates

that the distribution over Ncoll is sensitive to the value of ωσ and that fluctuations result in the

substantially larger tail of the distribution at large Ncoll.

In Fig. 1 we showed the results of calculations based on the parametrization suggested in [12],

which assumes the Gaussian shape of the large-σ tail of PN (σ). However, since the study [12] was

testing fluctuations near its average value, σtot, it is reasonable to consider other options for large-σ

asymptotic of PN (σ) in the present work. In particular, the tail of small-x parton distributions

in the transverse plane is often fitted by the Gaussian distribution in ρ2, where ρ is the parton

transverse coordinate. If the cross section for large ρ is approximately proportional to the area, i.e.,

σ ∝ πρ2, one would expect presence of the large-σ tail of P (σ) that behaves as P (σ) ∝ exp(−cσ).

To probe sensitivity to the possible presence of such a tail, we introduce another model of PN (σ):

PN (σ) = aσ exp(−c |σ − σ0|) , (10)

with parameters fixed to reproduce the same total cross section and dispersion as in the basic
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FIG. 1: The probabilities PN of having N = Ncoll wounded nucleons, averaged over the global impact

parameter b, as a function of Ncoll for the Glauber model (ωσ = 0) and in the CF model with ωσ = 0.1 (our

base value used in the current analysis) and ωσ = 0.2. The inset is in the log scale.

model. We find that the distribution over Ncoll practically does not change – see Fig. 2.
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FIG. 2: Comparison of the distributions over N = Ncoll for the Glauber model and for the color fluctuation

model with ωσ = 0.1 with the Gaussian [Eq. (5)] and exponential [Eq. (10)] large-σ behavior.

This confirms the conclusion of [3] based on the comparison of the model based on Eq. (5) and

the two-component model. At the same time, changing the behavior at small σ one can generate a

very different shape for the same variance, see Ref. [15]. Hence it would be interesting to explore

this issue further as the sensitivity to the tail for central collisions should grow since at the LHC

in central pA collisions, one typically selects Ncoll ∼ 14.
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III. DISTRIBUTION OVER THE NUMBER OF COLLISIONS FOR PROCESSES WITH

A HARD TRIGGER

We begin by addressing the long-standing question of the interplay of the phenomenon of color

fluctuations and the partonic structure of the nucleon. It is well understood and observed experi-

mentally that a hadron can exist in the configurations of different transverse sizes and that smaller

configurations interact with a smaller cross section than the larger size configurations. This is one

of the origins of flickering of the interaction strengths, which, as we mentioned in the Introduction,

is present in both QCD and QED. Note here that a related phenomenon of fluctuations of the

nucleon gluon density at fixed small x was inferred from exclusive hard processes in [19]. One

of the typical setups for pA collisions is the study of soft phenomena which accompany a hard

subprocess (dijet, Z-boson, . . .) and is related to the number of wounded nucleons.

Our main aim is to get a deeper insight into dynamics of pA interactions and in particular to

probe the flickering phenomenon which we discussed in the Introduction. In the case of inclusive

production, the cross section is given by the QCD factorization theorem. An additional requirement

on the final state breaks down the closure approximation and hence requires another form of the

factorization theorem.

In this section we will consider nuclear PDFs as a sum of the nucleon PDFs since nuclear effects

are small for large pt studied at the LHC except possibly in the region of xA ≥ 0.4 where the

EMC effect may play a role. Correspondingly we will use the impulse approximation to evaluate

cross sections of hard process and the CF approach to calculate the number of wound nucleons

accompanying the hard process. Effects related to the deviations of the nuclear PDFs from the

additive sum of the nucleon PDFs—leading twist nuclear shadowing and the EMC effect—will be

considered in Sect. VI.

On average, in the geometric model for hard processes in the kinematics, where nuclear shad-

owing can be neglected, i.e., for x ≥ 0.01 and even smaller x for large virtualities, the multiplicity

of events with a hard trigger (HT), which we will denote as MultpA(HT ), is MultpA(HT ) =

σpA(HT +X)/σpA(in) = AσpN (HT +X)/σpA(in). Using MultpN (HT ) = σpN (HT +X)/σpN (in)

and Eq. (9) (which to a very good approximation holds in the CF approximation [3] ) one finds

that a simple relation for the multiplicities of HT events in pN and minimal bias pA collisions

holds:

MultpA(HT ) = 〈Ncoll〉MultpN (HT ) . (11)

Here we will consider the rates of hard collisions as a function of Ncoll with the additional
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factor of Ncoll in the denominator in order to focus on the deviation from the naive optical model

expectation [20] that Eq. (11) holds for fixed values of Ncoll:

RHT (Ncoll) ≡
MultpA(HT )

MultpN (HT )Ncoll
= 1 . (12)

The impact parameter dependence of the cross section for the hard collision of two hadrons

follows from QCD factorization theorem. It is given by the convolution of two generalized parton

distributions which are functions of ρ1 and ρ2 – transverse distances of partons from the center

of mass of the corresponding hadrons – with condition ρ1 + b − ρ2 = 0 with accuracy 1/pt(jet).

When further integrating over b,ρ1,ρ2 one obtains usual collinear expression for the cross section

through the product of the pdfs of the hadrons, see e.g. discussion in [21].

To describe geometry of dijet production in proton – nucleus collisions let us introduce vectors

b and bj the transverse center of mass of the projectile proton and the target nucleons relative to

the center of the nucleus, respectively. We also denote as ρ the transverse distance of the parton

of the projectile from point b. The transverse distance between the point of the hard collision and

the distance to the transverse c.m. of nucleon j of the nucleus is

ρj = b+ ρ− bj . (13)

The discussed geometry of collisions is shown in Fig. 3.

ρ
i

b

θ x

ρ

b i

iθ

FIG. 3: Sketch of the transverse geometry of collisions.

The generalized gluon distribution in the nucleon can be parametrized as gN (x,Q2, ρ) =

gN (x,Q2)Fg(ρ), where Fg(ρ) is the normalized distribution of gluons in the nucleon transverse

plane (we do not write here explicitly the dependence of Fg(ρ) on x and Q2);
∫
d2ρFg(ρ) = 1. This

parametrization is reasonable since the distribution over ρ is practically independent on Q2. In
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our numerical calculations, we take Fg(ρ) from the analysis of the data on elastic photoproduction

of J/ψ mesons [21–23]. For x ∼ 0.01:

Fg(b) = (πB2)−1 exp
[
−b2/B2

]
, (14)

where B = 0.5 fm. Note that sensitivity to the exact value of B is rather insignificant as long as

x stays small enough.

The cross section differential in the impact parameter is given by convolution of the generalized

gluon distributions of the colliding particles:

dσHT (NA)

d2b
= σHT (NN)

∫
d2ρ

j=A∏
j=1

[d2ρj ]Fg(ρ)×
j=A∑
j=1

Fg(ρj) , (15)

where ρi is given by Eq. (13). The averaging over configurations in the nucleus is implied but not

written explicitly.

It is worth emphasizing that Eq. (15) automatically corresponds to the impulse approximation

for the total inclusive cross section of the HT process:∫
d2b

dσHT (NA)

d2b
= AσHT (NN) . (16)

Up to this point, the integral over d2ρ can be performed analytically (or numerically) since the

integrand function Fg(ρ)
∑A

j=1 Fg(b + ρ−bj), for a given configuration and given b, depends on ρ

which has to take every possible value inside the nucleus.

However, the calculation of the distribution over Ncoll involves taking into account that much

smaller impact parameters dominate in hard collisions than in soft collisions [21, 23]. Also we want

to be able to take into account correlations of nucleons in nuclei. Consequently the calculation can

be performed only using a Monte Carlo technique.

The algorithm which leads to the impulse approximation expression for the cross section summed

over the contributions of all Ncoll is as follows.

(i) First a configuration of nucleons in the nucleus is generated and a particular value of b is

chosen.

(ii) The quantity Fg(ρ) ×
∑j=A

j=1 Fg(ρi) gives the weight of these configurations to the average

when we calculate the integral over b.

(iii) The nucleon involved in the hard interaction is assigned to nucleon j with the probability

given by

pj =
Fg(b + ρ− bj)∑A

k=1 Fg((b + ρ− bk))
. (17)
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(iv) The number of other nucleons which interacted inelastically is calculated (that is, all nucle-

ons except nucleon j); this number is Ncoll(other). This component of the procedure is identical

to the one described for a generic calculation of Ncoll without a trigger described in Sect. II. As a

result, we can calculate now the probability that the interaction with the generated configuration

will lead to Ncoll active nucleons:

Ncoll = Ncoll(other) + 1 , (18)

and, hence, determine the probability that in the event there are exactly Ncoll. We denote this

probability as phard(Ncoll, event).

(v) Finally we calculate the rate of the hard collisions due to events with a specific number of

collisions (we suppress here the overall factor of σpN (HT )):

∫
d2bd2ρ

j=A∏
j=1

[d2ρj ]Fg(ρ)×
j=A∑
j=1

Fg(ρi)phard(Ncoll, event) . (19)

The fraction of such events is simply

Frac(Ncoll) =
1

A

∫
d2bd2ρ

j=A∏
j=1

[d2ρj ]Fg(ρ)×
j=A∑
j=1

Fg(ρi)phard(Ncoll, event) . (20)

As we explained above, in order to compare with the naive expectation of the Glauber model

without correlations of any kind and the optical model limit, where one expects that the cross

section of hard collisions for events with Ncoll is Ncollσhard(NN), we calculated the ratio given by

Eq. (12). This procedure is obviously consistent with

∑
Ncoll

σ(Ncoll)Ncoll = AσNN . (21)

Note here that in this discussion, we did not address the potential effect of energy–momentum

conservation, see the Appendix.

First, we consider the case of average xp for which there is no significant correlation between

the value of σ for configuration and the parton distribution in the configuration. The case of xp

for which such correlations maybe present in considered in the next section. The results of our

calculations are presented in Fig. 4 for ωσ = 0 (Glauber model) and for the CF model with ωσ = 0.1

(our base model) and ωσ = 0.2. Here we consider One can see that in the case of ωσ = 0, main

deviations occur for small Ncoll and the effect decreases with a decrease of σtot. It appears that the

main reason for this deviation is that the transverse gluon distribution in the nucleus is narrower

than the soft interaction profile function reflecting larger impact parameters in minimal bias NN
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collisions than those in hard NN collisions [21, 23]. As a result, at large impact parameters (small

Ncoll) the probability of hard collisions decreases as compared to the naive expectations. With a

decrease of σtot(pp) and, hence, the b-range of NN interaction, the deviation of RHT from unity is

reduced.

This effect was first reported in [24] for AA collisions at RHIC and the LHC and for d-Au

collisions at RHIC energies using the parameters of [21] for the impact parameter dependence

of hard collisions and a simplified model for the impact parameter dependence of NN inelastic

interactions.

Color fluctuations complicate the pattern of Ncoll-dependence shown in Fig. 4 due to an ad-

ditional effect of the broader distribution in b of the collisions with small σ (see Fig. 1 in [3]),

which enhances the probability of collisions with small Ncoll for small impact parameters, where

the parton transverse density is higher. At very large Ncoll, yet another new effect takes place,

namely, fluctuations with large σ generate more collisions at large impact parameters, where the

interaction is typically soft and does not lead to hard collisions. As a result, RHT becomes smaller

than unity, while in the model without fluctuations, RHT stays very close to unity up to very

large Ncoll. We checked that results of our calculations are not sensitive to the presence of nucleon

correlations in nuclei.

As a result, the CF approach predicts a higher rate of events with a hard trigger starting at

somewhat larger Ncoll than in minimum bias events (cf. Figs. 1 and 5). Hence our analysis demon-
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FIG. 4: Ratio RHT (Eq. (12)) of the rates of hard collisions in the Glauber and the color fluctuation models

to that in the optical model as a function of N = Ncoll.

strates that color fluctuations lead to the following two effects for large Ncoll for the bulk of hard
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observables: (i) the larger probability of collisions with Ncoll ≥ 12 and (ii) the reduced probability

of hard subprocesses for the same Ncoll range. Further modeling is necessary to determine the

optimal strategy to see these effects in the bulk data sample. Using the information on xp of the

parton in the proton undergoing the hard interaction may be an easier way forward.

IV. HOW TO OBSERVE THE EFFECTS OF FLICKERING IN pA COLLISIONS

In this section we propose strategies for using processes involving both soft and hard interactions

to obtain the definitive evidence for the presence of the flickering phenomenon. The idea is to

investigate the correlation between the light-cone fraction xp of the parton in the proton involved

in the hard collision and the overall interaction strength of the configuration containing this parton.

The challenge for all such studies is that selection of certain classes of events (using a particular

trigger) a priori post-selects different configurations in both colliding systems and these two effects

have to be disentangled.

A natural question to ask is whether the parton distributions in configurations interacting

with the strength smaller/larger than the average one are different and whether there exists a

correlation between the presence of a parton with given x (and virtuality) and the interaction

strength of this configuration. Naively one should expect presence of such correlations at least for

large x. Indeed, if we consider configurations with large x, e.g., x > 0.5, one may expect that for

such configurations the number of constituents should be smaller than on average (fewer qq̄ pairs,

etc.) as the consequence of the depletion of the phase volume for additional partons and selection

of configuration with a minimal number of partons in the initial state before QCD evolution. Also,

selection of x much larger than the average one should select larger than average longitudinal and

transverse momenta in the nucleon rest frame, leading to a smaller than average size, see, e.g.,

[15, 20]. The shrinking may differ for large-x u and d quarks since the d/u ratio strongly depends

on x for x ≥ 0.4, see [25].

Let us consider pA collisions with a hard trigger which selects a parton with particular x in the

proton projectile. As in the inclusive case, we use the distribution over the number of wounded

nucleons as in Eq. (7) with the substitution P (σ) → P (σ, x). The distribution P (σ, x) takes into

account the probability for a configuration with given x to interact with the cross section σ. Due to

the QCD evolution, P (σ, x) also depends on the resolution scale (see Sect. V). Let us suppose that

one can roughly measure the effective number of interacting nucleons within the nucleus, Ncoll,

based, e.g., on the energy release at the rapidities sufficiently far away from the central region (this
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is the strategy adopted by ATLAS [26] and CMS [27]).

We demonstrated in the previous section that deviations of RHT from unity are modest for

fluctuations with σ ≤ σtot/2. Neglecting deviations of RHT from unity and nuclear modifications of

PDFs (which is a small effect on the scale of the effects we consider here and which will be addressed

later), we can use Eq. (7) to find the relation between 〈σ(x)〉 and experimental observables:〈
σ2(x)

〉
σ(x)

=
(〈Ncoll〉 − 1) A2

A−1∫
d2bT 2(b)

. (22)

Similarly, we can use Eq. (7) to determine higher order moments of σ(x). For example, using

Eq. (7) we find: 〈
σ3(x)

〉
σ(x)

= 〈(Ncoll − 2)(Ncoll − 1)〉 A3

(A− 1)(A− 2)
∫
d2bT 3(b)

. (23)

Hence by combining Eqs. (22) and (23) one can obtain information about the width of the distri-

bution over σ(x).

A more accurate calculation requires taking into account deviations from the RHT = 1 approx-

imation used above which may be significant for large Ncoll (Sect. III). Such an analysis would

require much more elaborate modeling of pA collisions.

Another strategy is possible which allows one to amplify the effect of flickering. We can consider

the distribution over Ncoll for Ncoll much larger than 〈Ncoll〉 for events with a hard trigger. In this

case, scattering off small impact parameters dominates and fluctuations of σ are enhanced relative

to the fluctuations of the impact parameter [39].

For the reasons described above, we expect the strongest modification of the distribution over

the number of collisions for large enough xp (this automatically requires large pt >100 GeV/c for

jets for the current acceptance of the LHC detectors, which allows one to safely neglect leading

twist nuclear shadowing effects even if xA is small).

To study the sensitivity of the number of wounded nucleons to the average σ(x) for configura-

tions selected by the trigger, we performed calculations with 〈σ〉x = σtot, σtot/2 and σtot/4. Within

the CF picture, the following two effects compete in generating large Ncoll events: (i) selection

of fluctuations in the nucleus wave function in which more nucleons happen to be at the impact

parameter of the incoming proton (which, for large Ncoll events, is anyway small b < 3 fm), and (ii)

selection of fluctuations with σ > σ(x). Our numerical studies show that there is large sensitivity

to the mean value of σ(x), even when we allow for significant fluctuations of σ(x).

The results of these calculations are presented by the dashed curve in Fig. 5. One can see from

the plot that for Ncoll larger than the average number of collisions 〈Ncoll〉 ≈ 7, in the minimal bias
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FIG. 5: The distribution over the number of collisions for a hard trigger using (a) the full calculation and

(b) the approximation RHT = 1.

events, one can easily observe the reduction of 〈σ〉x by a factor of two. To see whether flickering

of the nucleon in the triggered configuration can mimic the change of 〈σ〉x, we also considered the

distributions for ωσ = 0.1 and 0.2, see the dotted and dot-dashed curves in the figure. One can see

from the figure that this effect is not large enough to prevent the observation of reduction of 〈σ〉x.

The opposite limit is that of small enough xp. In this case one would trigger on configurations

with 〈σ〉 larger than the average one leading to broadening of the distribution over Ncoll.

To illustrate the possible magnitude of the change in the xA distribution as a function of Ncoll,

we present in Fig. 6 the ratios of PN (σ(x))/PN (σ = σin) for σ(x)/σin = 2, 1.5, 0.5, and 0.25 and

ωσ = 0 and ωσ = 0.1 (for LHC energies) and ωσ = 0.25 (for RHIC energies) calculated using the

procedure of Sect. III.

To illustrate the sensitivity to the pattern of flickering for fixed x, we use the scenario where

〈σ(x)〉 = σtot/2 and proton fluctuations consist of two states with probabilities 2/3 and 1/3 with the

respective cross sections σtot/4 and σtot. We compare the results of this model and the Gaussian-

like model with the same variance equal 1/2 in Fig. 7. One can see that deviations from the results

of the calculation with σ = σtot are large in both cases . There is also significant difference in the

high-Ncoll tail.

Note in passing that the best way to check the difference between the transverse sizes of config-

urations with leading u- and d-quarks would be to measure leading W+ and W− production (one

additional advantage is that in this case energy conservation effects would be the same for the two

channels). Similarly, one can look for the difference in the accompanying multiplicity for forward

W± production in pp scattering [32].
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FIG. 6: Ratio of the probabilities PN of having N = Ncoll wounded nucleons for configurations with different

〈σ(x)〉 and PN for σ = σtot at LHC (panels (a) and (b)) and RHIC (panels (c) and (d)) energies. The ratio

is averaged over the global impact parameter b and plotted as a function of N = Ncoll. The solid and dashed

curves neglect the dispersion of σ, while the dotted and dot-dashed curves show the results obtained with a

Gaussian distribution around 〈σ(x)〉 with the variance equal to 0.1. Panels (a) and (c) show results for NN

interaction cross sections smaller than average, while panels (b) and (d) show results for NN interaction

cross sections larger than average.

Overall an inspection of the numerical results presented in Figs. 5, 6, and 7 indicates that the

selection of events with the highest nuclear activity—for example, the top 1%—greatly amplifies

effects of flickering. Namely, the relative contribution of events with small σ is suppressed much

stronger than in the events with smaller nuclear activity, leading to a strong distortion of the dijet

distribution over xp. Large-xp rates (which are dominated by scattering off valence quarks of the

proton) should be suppressed, while small-x rates, which are dominated by scattering off gluons,

should be enhanced. A complementary way to study this effect is to consider the distribution over

the energy deposited in the calorimeter as a function of xp. We expect the monotonous shrinkage
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the definition of the two-state model shown by the dotted curve.

of the distribution over the number of collisions with increasing x, with the strongest effect for the

highest number of collisions. Note in passing that such a study allows one to test the conjecture

that large-x triggers select significantly smaller than the average-size configurations in the nucleon.

Hence, such a study would allow one to rule out/confirm the explanation of the EMC effect as

being due to the suppression of small-size configurations in bound nucleons [20].

The discussed patterns do not depend on details of the relation between Ncoll and the signal in

the calorimeter at negative rapidities (in the direction of the nucleus fragmentation). Qualitatively

the discussed pattern is consistent with the pattern reported by ATLAS [26] and CMS [27]. Indeed,

ATLAS observes the suppression of production of leading jets which they find to be predominantly

a function of xp, while the CMS analysis presents the correlation of the calorimeter activity with

a different quantity (ηJet1 + ηJet2)/2 which still reflects the value of xp [40].

In order to perform a detailed comparison of the CF model with the LHC data one needs data

in bins of xp. A preliminary version of such data was presented so far by ATLAS only. Also one

needs a realistic model/models for the distribution over ET for events with given Ncoll. Such an

analysis is underway and will be presented elsewhere. At the same time, we can obtain an estimate

of the magnitude of the necessary change of average σ(x ∼ 0.5) using the data for most peripheral

collisions ( 90%–60% centrality) where the expected enhancement is a rather weak function of

Ncoll. The data indicate an enhancement of the jet rate by a factor of about two. This corresponds

to σ(x ∼ 0.5) ∼ σtot/2. It is worth emphasizing here that presence of an enhancement would be
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difficult to understand based on the logic of energy losses.

V. PERTURBATIVE QCD EVOLUTION OF P (σ, x)

The distribution P (σ, x) characterizes the distribution of strength of soft interactions of the

configuration containing a parton carrying the light-cone fraction x at a sufficiently small resolution

scale. A change of the scale—e.g., a change of pT of the jets—does not change the strength of

the soft interaction but reduces x of the parton. Hence, one can deduce an evolution equation for

Pi(σ, x) expressing Pi(σ, x) at the large scale Q2 through Pi(σ, x) at the input Q2
0 scale (i = q, q̄, g).

For x ≥ 0.2, where we expect a significant dependence of Pq(g)(σ, x,Q
2
0) on x, perturbative QCD

(pQCD) evolution leads to a decrease of σ(x,Q2) with an increase of Q2. This is because the

account of the QCD radiation—Q2 evolution—shows that partons with given x and large Q2

originate from larger x at the nonperturbative scale Q2
0. As we argued above, for large x, the size

of configuration is likely to decrease with an increase of x. Hence, the increase of pt of the trigger

for fixed x should lead to a gradual decrease of the average σ for the dominant configurations. In

addition, in the gluon channel, one also expects a significant mixing between the contributions of

(anti) quarks and gluons at Q2
0.

To illustrate these effects, we used the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP)

evolution equations to evaluate the contributions of quark and gluon PDFs at Q2
0 = 4 GeV2 to

the quark and gluon PDFs at Q2 = 104 GeV2. The results of this analysis are presented in Fig. 8

as fractions of the parton distribution (the left panel is for the u-quark PDF and the right panel

is for the gluon PDF) at given x (x = 0.1, 0.3, and 0.5) and Q2 = 104 GeV2, which originate

from the quark (solid curves) and gluon (dotted curves) PDFs at the input scale Q2
0 = 4 GeV2,

which have the support on the [x, xcut] interval. The plotted fractions are shown as functions of the

cut-off parameter xcut, xcut > x. Thus, by construction, the shown fractions vanish in the xcut → x

limit and rapidly tend to unity in the xcut → 1 limit. Varying the parameter xcut we examine the

weight of different intervals of the light-cone variable x′ at the input scale of the DGLAP evolution

in the resulting quark and gluon PDFs at the higher scale Q2. Such an analysis allows one to

quantitatively study the effective trajectory of QCD evolution. (For an analysis of QCD evolution

trajectories at small x, see [33]).

One can see from the figure that (i) xcut is noticeably larger than x which means that the PDFs

at high Q2 originate from the broad [x, xcut] interval at the input scale, and (ii) the gluon PDF

receives a significant though not dominant contribution also from quarks at the initial scale. This
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effect is somewhat smaller for lower Q2. In summary, Fig. 8 illustrates that perturbative QCD

evolution induces fluctuations in σ even if there is no dispersion at the initial scale.
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0 = 4 GeV2. The solid

curves correspond to the quark contribution and the dotted curves are for the gluon contribution.

VI. FLUCTUATIONS AND CONDITIONAL PARTON DISTRIBUTIONS

In the previous sections we made a simplifying approximation that nuclear PDFs are the sums

of nucleon PDFs. Deviations from this approximation are observed at x ≥ 0.4 (the EMC effect)

and small x. In the long run it would be possible to use the discussed processes to also study novel

aspects of the nucleus partonic structure since they select nuclear configurations where many more

nucleons are located in the cylinder around the transverse position of the hard interaction than on

average. These high density nuclear configurations should have the different parton structure for

at least for two reasons: (i) the leading twist nuclear shadowing should increase with a decrease of

x due to an increase of the nucleon density in the cylinder of target nucleons interacting with the

projectile at a fixed impact parameter as progressively more nucleons screen each other; (ii) the

decrease of average internucleon distances within the cylinder should increase the modification of

large-x parton distributions, i.e., the EMC effect, which is roughly proportional to the probability

of the short range correlations in nuclei [20, 34].
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A. Leading twist nuclear shadowing effect

In Sect. III we calculated the dependence of the nuclear gluon density (treated as a sum of

the nucleon gluon densities) encountered by the projectile parton as a function of Ncoll. We have

demonstrated that the pattern strongly depends on the strength of fluctuations: if the fluctuations

are neglected, the density is to a very good approximation given by Ncoll gN (x,Q2). At the same

time, fluctuations slow down the increase of the gluon distribution by the factor of RHT presented

in Fig. 4.

Qualitatively we expect that with an increase of Ncoll, nuclear shadowing for small xA < 0.01

and antishadowing for xA ∼ 0.1 will increase. In the following, we will use the theory of leading

twist nuclear shadowing, see the review in [33], to calculate the shadowing and compensating

antishadowing effects. We restrict ourself to the limit when xp of the parton of the proton is small

enough (≤ 0.2) so that we can use PN (σ).

As a reference point, we consider the ratio of nuclear PDFs at the zero impact parameter

gA(x,Q2, b = 0) and the properly normalized nucleon gluon density:

gA(x,Q2, b = 0)

TA(b = 0)gN (x,Q2)
, (24)

which was calculated in Section 5.5 of [33].

The effective transverse gluon density probed by the projectile is:

gA(x,Q2, Ncoll) =
NcollRHT (Ncoll)

Ncoll(b = 0)RHT (Ncoll(b = 0))
gA(x,Q2, b = 0) . (25)

Defining now the ratio of the effective gluon densities for Ncoll as

k =
NcollRHT (Ncoll)

Ncoll(b = 0)RHT (Ncoll(b = 0))
, (26)

we can calculate the shadowing and antishadowing effects—to a good approximation—by rescaling

the nuclear density in the equations determining the shadowing effect by the factor of k. Using

the results of Sec. II, we find 〈Ncoll〉 ≈ 14.5 and from the inspection of Fig. 4 one can see that k

can reach for large Ncoll the values of up to k = 2.

Figure 9 presents our predictions for the super ratio of (gA(x,Q2, Ncoll)/gA(x,Q2))/gA(x =

0.2, Q2, Ncoll)/gA(x = 0.2, Q2)) as a function of x for three values of Q2 = 4, 10, and 104 GeV2 and

four values of k = 0.5, 1., 1.5, and 2. The shaded bands represent the theoretical uncertainty of the

leading twist theory of nuclear shadowing associated with modeling of multiple (three and more)

interactions of a hard probe with a nucleus [33]. One can see from the figure that the expected
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modifications of nuclear conditional PDFs should be rather large, if one could use a hard probe

with a moderate virtuality of, e.g., 100 GeV2. For the case of dijets with pt ≥ 100 GeV/c, the

effect is rather small for a wide range of x and represents a small correction for the studies of the

effects of selection of large xp in the currently studied processes with a dijet trigger.
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FIG. 9: Ratio of the nuclear gluon conditional distribution for given Ncoll and the inclusive gluon density

normalized to their values at x = 0.2 as a function of x for different values of Q2 and k. See text for details.

Note here that due to uncertainties in the procedure for determination of Ncoll, the optimal

procedure would be to consider the ratios of cross sections for small xA and xA ∼ 0.2, where

nuclear effects are negligibly small, for the same Ncoll and to preferably use the same range of xp.

The average Ncoll for the top 1% of collisions can be estimated using the results presented in

Fig. 1. We find for these collisions that 〈Ncoll〉 ∼ 20(25) for ωσ = 0(0.1) and, hence, k ∼ 1.5 (1.25),

which corresponds to quite a significant deviation from the x dependence of inclusive nuclear PDFs.

The quark channel analogue of Fig. 9, Fig. 10 shows our predictions for the superratio

(ūA(x,Q2, Ncoll)/ūA(x,Q2))/ūA(x = 0.2, Q2, Ncoll)/ūA(x = 0.2, Q2)) for the ūA quark.
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FIG. 10: The ūA quark superratio (ūA(x,Q2, Ncoll)/ūA(x,Q2))/ūA(x = 0.2, Q2, Ncoll)/ūA(x = 0.2, Q2)) as

a function of x for different values of Q2 and k. See Fig. 9 for comparison and text for details.

B. The xA ∼ 0.5 region

The above calculation demonstrates that the distances between nucleons in nuclei are reduced

for large-Ncoll triggers. This should have implications for the large-xA conditional PDFs of the

nucleus. Indeed it is known that nuclear PDFs at large xA are significantly suppressed as compared

to the free nucleon ones for x between 0.5 and 0.7 and large Q2. The scale of the suppression for

heavy nuclei and large Q2 is on the scale of 20% as measured at CERN in the kinematics where

the leading twist definitely dominates, see the review [35].

It is natural to expect that the EMC effect originates due to pairs of nucleons coming close

together and deforming each other wave functions. Higher the nucleon momentum, further it is

off-mass-shell, and, hence, larger the effect is. Hence one can expect that the EMC effect is mostly

due to the presence of short-range correlations [20]. The recent analyses of the data are consistent

with this expectation, see the review and references in [34].

For heavy nuclei, the probability of short-range correlations (SRCs) is approximately propor-

tional to the local nuclear density. Hence, one can estimate the magnitude of the modification of
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nuclear PDFs due to selection of the large-Ncoll events as

(1− fA/fN )Ncoll

1− fA/fN
∼ k , (27)

where fA and fN denote the quark nucleus and nucleon densities, respectively. Since k ∼ 1.3− 1.5

for the 1% of events with the highest Ncoll, the expected change of the EMC effect is rather modest.

Still this selection appears to provide a unique opportunity to probe nuclear matter at the density

significantly higher than the average one.

A more accurate analysis should take into account the dominance of pn correlations, see review

in [36, 37], the interplay between attraction and repulsion in SRCs, etc. Such an analysis will be

presented elsewhere.

VII. SUGGESTIONS FOR FUTURE ANALYSES

In the future analyses of the data it would be important to study jet production as a function

of centrality for bins of xp and xA to separate possible effects of the conditional nuclear PDFs

and effects of color fluctuations. Testing that different processes with the same xp show the same

centrality pattern is critical.

It would be also interesting to study the effect at fixed xp as a function of pt of the jet. Such

a dependence arises due to DGLAP evolution since σ for a configuration depends on the ”parent”

xp at the low Q2 scale, which is larger than xp for the jet (Fig. 8).

Studies of fluctuation effects for Pg(x,Q
2) in the gluon channel will be challenging as the de-

viations from average due to squeezing are expected for x > 0.2 − 0.3 at the input scale Q2
0

corresponding to somewhat smaller x for jets with pT ∼ 100 GeV (Fig. 8). Still the crossover

point between the gluon and quark contributions for such pT is x ∼ 0.2 so that in view of the

significant quark contribution to gN (x,Q2), the effect of the smaller average gluon σg(x,Q
2
0) would

be rather small — on the scale of 30%. Hence one would need to use the processes where the

gluon contribution is enhanced, for example, production of heavy quarks at relatively modest pt,

which is obviously experimentally challenging. Nevertheless it would be highly desirable to study

CF effects separately for quarks and gluons since the squeezing is likely to be different and starts

in the gluon case at smaller x.

If one would observe a pattern similar to the one for generic jets, it would strongly suggest

presence of the EMC effect for gluons due to suppression of weakly interacting contributions in

bound nucleons [20].
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One should also look for kinematics of small xp where the contribution of configurations with

σ larger than average should be enhanced.

Measurements using W± can be used to study the difference of the interaction strength of

configurations with leading u- and d-quarks. An advantage of this process which maybe possible

to study at RHIC in the forward kinematics is that any effects related to energy–momentum

conservation cancel out in the ratio of the cross sections at same x.

VIII. CONCLUSIONS

In conclusion, we have demonstrated that it is possible to use the LHC pA data to understand

the correlation between the parton distribution in the nucleon and its interaction strength and

to explore fine details of the nuclear parton structure in the EMC effect and nuclear shadowing

regions.
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Appendix A: On the account of the momentum conservation in the color fluctuation ap-

proach

Conservation of momentum implies that the proton momentum in proton–nucleus inelastic

collisions is split among several collisions. Hence, the energy released in one inelastic pN collision

is a decreasing function of the number of collisions and it is necessity to take this effect into account.

The aim of this appendix is to explain that energy–momentum conservation is effectively taken into

account in the color fluctuation (CF) formulae for the total cross sections, the number of wounded

nucleons, etc. In contrast, the celebrated Abramovsky–Gribov–Kancheli (AGK) cancelation [6]

among shadowing contributions for the single inclusive spectrum including inelastic processes due

to the cut of N ≥ 2 ladders for central rapidities is violated and the resulting formulae contain

the additional factor RNcoll
which cannot be evaluated at present in a model-independent way, see

Eq. (A2). The explanation of above statements involves several steps which are outlined below.

In QCD, longitudinal distances comparable to the atomic scale dominate in pA collisions at the

LHC (to simplify the discussion, we work in the nucleus rest frame). Indeed it follows from the
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uncertainty principle that the lifetime of a fast proton with the momentum PN and the energy E

in the configuration |n〉 is:

tcoh =
1

(En − E)
=

2PN∑
i
m2

i+p
2
i t

xi
−m2

p

, (A1)

where mi, xi, and pi t are the masses of constituents, their light-cone fractions and transverse

momenta, respectively. Hence, during the passage through the nucleus and far behind it, the

transverse positions of the fast constituents of the projectile do not change. These constituents

interact with a target through ladders attached to these constituents. This interaction may destroy

coherence of these constituents with spectator constituents leading to multi-hadron production.

It follows from Eq. (A1) that the proton energy is divided among fast partons long before the

collision. So the energy–momentum conservation is explicitly satisfied for the interaction of partons

with a target. On the contrary, in the Glauber picture, the projectile nucleon is destroyed in the

first collision and combines back into the nucleon during the time between collisions with different

nucleons of the nucleus. This is obviously impossible at high energies since such a transition

takes too long a time ≈ tcoh. Another problem is that due to energy–momentum conservation, a

significant part of the projectile energy is already lost in the first inelastic collision diminishing the

phase volume for other inelastic collisions. The Glauber model derived within quantum mechanics

ignores energy–momentum conservation which is controversial when N ≥ 2 ladders are cut. These

puzzles are naturally resolved in QCD since the contribution of the planar Feynman diagrams

relevant for the Glauber model disappears at high energies where processes with hadron production

dominate. The complete cancellation of the planar diagrams has been demonstrated for high energy

processes by direct calculations of the relevant Feynman diagrams in Refs. [8, 9] using analytic

properties of amplitudes in the plane of masses of diffractively produced states.

Gribov suggested to decompose the contribution of non-planar diagrams over the sum of

the pole corresponding to the initial hadron and inelastic diffractive states. Exploring both

representations—kind of duality between quark–gluon and hadron degrees of freedom—allows one

to analyze implications of the energy–momentum conservation. In practice the derived formulae

for nuclear shadowing differ from the formulae of the Glauber approximation by the small inelastic

shadowing correction [5]. This pre-QCD approach leads to the following models : (i) the Gribov–

Glauber model, which includes inelastic diffractive processes in the intermediate states, and (ii)

the color fluctuation approach [2, 3], which takes into account the fluctuations of the interaction

strength in the form familiar from the properties of bound states in QCD.

The color fluctuation approach [2] is a generalization of the pre-QCD assumption of Good and
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Walker [11] that one can present the high energy hadron–nucleus interaction as a superposition of

interactions of the initial hadron in the configurations of different strengths which do not change

during the propagation through the nucleus. The CF approach includes low-mass fluctuations as

well as the fluctuations into large diffractive masses. The natural pattern for the contribution

of large diffractive masses is the triple Pomeron mechanism which takes into account that the

intermediate masses increase with energy. This mechanism allows for the splitting of energy in the

interaction with several nucleons to occur at rapidities rather far away from the nucleon’s rapidity

providing a mechanism for production of leading nucleons in the interactions of the proton with

several nucleons.

In the case of the hadron interaction with two nucleons, the shadowing correction to the total

cross section is expressed through the cross section of diffraction (elastic plus inelastic) [5]. This

Gribov formula follows also from the Abramovsky–Gribov–Kancheli combinatorics for cross sec-

tions [6]. It follows also from the model [38], which includes fluctuations of the interaction strength

in the form of the Miettinen–Pumplin relation [Eq. (3)]. The Gribov formula for shadowing in

proton - deuteron scattering includes the triple Pomeron contribution exactly and allows one to

express the shadowing contribution to σtot(pd) through the diffractive cut of the Feynman diagrams

with exchange by two ladders. So for the interaction with two nucleons, energy–momentum conser-

vation is accurately taken into account. Higher moments are also expressed through experimental

observable, see the determination of
〈
σ3
〉

in [2].

Thus, all factors related to the increase of the cross section with energy are included into P (σ).

No additional factors in the CF formulae are required to describe also the number of wounded

nucleons since it is evaluated through the multiplicity of hadrons in the kinematics close to the

nucleus fragmentation region [1]. In this kinematics hadron multiplicity is a slow function of s as

the consequence of the Feynman scaling.

For hadron multiplicity in the center of rapidity and in the proton fragmentation region, the

answer is more complicated. Note here that the hadron inclusive cross section at central rapidities

in pp interaction grows with energy approximately as (s/s0)
κ, where κ ∼ 0.25. Thus, the hadron

inclusive cross section for the pN interaction contains the factor of (xis/s0)
κ instead of (s/s0)

κ

within the Gribov–Glauber model and the CF approach, where xi is the fraction of the projectile

momentum carried by the interacting parton ”i” or a group of partons. The factor (xi)
κ is not

included in P (σ) since it is additional to the CF series in terms of 〈σn〉 defining P (σ). Hence,

it follows from energy–momentum conservation that the hadron inclusive cross section due to the

processes where N > 1 ladders are cut is suppressed by the factor of RN as compared to the
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formulae of the Gribov–Glauber approximation and the CF approach combined with the AGK

cutting rules:

RN =

∑
n

∫
dτn |ψn(x1, ...xN , ...xn)|2 (1/N)

∑i=N
i=1 (xi)

κ∑
m

∫
dτm(xi)κ |ψm(x1, ...xN , ...xm)|2

. (A2)

where dτn = (dxi/xi..dxN/xN ...dxn/xn)δ(
∑

i xi − 1) is the phase volume ; n ≥ N is the number

of finite-x partons in a given configuration. RN would be equal to unity in the case of identical

ladders originating from the partons with approximately equal xi. If N is large, RN becomes

significantly smaller than unity due to tighter phase volume restrictions in the numerator than in

the denominator and due to a decrease of the average energy allowed for inelastic collisions. The

deviation of RN from unity violates AGK combinatorics.

Within the discussed picture, energy-momentum conservation for the final state is realized

through a reduction of the number of fast spectator constituents in the nucleon with an increase of

the number of wounded nucleons leading to the strong suppression of production of hadrons in the

nucleon fragmentation region and close to the central region for large Ncoll. In the discussion above,

we neglected the contribution of hard interactions into the bulk structure of the events. This may

be an oversimplification for the LHC energies, where the interaction of hard partons with large

xp may become black up to the virtualities of few GeV for central collisions. This would lead to

further suppression of the leading hadron production, pt broadening of the forward spectrum and

an additional flow of energy to the central rapidities.

[1] ATLAS Conference note: ATLAS-CONF-2013-096.

[2] H. Heiselberg, G. Baym, B. Blaettel, L. L. Frankfurt and M. Strikman, Phys. Rev. Lett. 67, 2946

(1991); Phys. Rev. C 52, 1604 (1995)

[3] M. Alvioli and M. Strikman, Phys. Lett. B 722, 347 (2013)

[4] D. Dutta, K. Hafidi and M. Strikman, Prog. Part. Nucl. Phys. 69, 1 (2013) [arXiv:1211.2826 [nucl-th]].

[5] V. N. Gribov, Sov. Phys. JETP 29 (1969) 483 [Zh. Eksp. Teor. Fiz. 56 (1969) 892].

[6] V. A. Abramovsky, V. N. Gribov and O. V. Kancheli, Yad. Fiz. 18 (1973) 595 [Sov. J. Nucl. Phys. 18

(1974) 308].

[7] L. Frankfurt, V. Guzey and M. Strikman, J. Phys. G 27, R23 (2001)

[8] S. Mandelstam, Nuovo Cim. 30 (1963) 1148.

[9] V. N. Gribov, Sov. Phys. JETP 26 (1968) 414 [Zh. Eksp. Teor. Fiz. 53 (1967) 654].

[10] H. I. Miettinen and J. Pumplin, Phys. Rev. D 18, 1696 (1978).

[11] M. L. Good and W. D. Walker, Phys. Rev. 120 (1960) 1857.

31

http://arxiv.org/abs/1211.2826


[12] B. Blaettel, G. Baym, L. L. Frankfurt and M. Strikman, Phys. Rev. Lett. 70, 896 (1993); Phys. Rev.

D 47, 2761 (1993).

[13] K. Goulianos, private communication.

[14] F. E. Low, Phys. Rev. D 12, 163 (1975).

[15] C. E. Coleman-Smith and B. Müller, Phys. Rev. D 89, 025019 (2014)

[16] L. Bertocchi and D. Treleani, J. Phys. G G 3 (1977) 147.

[17] V. Guzey and M. Strikman, Phys. Lett. B 633, 245 (2006); Phys. Lett. B 663, 456 (2008).

[18] M. Alvioli, H. -J. Drescher and M. Strikman, Phys. Lett. B 680, 225 (2009)

[19] L. Frankfurt, M. Strikman, D. Treleani and C. Weiss, Phys. Rev. Lett. 101, 202003 (2008)

[arXiv:0808.0182 [hep-ph]].

[20] L. L. Frankfurt and M. I. Strikman, Nucl. Phys. B 250 (1985) 143.

[21] L. Frankfurt, M. Strikman and C. Weiss, Phys. Rev. D 69, 114010 (2004)

[22] L. Frankfurt and M. Strikman, Phys. Rev. D 66, 031502 (2002)

[23] L. Frankfurt, M. Strikman and C. Weiss, Phys. Rev. D 83 (2011) 054012

[24] J. Jia, Phys. Lett. B 681, 320 (2009)

[25] M. Diehl and P. Kroll, Eur. Phys. J. C 73, 2397 (2013) [arXiv:1302.4604 [hep-ph]].

[26] ATLAS Conference note: ATLAS-CONF-2013-105.

[27] S. Chatrchyan et al. [CMS Collaboration], arXiv:1401.4433 [nucl-ex].

[28] B. Abelev et al. [ALICE Collaboration], Phys. Lett. B 712 (2012) 165

[29] R. Bala [ for the ALICE Collaboration], arXiv:1309.6570 [nucl-ex]

[30] M. Strikman, Phys. Rev. D 84 (2011) 011501

[31] M. Y. Azarkin, I. M. Dremin and M. Strikman, arXiv:1401.1973 [hep-ph].

[32] L. Frankfurt, M. Strikman and C. Weiss, Annalen Phys. 13, 665 (2004)

[33] L. Frankfurt, V. Guzey and M. Strikman, Phys. Rept. 512, 255 (2012)

[34] O. Hen, D. W. Higinbotham, G. A. Miller, E. Piasetzky and L. B. Weinstein, Int. J. Mod. Phys. E 22,

1330017 (2013)

[35] M. Arneodo, Phys. Rept. 240, 301 (1994).

[36] L. Frankfurt, M. Sargsian and M. Strikman, Int. J. Mod. Phys. A 23, 2991 (2008)

[37] M. Alvioli, C. Ciofi degli Atti, L. P. Kaptari, C. B. Mezzetti and H. Morita, Int. J. Mod. Phys. E 22,

1330021 (2013)

[38] B. Z. Kopeliovich and L. I. Lapidus, Pisma Zh. Eksp. Teor. Fiz. 28 (1978) 664.

[39] In contrast, in pp collisions, fluctuations of the impact parameter dominate in a wide kinematic range.

For example, the strong positive correlation between the hadron multiplicity, Nh, and the rate of

production of J/ψ, D, and B mesons observed by ALICE [28, 29] appears to be dominated by selection

of different b up to Nh/ 〈Nh〉 ∼ 3 [30]. The same pattern in the CMS data was recently demonstrated

for high pt jet production [31].

[40] Importance of small-size configurations at large xp could also be studied in hard diffraction at the LHC

32

http://arxiv.org/abs/0808.0182
http://arxiv.org/abs/1302.4604
http://arxiv.org/abs/1401.4433
http://arxiv.org/abs/1309.6570
http://arxiv.org/abs/1401.1973


by studying hard diffraction at fixed xIP and fixed β (the fraction of the energy carried by the parton

belonging to the diffracting proton) as a function of xp. The gap survival probability should increase

when xp ≥ 0.5.
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