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Abstract. GASAKe is a new hydrological model aimed at

forecasting the triggering of landslides. The model is based

on genetic algorithms and allows one to obtain thresholds for

the prediction of slope failures using dates of landslide acti-

vations and rainfall series. It can be applied to either single

landslides or a set of similar slope movements in a homoge-

neous environment.

Calibration of the model provides families of optimal, dis-

cretized solutions (kernels) that maximize the fitness func-

tion. Starting from the kernels, the corresponding mobility

functions (i.e., the predictive tools) can be obtained through

convolution with the rain series. The base time of the kernel

is related to the magnitude of the considered slope move-

ment, as well as to the hydro-geological complexity of the

site. Generally, shorter base times are expected for shallow

slope instabilities compared to larger-scale phenomena. Once

validated, the model can be applied to estimate the timing of

future landslide activations in the same study area, by em-

ploying measured or forecasted rainfall series.

Examples of application of GASAKe to a medium-size

slope movement (the Uncino landslide at San Fili, in Cal-

abria, southern Italy) and to a set of shallow landslides (in the

Sorrento Peninsula, Campania, southern Italy) are discussed.

In both cases, a successful calibration of the model has been

achieved, despite unavoidable uncertainties concerning the

dates of occurrence of the slope movements. In particular,

for the Sorrento Peninsula case, a fitness of 0.81 has been

obtained by calibrating the model against 10 dates of land-

slide activation; in the Uncino case, a fitness of 1 (i.e., nei-

ther missing nor false alarms) has been achieved using five

activations. As for temporal validation, the experiments per-

formed by considering further dates of activation have also

proved satisfactory.

In view of early-warning applications for civil protection,

the capability of the model to simulate the occurrences of

the Uncino landslide has been tested by means of a progres-

sive, self-adaptive procedure. Finally, a sensitivity analysis

has been performed by taking into account the main parame-

ters of the model.

The obtained results are quite promising, given the high

performance of the model against different types of slope

instabilities characterized by several historical activations.

Nevertheless, further refinements are still needed for appli-

cation to landslide risk mitigation within early-warning and

decision-support systems.

1 Introduction

A nationwide investigation, carried out by the National Geo-

logical Survey, identified approximately 5× 105 slope move-

ments in Italy, with an average of 1.6 failures per square kilo-

meter (Trigila, 2007). According to other investigations, this

figure would rather be a low estimate (cf. Servizio Geologico,

Sismico dei Suoli, 1999; Guzzetti et al., 2008). In the period

1950–2009, at least 6349 persons were killed, went missing,

or were injured by landslides, with an average of 16 harmful
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events per year, thus confirming the notable risk posed to the

population (Guzzetti, 2000; Salvati et al., 2010).

Petley (2008) estimated that about 90 % of worldwide ca-

sualties can be attributed to landslides triggered by rain-

fall. With reference to the Italian territory, about 70 % of

landslides result from being triggered by rainfall (cf. CNR-

GNDCI AVI Project, Alfieri et al., 2012). Slope instability

conditions are in fact influenced by rainfall that, infiltrating

into the slopes, causes temporary changes in groundwater dy-

namics (Van Asch et al., 1999). The combination of infiltra-

tion and runoff may cause different types of mass movements

(either slope failure or erosion processes) depending on the

intensity and duration of the rainfall and the values of soil

suction (Cuomo and Della Sala, 2013). Concentration of wa-

ter deriving from either contemporary or antecedent storms

at specific sites plays a major role in triggering landslides –

as testified by slope instabilities that commonly follow the

heaviest phases of rainfall events.

To model the relationships between rainfall and landslide

occurrence, two distinct approaches are generally adopted

in the literature. The first, named “complete” or “physi-

cally based”, attempts to determine the influence of rain-

fall on slope stability by modeling its effects in terms of

overland flow, groundwater infiltration, pore pressure and re-

lated balance of shear stress and resistance (cf. e.g., Mont-

gomery and Dietrich, 1994; Wilson and Wieczorek, 1995;

Crosta, 1998; Terlien, 1998; Crosta et al., 2003; Pisani et

al., 2010). With regard to this latter purpose, numerical mod-

els are employed, and a notable (and expensive) number of

detailed data are commonly required to define the geolog-

ical scheme of the slope in litho-structural, hydrogeologi-

cal, morphologic and geotechnical terms. The second ap-

proach (adopted in the present study), named “empirical”

or “hydrological” (Cascini and Versace, 1988), is based on

a statistical–probabilistic analysis of rainfall series and of

dates of occurrence of slope movements (see, among oth-

ers, Campbell, 1975; Caine, 1980; UNDRO, 1991; Sirangelo

and Versace, 1996; Guzzetti et al., 2007, 2008, Brunetti et

al., 2010; Gariano et al., 2015). In the literature, method-

ological examples generally focus on thresholds obtained for

(i) single phenomena or (ii) given types of landslides within a

homogeneous geo-environmental setting (cf. e.g., Jakob and

Weatherly, 2003).

In this study, hydrological model GASAKe (i.e., the

genetic-algorithms-based release of the Self Adaptive

Kernel) model, developed to forecast the triggering of slope

movements, is described. The model can be applied to either

single landslides or to a set of similar phenomena within a

homogeneous study area. Model calibration is performed by

means of genetic algorithms: in this way, a family of opti-

mal, discretized kernels can iteratively be obtained from ini-

tial tentative solutions. In a different release of the model

(CMSAKe – i.e., cluster model SAKe), the calibration is in-

stead performed through an iterative procedure (Terranova et

al., 2013).

Examples of application of the model to a medium-size

landslide (the Uncino landslide at San Fili) and to shallow-

slope movements in the Sorrento Peninsula are discussed in

the following sections. Temporal validation is discussed for

both cases, in view of early-warning applications of GASAKe

for civil protection purposes. Moreover, a progressive, self-

adaptive procedure of calibration and validation is discussed,

by considering the Uncino case study, to verify changes in

fitness, predictive ability and base time when an increasing

number of dates of activation is employed. Finally, the results

of preliminary parametric analyses are presented, aimed at

investigating the role of the main parameters of the model.

2 Background

Physical systems evolve in time due to their own inner dy-

namics and/or as a consequence of external causes. Suitable

observational tools can be employed to monitor their evolu-

tion, and arranged to promptly send reports or warnings to

authorities of civil protection to support the management of

emergencies (Cauvin et al., 1998; for applications to land-

slides, cf. also Keefer et al., 1987; Iovine et al., 2009; Cap-

parelli and Versace, 2011; Pradhan and Buchroithner, 2012).

In the case of complex systems (e.g., nuclear power sta-

tions, telecommunication networks), many parameters, in

part interdependent, have to be monitored. Missing an auto-

mated phase of analysis and proper filtering, a great number

of reports may be delivered by the monitoring apparatus in

a few seconds. For this purpose, the concepts of threshold

(Carter, 2010), event and warning must therefore be suitably

defined.

Regarding slope movements, the notions of threshold and

warning have long been investigated. In particular, a thresh-

old constitutes a condition – generally expressed in quantita-

tive terms or through a mathematical law – whose occurrence

implies a change of state (White et al., 1996). According to

the ALARM study group (Cauvin et al., 1998), an event is

(i) a portion of information extracted from either continuous

or discrete signals (i.e., a significant variation), transmitted

by a component of the monitoring network; or (ii) a set of

data concerning the considered context (e.g., restorations, ac-

tions, observations). According to such a definition, an event

must be instantaneous and dated. As for warning, its defini-

tion derives from that of the event: it is a discrete indicator

aimed at triggering a human or an automated reaction. The

warning can be classified into distinct levels (e.g., in terms of

security) or by type (e.g., related to a distinct component of

the dynamic system under consideration), to be transmitted

by the monitoring system.

In complex systems, causal factors responsible for emer-

gency conditions may be difficult to identify. Therefore,

warnings may be issued according to pre-fixed thresholds re-

lated to suitable physical properties of the system. In these

cases, the timing of data sampling of the monitoring instru-
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ments should be progressively adapted to the evolution of the

phenomenon. A further issue concerns the chances of miss-

ing and false alarms, as well as the camouflage of an alarm

among simultaneous others.

In physical terms, slope instability can occur when the

shear strength gets lower than a given threshold (Terzaghi,

1962). Rain infiltration may temporarily change the dynam-

ics of groundwater (Van Asch et al., 1999): due to an increase

in pore water pressure, the effective shear strength of the

material decreases, and a slope movement can be triggered.

Groundwater may reach a given location within the slope by

different paths. The main natural mechanisms include (i) sur-

face flow, strongly influenced by morphology; (ii) direct in-

filtration from the surface; (iii) flow within the soil mantle

(throughflow) from upslope and sideslopes; and (iv) seepage

from the bedrock toward the overlying colluvium. The length

of the different paths may be quite different, and is character-

ized by distinct velocities: as a consequence, aliquots of the

same rainfall event may reach a given site at different times,

variously combining with other groundwater amounts (Ellen,

1988).

To apply a hydrological approach, empirical relations have

to be determined by means of thresholds to distinguish

among conditions that likely correspond to landslide occur-

rence or not. To this aim, different hydrological parame-

ters can be selected (Guzzetti et al., 2007, 2008, and http:

//rainfallthresholds.irpi.cnr.it/): the cumulative rain recorded

in a given temporal window (hours/days/months) before

landslide activation; the average rain intensity in the same

temporal window; and rains normalized to reference val-

ues (e.g., annual averages). Simplified hydrological balances

can also be adopted in empirical approaches, by considering

losses of aliquots of rains by runoff, evapo-transpiration, etc.

Regarding superficial landslides, triggering thresholds can

be derived from relations between the “triggering” rain

(daily, hourly or shorter), corresponding to the onset of the

slope movement, and the rain cumulated over an “antecedent

period” (usually, a few days to 2 weeks before landslide

activation) (e.g., Campbell, 1975; Cannon and Ellen, 1985;

Wieczorek, 1987; Terlien, 1996; Crosta, 1998; Zêzere and

Rodrigues, 2002). In other cases, thresholds refer to relations

between rain intensity, I , and duration, D (e.g., Brunetti et

al., 2010; Berti et al., 2012; Peres and Cancelliere, 2014).

In some studies, antecedent rains are also considered, al-

lowing one to obtain better results (e.g., Campbell, 1975).

Larger amounts of antecedent rain should allow slope move-

ments to be activated by less severe triggering storms. In

general, a direct relationship between antecedent rain and

landslide dimension can be observed (Cascini and Versace,

1986), though, under some peculiar conditions (e.g., Hong

Kong case studies, caused by suction reduction – Brand et

al., 1984), this is not the case, and the role of antecedent

rains looks less important. In addition, as underlined by

Cuomo and Della Sala (2013), time to runoff, time to failure

and runoff rates strongly depend on soil water characteristic

curves, soil initial conditions, rainfall intensity and slope an-

gle in unsaturated shallow deposits. Moreover, soil mechani-

cal parameters affect the time to failure, which can be either

shorter or longer than time to runoff.

Due to physical and economic issues, difficulties in hydro-

logical modeling of landslides generally increase when deal-

ing with deeper and larger phenomena (Cascini and Versace,

1986). In such cases, landslide activation depends on the dy-

namics of deeper groundwater bodies. By the way, it is not

by chance that most studies do refer to small and superficial

slope movements. Large landslides usually show complex

relationships with rains, as different groundwater aliquots

may combine and reach the site of triggering. Depending

on type (cf. dimension, material, kinematics, etc.), different

hydrological mechanisms should be considered, thus limit-

ing the possibility of generalization of the thresholds (Dikau

and Schrott, 1999; Corominas, 2001; Marques et al., 2008).

Again, the mobilization of deeper phenomena commonly re-

quires greater rainfall amounts, spanned over longer peri-

ods, with respect to shallow landslides (Aleotti, 2004; Ter-

ranova et al., 2004; Guzzetti et al., 2007, 2008). In these

cases, rain durations responsible for landslide activations

commonly range from ca. 30 days to several months, even

beyond a single rainy season (Brunsden, 1984; Van Asch et

al., 1999; Gullà et al., 2004; Trigo et al., 2005).

To analyze the triggering conditions of slope movements

– either shallow or deep-seated – a threshold-based model-

ing approach can be employed. Empirical thresholds (e.g.,

Aleotti, 2004; Wieczorek and Glade, 2005; Terranova et al.,

2004; Vennari et al., 2014) can be expressed in terms of

curves, delimiting the portion of the Cartesian plane that

contains “all and only” the hydrological conditions related

to known activations (cf. e.g., the I–D chart proposed by

Caine, 1980). A further improvement to this approach can

be obtained by considering hydrological conditions not re-

lated to landslide activations (Crozier, 1997; Sengupta et al.,

2010; Gariano et al., 2015). In general, no changes of state

are assumed to occur below the threshold (zt), while they do

happen above it. Alternatively, a range of conditions can be

defined (Crozier, 1997), delimited by

– a lower threshold (zlow), below which changes of state

never occur, and

– an upper threshold (zupp), above which changes always

happen.

For values between zupp and zlow, the probability that the

state changes can be defined, essentially depending on (i) the

incompleteness of knowledge of the physical process under

investigation, and (ii) the incapacity of the model to fully

replicate the behavior of the same process. In probabilistic

terms,
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P(Et )= 0 for z(t) < zlow,

P (Et )= 1 for z(t) > zupp,

P (Et )=G[z(t)] for zlow ≤ z(t)≤ zupp, (1)

in which P is the probability of occurrence (1= success,

0= unsuccess); Et is a process (succession of events) whose

state changes with time t ; z(t) is the value assumed, at time

t , by the variable that determines the change of state; zlow

and zupp are the minimum and maximum thresholds, respec-

tively; and G[z(t)] is a probability function, monotonically

increasing with t in the range ]0,1[.

In hydrological models, to express the influence of rain-

fall on runoff and groundwater dynamics, a “kernel” (also

named a “filter function”) can be employed, usually defined

in terms of a simple, continuous analytical function (Chow et

al., 1988). In such a way, suitable weights can be assigned to

the precipitations that occurred in the last hours/days before

a given geo-hydrological process (e.g., discharge, measured

at a generic river cross section, landslide activation), as well

as to earlier rains recorded weeks/months before. The most

employed types of kernels are beta, gamma, Nash, and neg-

ative exponential distribution. Furthermore, the “base time”

(tb) expresses a sort of memory with respect to rainfall: in

classic rainfall–runoff modeling, tb defines the time of con-

centration, while in slope stability analyses, it represents the

time interval, measured backward from landslide activation,

during which rainfall is deemed to effectively affect ground-

water dynamics, and contributes to destabilization.

To model slope stability, both the shape and the base time

of the kernel must be properly selected depending on the

type and dimension of the investigated phenomena, as well

as geo-structural and hydrogeological characteristics. Unfor-

tunately, in several real cases, the abovementioned analyt-

ical functions may fail in properly capturing the complex-

ity of groundwater dynamics, as well as the related land-

slide activations. In this respect, the adoption of discretized

kernels, automatically calibrated through iterative computa-

tional techniques, may offer effective solutions.

3 The GASAKe model

GASAKe is an empirical–hydrological model for predicting

the activation of slope movements of different types. It is

based on a classic threshold scheme: the exceedance of

the threshold determines a change of state, i.e., the trigger-

ing of the landslide. The scheme is inspired by the FLaIR

(Forecasting Landslides Induced by Rainfall) model, pro-

posed by Sirangelo and Versace (1996): through changes of

state in time, the variable z(t) assumes the meaning of a “mo-

bility function”. In other terms, the values of z(t) depend on

the amount of rain stored in the aquifer.

In hydrology, rainfall–runoff modeling is commonly per-

formed by adopting a linear, steady scheme (Chow et al.,

1988). Such an approach implies that the transformation of

rainfall in runoff can be described by an integral of convolu-

tion between a unitary impulsive response of the basin – the

kernel, h(t) – and the rainfall, p(t).

The kernel (filter function) represents the unitary volume

influx in an infinitesimal period, and is defined as

∞∫
0

h(t)dt = 1, (2)

in which h(t)= h(−t), h(t)≥ 0, ∀t .

In practical applications, the lower bound (t = 0) corre-

sponds to the beginning of the flood-wave rising, and the ker-

nel assumes a finite duration (tb). The integral of convolution

is therefore expressed as

z(t)=

tb∫
0

h(t − τ) p (τ)dτ =

tb∫
0

h(τ) p (t − τ)dτ , (3)

in which z(t) represents the discharge at time t . For a spe-

cific case study, the kernel can be determined by means of

calibration procedures, by relating discharge measurements

to rains.

In discretized terms, the elements of the kernel are charac-

terized by width1t and height hi , and Eq. (3) can be written

as

zu =

u∑
i=1

hi ·pu−i+1 ·1t. (4)

Sirangelo and Versace (1996) proved that the same ap-

proach may turn out to be promising also in slope-stability

modeling. Capparelli and Versace (2011) stressed that the I–

D chart of Caine (1980) corresponds to a kernel defined by a

power function h(t)= a tb, with b < 0. Exporting the well-

established knowledge of rainfall–runoff modeling (usually

based on many measurements) to rainfall–landslide model-

ing is not trivial, due to the scarcity of adequate information

for proper calibration. Only a few dates of activation are, in

fact, commonly available in rainfall–landslide modeling (of-

ten with unsatisfactory details on location and phenomena),

and the values of z(t) are unknown. From a mathematical

point of view, such a problem can be handled by assuming

that the timing of the maxima of z(t) corresponds to the dates

of landslide activation. When studying the triggering condi-

tions of landslides, calibration can therefore be performed by

maximizing the mobility function in correspondence to the

dates of activation.

Scarcity of information inevitably reflects on the resulting

kernel, whose shape may turn out highly indeterminate: dif-

ferent functions, or different parameters of the same function,

can in fact maximize z(t) in correspondence to the dates of

mobilization. Model optimization – and its reliable utiliza-

tion for early-warning purposes – can turn out to be an awk-

ward issue.
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In this work, an innovative modeling approach – based on

discretized kernels, automatically calibrated through iterative

computational techniques – is proposed, which may help in

facing the above-cited difficulties. For modeling purposes,

the rainfall series and a coherent set of dates of landslide oc-

currence – either related to a given slope movement, or to

a set of landslides of the same type in a homogeneous geo-

environmental zone – must be given as input.

Unfortunately, when dealing with the timing of occur-

rence, historical notices may refer either to portions of the

considered phenomena or to entire landslide bodies. There-

fore, dates should be properly selected to consider only con-

sistent cases. Moreover, dates of activation are usually known

with only a broad approximation: with respect to the reports,

the actual timing of occurrence may be located backward

(documents may assign a later date) or forward (in the case

of later, more relevant movements). For modeling purposes,

it is then useful to specify a temporal window, lasting from

an initial (dt−from) to a final date (dt−to), containing the pre-

sumable timing of occurrence.

Rainfall series are commonly reconstructed from data

recorded at rain gauges located within a reasonable prox-

imity of the study site. The temporal window of the hydro-

logical analysis is defined by the intersection of (i) the pe-

riod of observation of the rains and (ii) the period delimited

by the most ancient and most recent dates of activation of

the landslide. A potential source of uncertainty lies in the

fact that, occasionally, the recorded rainfall amounts notably

differ from those actually experienced at landslide location.

Furthermore, landslide triggering may also be due to other

causes (e.g., human activity, earthquakes): a thorough pre-

liminary analysis has always to be performed to verify the

significance of rainfall preceding landslide activation, to de-

tect cases not to be considered in the hydrological study.

In the model, rains older than tb are neglected. Suitable

maximum and minimum values (tb-max and tb-min) have to be

initialized to allow the model to determine optimal values.

Commonly, tb ranging from a few hours to some weeks are

suggested for shallow landslides, while greater values (up to

several months) sound suitable for deep-seated phenomena.

Based on the geological knowledge of the phenomenon

under investigation, the initial shape of the kernel can be as-

sumed among a set of basic types. Among these, (i) a “rect-

angular” shape can be adopted if older precipitations have

the same weight of more recent rains; (ii) a “decreasing tri-

angular”, if older precipitations have a progressively smaller

weight than more recent rains; and (iii) “increasing trian-

gular”, if older precipitations have a progressively greater

weight than more recent rains. A casual shape or any other

function can also be implemented in the model (e.g., beta,

gamma, Nash, negative exponential distribution).

Figure 1. Scheme of the calibration procedure of the GASAKe

model.

3.1 Model calibration

In GASAKe, model calibration is performed against real case

studies through genetic algorithms (GAs). These latter ones

are general-purpose, iterative search algorithms inspired by

natural selection and genetics (Holland, 1975). Since the

1970s, GAs have been applied to several fields of research,

from applied mathematics (Poon and Sparks, 1992), to evo-

lution of learning (Hinton and Nowlan, 1987), evolutionary

robotics (Nolfi and Marocco, 2001), and debris-flow model-

ing (Iovine et al., 2005; D’Ambrosio et al., 2006). GAs sim-

ulate the evolution of a population of candidate solutions to

a given problem by favoring the reproduction of the best in-

dividuals. The candidate solutions are codified by genotypes,

typically using strings, whose elements are called genes.

GAs explore the solution space, defined as the set of pos-

sible values of the genes. At the beginning of a given opti-

mization experiment, the members of the initial population of

genotypes (in this study, the kernels) are usually generated at

random. The performance of each solution, in terms of phe-

notype (i.e., the mobility function), is evaluated by applying a

suitable fitness function, thus determining its “adaptability”,

i.e., the measure of its goodness in resolving the problem.

The sequence of random genetic operators selection,

crossover and mutation, constrained by prefixed probabili-

ties, constitutes a single GA iteration that generates a new

population of candidate solutions. At each iteration, the best

individuals are in fact chosen by applying the selection op-

erator. To form a new population of offspring, crossover is

www.geosci-model-dev.net/8/1955/2015/ Geosci. Model Dev., 8, 1955–1978, 2015
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Figure 2. Scheme of the adopted genetic algorithm.

employed by combining parents’ genes. Mutation is succes-

sively applied to each gene, by randomly changing its value

within the allowed range. Thanks to the GA approach, bet-

ter individuals (i.e., those characterized by higher fitness val-

ues) can be obtained over time. In fact, according to indi-

vidual probabilities of selection, any change that increases

the fitness tends to be preserved over GA iterations (Holland,

1975). For further details on GAs, cf. Goldberg (1989) and

Mitchell (1996).

In the present study, a steady-state and elitist GA (cf. De

Jong, 1975) was employed to obtain the family of optimal

kernels that maximize the mobility function in correspon-

dence to known dates of landslide activations. The procedure

employed for calibration of GASAKe is schematized in Fig. 1.

At the beginning of an optimization experiment, the ini-

tial population of N kernels is generated at random, and the

fitness of the related mobility functions is evaluated (cf. be-

low). In order to evolve the initial population of candidate

solutions, and to progressively obtain better solutions, a total

number of 3 GA iterations follow.

At each iteration of the GA, the operator selection,

crossover and mutation are applied as follows (Fig. 2):

– selection

i. ne “elitist” individuals are merely copied in a “mat-

ing pool” from the previous generation, by choos-

ing the best ones; and

ii. the remainingN−ne candidate solutions are chosen

by applying the “tournament without replacement”

selection operator. More in detail, a series of tour-

naments are performed by selecting two individuals

at random from the previous generation: the winner

(i.e., the one characterized by the highest fitness) is

copied into the mating pool, according to a prefixed

surviving probability (ps), which is set greater for

the fittest individual. Note that, when choosing the

N −ne candidate solutions, a given individual can-

not be selected more than once.

– crossover

After the mating pool is filled with N individuals, the

crossover operator is applied, according to a prefixed

probability (pc):

i. two parent individuals are chosen from the mating

pool at random;

ii. a cutting point (crossover point) is then selected at

random in the range ]tb-min, tb-max[;

iii. the obtained portions of parents’ strings are ex-

changed, thus mixing the genetic information and

resulting in two children (Fig. 3).

When the crossover is not applied, the two parents are

merely copied into Pnew.

– mutation

Based on a prefixed probability (pm), a random num-

ber of elements of the kernel (pme, expressed as a per-

centage of tb) is mutated, by adding to each element an

amount dh that is randomly obtained in the range [pmh1,

pmh2], as a function of the maximum value of the kernel

(hmax). Then dh ranges from dh1 to dh2:

dh1 = pmh1 ·hmax

dh2 = pmh2 ·hmax. (5)

Furthermore, the base time is also mutated (increased or

decreased) within the bounds [tb-min, tb-max], according

to a random factor dtb selected in the range [1/pmtb,

pmtb] (Fig. 4).

Children obtained by either crossover or mutation must be

normalized before being included in the population Pnew, by

properly scaling the elements of the kernels to ensure the va-

lidity of Eq. (2).

During calibration, the shape of the kernel and its tb are

iteratively refined. Note that the shape is not subject to any

constraint, while tb is allowed to vary in the range [tb-min−

tb-max]. The fitness is computed for each examined mobility
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Figure 3. Example of crossover. The genetic codes of the parents (elements in orange and green) are first mixed; then, the children are

normalized (black elements) to ensure the validity of Eq. (2).

function, and new populations of kernels are generated as

described above.

As for the fitness function, in GASAKe it is defined as fol-

lows:

– the L available dates of landslide activation – as derived

from the historical analyses – are arranged in a vector

S = {S1,S2, . . .,Si, . . .,SL};

– the vector of the relative maxima of the mobility func-

tion, Z = {z1,z2, . . .,zj , . . .,zM}, is sorted in decreasing

order (M = number of relative maxima); and

– the vector of the partial fitness is ϕ =

{ϕ1,ϕ2, . . .,ϕi, . . .ϕL}, where ϕi = k
−1 depends on

the rank k of the relative maxima of zj that coincide

with known dates of activation, Si . In case Si does not

correspond to any relative maximum, it is ϕi = 0.

With reference to a given kernel, the resulting fitness is ex-

pressed by 8u =
L∑
i=1

ϕi . To generalize the results for an eas-

ier comparison with other study cases, a normalized fitness

index is adopted, 8=8u/8max, defined in the range [0,1],

being 8max =

L∑
i=1

1/i.

For instance, if two dates of activation are available and

both are well captured by the mobility function (i.e., they

correspond to the highest peaks), the obtained fitness is8u =

1+1/2= 1.5. On the other hand, in case only one of the dates

is captured and the remaining one ranks fifth,8u = 1+1/5=

1.2.

Thanks to the above procedure, a family of “optimal ker-

nels” that maximizes the fitness can be determined. The mo-

bility function is, in fact, forced toward a shape characterized

by relative maxima (zj ) coinciding with the dates of land-

slide occurrence (Si). An optimal solution leads to a mobil-

ity function having the highest peaks in correspondence to

such dates; further peaks may also be present, characterized

by lower values. Nevertheless, kernel solutions generally de-

termine mobility functions whose highest peaks only partly

match the dates of landslide occurrence (i.e., some dates may

neither correspond to the highest peaks nor to any peak at

all).

To select the most suitable kernel from a given family of

optimal ones, let us define

– zj−min as the lowest of the peaks of the mobility func-

tion in correspondence to one of the dates of activation

(Si);

– zcr as the “critical threshold”, i.e., the highest peak of

the mobility function just below zj−min; and

– the “safety margin”, 1zcr = (zj−min− zcr)/zj−min.

When applying the fitness function to evaluate a given ker-

nel, either incompleteness or low accuracy of input data may

lead to “false alarms” – i.e., peaks of the mobility function

(zj ) that are greater than the threshold zcr, but that do not cor-

respond to any of the known dates of activation. Such alarms

can actually be of two different types: (1) “untrue false”, due

to an informative gap in the archive (i.e., correct prediction);

and (2) “true false”, in the case of real misprediction of the

model. In such cases, further historical investigations may

help to discriminate between the mentioned types of false

alarms.

Also depending on the specific purpose of the analysis, the

most suitable kernel can therefore be selected by one or more

of the following criteria: (i) the greatest 1zcr; (ii) the short-

est tb; and (iii) the smallest µ0=

∑
i≤tb

(i− 0.5) hi1t , i.e., the

first-order momentum of the kernel with respect to the verti-

cal axis. The first criterion allows for the activation of early-

warning procedures with the greatest advance; the remaining

ones (to be employed when 1zcr is too small) generally cor-

respond to more impulsive responses to rainfall.
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Figure 4. Examples of mutation. On the left, the genetic code of the parent individual (elements in blue). In the second histogram, mutation

is applied to some elements of the parent (in red, added amounts; in grey, subtracted amounts). Then, the base time can either be decreased

(upper sequence) or increased (lower sequence). Finally, the children are normalized (black elements) to ensure the validity of Eq. (2).

Figure 5. Scheme of the validation procedure of the GASAKe

model.

Differently from what is usually experienced in rainfall–

runoff models, GASAKe therefore provides multiple equiva-

lent solutions – i.e., a number of optimal kernels with same

fitness,8u, despite different shapes. This may depend on the

limited number of available dates of activations, and on other

noises in input data (e.g., rain gauges located too far from the

site of landslide activation, inaccurate information on dates

of activation or on the phenomenon). The adoption of syn-

thetic kernels – e.g., obtained by averaging a suitable set of

optimal kernels – permits one to synthesize the family of re-

sults for successive practical applications: in this work, the

100 best kernels obtained for each case study were in fact

utilized to synthesize “average kernels” (see below) to be em-

ployed for validation purposes.

4 Case studies

The case studies considered in this paper are (i) a set of shal-

low landslides in the Sorrento Peninsula between Gragnano

and Castellammare di Stabia (Campania, southern Italy) and

(ii) the Uncino landslide at San Fili (Calabria, southern Italy).

Note that, as the numbers of known historical activations

in the study areas were adequate, some dates could be ex-

cluded from calibration, and were successively employed for

validation purposes. In particular, the most recent dates of

landslide activation (cf. Tables 1 and 2) were employed to

validate the average kernels (these latter ones obtained from

the families of optimal solutions defined through calibra-

tion). The procedure employed for validation is schematized

in Fig. 5.

4.1 Shallow landslides in the Sorrento Peninsula –

Campania

The Sorrento Peninsula is located in western Campania,

southern Italy (Fig. 6). In the area, Mesozoic limestone

mainly crops out, covered by Miocene flysch, Pleistocene

volcanic deposits (pyroclastic fall, ignimbrite), and Pleis-

tocene detrital–alluvional deposits (Di Crescenzo and Santo,

1999). The carbonate bedrock constitutes a monocline, gen-

tly dipping towards WNW, mantled by sedimentary and vol-

canoclastic deposits, with thicknesses ranging from a few

decimeters to tens of meters.

Rainfall-induced shallow landslides are widespread in

the pyroclastic soils covering the slopes of the study area.

Among the various factors affecting the spatial distribution

and the type of slope instabilities, Cascini et al. (2014)

pointed out that both the rainfall conditions and the conse-
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Table 1. Dates of activation of the shallow landslides in the Sorrento Peninsula. Key: date: day of occurrence; type: widespread (multiple)

or few (single) activation; site: municipality including the affected location; period employed: dates used for calibration (except for no. 11);

rank: relative position of the corresponding maximum of the mobility function obtained by calibration. An asterisk marks the date employed

for validation. In italics, the activation date (no. 0) excluded due to hydrological constraints.

No. Date Type Site Reference Period employed Rank

1 17 Feb 1963 Multiple;

single

Gragnano, Pimonte; Castel-

lammare

Del Prete et al. (1998) 17 Feb 1963 17 Feb 1963 (1)

2 23 Nov 1966 Single Vico Equense (Scrajo),

Arola, Ticciano

Del Prete et al. (1998) 23 Nov 1966 24 Nov 1966 (4)

0 14 Apr 1967 Single Castellammare (Pozzano) Del Prete et al. (1998); AMRA (2012) – –

3 15 Mar 1969;

24 Mar 1969

Multiple;

multiple

Cava de’ Tirreni, Agerola,

Scrajo Seiano

Del Prete et al. (1998); AMRA (2012) 15–24 Mar 1969 25 Mar 1969 (65)

4 02 Jan 1971 Single Gragnano Del Prete et al. (1998) 02 Jan 1971 03 Jan 1971 (3)

5 21 Jan 1971 Single Gragnano Del Prete et al. (1998) 21 Jan 1971 21 Jan 1971 (7)

6 04 Nov 1980 Single Vico Equense (Scrajo) Del Prete et al. (1998) 04 Nov 1980 06 Nov 1980 (94)

7 14 Nov 1982 Single Pozzano Del Prete et al. (1998) 14 Nov 1982 15 Nov 1982 (151)

8 22 Feb 1986 Multiple Palma Campania, Castel-

lammare, Vico Equense

Del Prete et al. (1998) 22 Feb 1986 24 Feb 1986 (120)

9 23 Feb 1987 Single Gragnano, Castellammare Del Prete et al. (1998); AMRA (2012) 23 Feb 1987 23 Feb 1987 (73)

10 23 Nov 1991 Single Pozzano Del Prete et al. (1998) 23 Nov 1991 24 Nov 1991 (43)

11 10 Jan 1997 Multiple Pozzano;

Castellammare, Nocera,

Pagani, Amalfitana Coast

Del Prete et al. (1998); AMRA (2012) 10 Jan 1997 *

Figure 6. Geological map of the Sorrento Peninsula (after

Di Crescenzo and Santo, 1999, mod.). Key: (1) beach de-

posit (Holocene); (2) pyroclastic fall deposit (late Pleistocene–

Holocene); (3) Campanian ignimbrite (late Pleistocene); (4) de-

trital alluvial deposit (Pleistocene); (5) flysch deposit (Miocene);

(6) limestone (Mesozoic); (7) dolomitic limestone (Mesozoic). Red

squares mark sites affected by shallow landslide activations; blue

circles, the rain gauges; black squares, the main localities; yellow

triangles, the highest mountain peaks.

quent seasonal variations of soil suction play a significant

role. In particular, when suction is low and frontal rainfall oc-

curs (from November to May), first time shallow landslides

are triggered; when suction is high or very high and convec-

tive or hurricane-type rainfall occurs (from June to October),

mostly erosion phenomena occur, often turning into hyper-

concentrated flows.

The study area is characterized by hot, dry summers and

moderately cold and rainy winters. Consequently, its cli-

mate can be classified as Mediterranean (Csa in the Köppen–

Geiger classification). In particular, the mean annual tem-

perature ranges from 8–9 ◦C, at the highest elevations of M.

Faito and M. Cerreto, to 17–18 ◦C along coasts and valleys.

Average annual rainfall varies from 900 mm west of Sor-

rento to 1500 mm at M. Faito; moving inland to the east, it

reaches 1600 mm at M. Cerreto and 1700 mm at the Chiunzi

pass (Ducci and Tranfaglia, 2005). On average, annual totals

are concentrated on about 95 rainy days. During the driest

6 months (from April to September), only 30 % of the an-

nual rainfall is recorded in about 30 rainy days. During the

three wettest months (November, October, and December), a

similar amount is recorded in about 34 rainy days (Servizio

Idrografico, 1948–1999). In the area, convective rainstorms

may occur, characterized by a very high intensity, at the be-

ginning of the rainy season (from September to October). In

autumn–winter, either high intensity or long duration rain-

fall are usually recorded, while uniformly distributed rains

generally occur in spring (Fiorillo and Wilson, 2004). As

for annual maxima of daily rainfall recorded at sea level, the

Amalfi coast (southern border of the Sorrento Peninsula) is

characterized by smaller values (59 mm) of average annual

maxima of daily rainfall than the Sorrento coast (86 mm),

on the northern border. Such a difference seems to persist

even at higher elevations (up to 1000 m a.s.l.), with 84 mm

vs. 116 mm for the southern and northern mountain slopes,

respectively (Rossi and Villani, 1994).

Severe storms frequently affect the study area, triggering

shallow landslides that propagate seaward, often causing ca-

sualties and serious damage to urbanized areas and trans-
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Figure 7. Cumulative daily rainfall (in mm) during the 14 days preceding landslide occurrences. Key: in blue, red, and green: values from

the Tramonti, Castellammare, and Tramonti-Chiunzi rain gauges, respectively. Numbers refer to id. in Table 1 (cf. first column).

portation facilities (Mele and Del Prete, 1999; Calcaterra and

Santo, 2004; Di Crescenzo and Santo, 2005). In the second

half of the twentieth century, several shallow landslides ac-

tivated nearby Castellammare di Stabia: in Table 1, the ma-

jor events recorded between Vico Equense and Gragnano are

listed, with details on types of events, affected sites and ref-

erences. The shallow landslides listed in Table 1 occurred

between November and March, a period characterized by a

medium to low suction range and included in the rainy season

(October to April), according to Cascini et al. (2014). The

same authors pointed out that, in this period, frontal rain-

fall typically occurs and may trigger widespread first-time

shallow landslides, later propagating as debris flow or debris

avalanches.

Rainfall responsible for landslide occurrences in the Sor-

rento Peninsula is shown in Fig. 7, in terms of cumulated

antecedent rains, extracted from the records of the nearest

gauges (Tramonti, Castellammare, and Tramonti-Chiunzi –

cf. Fig. 6). The trends of antecedent rains look quite dif-

ferent, ranging from abrupt (cf. curves 5, 6, 7) to progres-

sive increases (cf. 2, 4, 10). On the other hand, curve 0

does not highlight significant amounts of rainfall in the 14

days preceding landslide activation: therefore, the occurrence

recorded on 14 April 1967 was excluded from the hydrolog-

ical analysis. Quite moderate amounts of cases 6 and 7 (that

occurred on 4 November 1980 and 14 November 1982, re-

spectively) were instead recorded in short periods, thus re-

sulting in high-intensity events that could be considered as

the triggering factor of the observed landslides.

As a result, the dates of activation from no. 1 to no. 10

were selected for calibration, whilst no. 11 was employed

for validation. As shallow landslides were being considered,

the rainfall period employed for calibration spanned from

17 January 1963 to 10 December 1996; for validation, the

rainfall series extended from 11 December 1996 to 10 Febru-

ary 1997 – i.e., to the validation date +tb (this latter as ob-

tained from calibration).

4.2 The Uncino landslide – San Fili (northern

Calabria)

San Fili (Fig. 8) is located on the western margin of the Crati

graben, a tectonic depression along the active Calabrian–

Sicilian rift zone (Monaco and Tortorici, 2000). In the area,

vicarious, N–S trending normal faults mark the base of the

coastal chain, at the transition between Palaeozoic meta-

morphic rocks, to the west, and Pliocene–Quaternary sedi-

ments, to the east (Amodio Morelli et al., 1976). Nearby San

Fili, Palaeozoic migmatitic gneiss and biotitic schist, gen-

erally weathered, are mantled by a late Miocene sedimen-

tary cover of reddish continental conglomerate, followed by

marine sandstone and clays (CASMEZ, 1967). In particular,

the village lies in the intermediate sector between two faults,

marked by a NE–SW trending connection fault, delimiting

Miocene sediments, to the north, from gneissic rocks, to the

south.

In Calabria, the Tyrrhenian sector (including the study

area) results are rainier than the Ionian sector (about 1200–

2000 mm vs. 500 mm). Nevertheless, the most severe storms

occur more frequently in the Ionian sector (Terranova, 2004).

The average annual temperature is about 15 ◦C: the coldest

months are January and February (on average, 5 ◦C), fol-
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Table 2. Dates of activation of the Uncino landslide. Periods (instead of singular dates) were considered in case of uncertain timing of

activation. Key= no.: identification number of the date (in bold, used for calibration); dates/periods derived from the literature; dates/periods

employed for calibration or validation; references: sources of information on activation dates; rank: relative position and dates of the maxima

of the mobility function during calibration. An asterisk marks the activation employed for validation. In italics, the activation date (no. 0)

excluded due to hydrological constraints.

No. Date Reference Period Rank

1 16, 21 Jan 1960 Sorriso-Valvo et al. (1996) 16–21 Jan 1960 18 Jan 1960 (5)

2 Winter 1963 Sorriso-Valvo et al. (1994) 01 Nov 1962–14 Apr 1963 29 Mar 1963 (1)

3 15 Apr 1964 (h 22:00) Sorriso-Valvo et al. (1994) 15 Apr 1964 14 Apr 1964 (3)

4 14 Dec 1966 Lanzafame and Mercuri (1975) 14 Dec 1966 16 Dec 1966 (2)

5 10–14, 21 Feb 1979 Sorriso-Valvo et al. (1994) 10–21 Feb 1979 15 Feb 1979 (4)

6 December 1980 Sorriso-Valvo et al. (1994) 01–31 Dec 1980 *

0 23 Nov 1988 Sorriso-Valvo et al. (1996) – –

Figure 8. Location of the study area (red square: San Fili vil-

lage; blue circle: Montalto Uffugo rain gauge). On bottom left,

an extract from the geological map of Calabria (CASMEZ, 1967).

Key: (sbg) gneiss and biotitic schist with garnet (Palaeozoic);

(sbm) schist including abundant granite and pegmatite veins, form-

ing migmatite zones (Palaeozoic); (Mar
3
) arenite and silt with cal-

carenite (Late Miocene); (Ma
3
) marly clay with arenite and marls

(Late Miocene); (mcl
3
) reddish conglomerate with arenite (Late

Miocene); (qcl) loose conglomerate of ancient fluvial terraces

(Pleistocene). The site affected by the Uncino landslide is marked

by a red star.

lowed by December (8 ◦C); the hottest months are July and

August (24 ◦C), followed by June (22 ◦C).

As in most of the region, the climate at San Fili is Mediter-

ranean (Csa, according to Köppen, 1948). Being located on

the eastern side of a ridge, the area is subject to Föhn condi-

tions with respect to perturbations coming from the Tyrrhe-

nian Sea. It is characterized by heavy and frequent winter

rainfall, caused by cold fronts mainly approaching from the

northwest, and autumn rains, determined by cold air masses

from the northeast. In spring, rains show lower intensities

than in autumn, whilst strong convective storms are common

at the end of summer. The average monthly rains recorded at

the Montalto Uffugo gauge (the closest to San Fili) are listed

in Table 3. From October to March (i.e., the wet semester),

77 % of the annual rainfall is totalized in about 77 rainy days;

36 % of the annual rainfall is recorded in 38 days during the

three wettest months; finally, from June to August (i.e., the

three driest months), 6 % of the annual rains fall in 11 days.

The Uncino landslide is located at the western margin

of San Fili (Fig. 8). It is a medium-size rock slide (max-

imum width= 200 m, length> 650 m, estimated maximum

vertical depth= 25 m), with a deep-seatedness factor (sensu

Hutchinson, 1995) that may be classified as “intermediate”.

The slope movement involves a late Miocene conglomerate,

arenite and marly clay overlaying Palaeozoic gneiss and bi-

otitic schist. It repeatedly affected the village, damaging the

railway and the local road network, besides some buildings:

the most ancient known activation dates back to the begin-

ning of the twentieth century (Sorriso-Valvo et al., 1996);

from 1960 to 1990, seven dates of mobilization are known

(as listed in Table 2). In such events, the railroad connect-

ing Cosenza to Paola was damaged or even interrupted. By

the way, on 28 April 1987, the railway was put out of ser-

vice; hence, the relevance of the infrastructure decreased, to-

gether with media attention. Usually, such information is col-

lected from archives not compiled by landslide experts, and

is therefore affected by intrinsic uncertainty (e.g., concerning

the dates of activity, and the partial or total activation of the

phenomenon), with unavoidable problems of homogeneity of

the data employed for model calibration.

The informative content of the Uncino case study is quite

high, and allows for a more accurate calibration of the kernel

with respect to the Sorrento Peninsula case: consequently, a

smaller family of optimal solutions is expected. Neverthe-

less, the known activations still suffer from uncertainties re-

lated to dates and affected volumes.

Cumulated antecedent rains, corresponding to the Uncino

landslide occurrences, are shown in Fig. 9. Rainfall data were

extracted from the records of the Montalto Uffugo rain gauge

(cf. Fig. 8). The trends of antecedent rains may be distin-
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Table 3. Average monthly rainfall and number of rainy days at the Montalto Uffugo rain gauge (468 m a.s.l.).

Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug year

Rainfall (mm) 70.4 125.1 187.9 220.8 198.1 160.3 132.8 98.9 64.6 27.8 18.3 28.6 1333.6

Rainy days 6.9 10.6 12.8 14.3 14.3 12.5 12.6 10.7 8.26 4.7 2.62 3.84 114.0

Figure 9. Cumulative daily rainfall (in mm) from 30 to 180 days be-

fore landslide occurrences (Montalto Uffugo gauge). Numbers refer

to the identification number (no.) in Table 2 (cf. first column).

guished into 3 main patterns: the curve 2 shows a constant

increase of rainfall in time, totalizing the greatest amounts

from ca. 90 to 180 days. On the other hand, the case 0 shows

the lowest values throughout the considered accumulation

period. The curves 1, 3, 4, and 5 totalize intermediate val-

ues, with abrupt increases from 120 to 180 days for curves 3

and 5. Finally, the case 6 looks similar to case 2 between 30

and 90 days, but shows no more increases in the remaining

period (analogously to 1 and 4).

As curve 0 does not highlight significant amounts of rain-

fall in the 30–180 days preceding the landslide activation,

the occurrence recorded on 23 November 1988 was excluded

from the hydrological analysis. Of the remaining curves,

case 1 generally shows the lowest amounts, from ca. 40 to

180 days. Consequently, the dates of activation from no. 1 to

no. 5 were selected for calibration, whilst no. 6 was employed

for validation. Since a medium-size landslide was being con-

sidered, the rainfall period employed for calibration spans

from 01 September 1959 to 31 August 1980; for validation,

it ranges from 01 September 1980 to 31 March 1981 – i.e.,

including the validation date by ±tb (this latter as obtained

from calibration).

Figure 10. Sorrento Peninsula case study. Average kernel obtained

from the 100 best filter functions.

5 Results

GASAKe was applied to shallow-landslide occurrences in the

Sorrento Peninsula and to a medium-size slope movement at

San Fili, by considering the dates of activation and the daily

rainfall series mentioned in Sects. 4.1 and 4.2, and adopting

the values of parameters listed in Table 4.

Among the kernels obtained from calibration, several pro-

vided similar fitness values. Thus, “average kernels” were

computed for the considered case studies, by averaging the

100 best kernels.

5.1 Application to shallow landslides in the Sorrento

Peninsula

In Table 5, the statistics related to the 100 best filter functions

obtained from calibration (optimal kernels) are summarized.

From such values, a low variability of 8, tb and µ0 can be

appreciated; instead, 1zcr shows a greater range of values.

The average kernel is shown in Fig. 10: it is characterized

by fitness = 0.806, 1zcr = 0.00282, and tb = 28 days. From

such a kernel, antecedent rainfall mostly affecting landslide

instability ranges from 1 to 12 days, and subordinately from

25 to 26 days (negligible weights refer to rains that occurred

in the remaining period).

The mobility function related to the average kernel is

shown in Fig. 11. In this case, 4 out of 10 dates of land-

slide activation are well captured by the model (being ranked

at the first 7 positions of the mobility function maxima); the

remaining 6 dates do also correspond to relative maxima of

the function, but are ranked from the 43rd to the 151st posi-

tion. When considering the remaining relative maxima, sev-

eral false positives can be recognized, mainly up to 1979.

During calibration, the best fitness (8= 0.807) was

first reached after 1749 iterations (at 6th individual), with
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Table 4. Values of the parameters of GASAKe adopted in the calibration procedure (benchmark experiment).

Symbol Parameter Value

N Individuals of each GA population 20

tb Base time (Uncino landslide)

Base time (shallow landslides in the Sorrento Peninsula)

30/180 days

2/30 days

pmh1

pmh2

Percentages of the maximum height of the kernel,

used to define the range in which dh is randomly obtained

50 %,

150 %

pc Probability of crossover 75 %

pm Probability of mutation 25 %

pme Number of mutated elements of the kernel, expressed as a percentage of tb 25 %

pmtb factor defining the range in which dtb is selected 0.2/5

3 Number of GA iterations (Uncino landslide case study)

Number of GA iterations (Sorrento Peninsula case study)

5000

3000

ne Number of “elitist” individuals 8

Figure 11. Sorrento Peninsula case study. Mobility function, z(t), of the average kernel. The red line (zcr = 22.53) shows the maximum

value of the mobility function (critical condition) that is unrelated to known landslide activations. The green line (zj−min = 22.63) – almost

overlapping with the red line in this case – shows the minimum value of the mobility function related to known landslide activations. When

the mobility function exceeds the threshold marked by the red line, landslide activation may occur. The red dots represent the maxima of the

mobility function corresponding to the dates of landslide activation considered for calibration.

Table 5. Sorrento Peninsula case study. Statistics for the 100 best

kernels.

8 1zcr tb µ0

Min 0.806 3.82× 10−5 26.0 9.460

Average 0.806 0.00418 30.4 9.567

Max 0.807 0.00801 31.0 10.448

Median 0.806 0.00499 31.0 9.567

Mode 0.806 0.00499 31.0 9.567

SD 7.65× 10−5 0.00183 0.862 0.146

1zcr = 0.00441 and tb = 26 days. The kernel corresponding

to such individual looks similar to the best one in terms of

tb,1zcr, and µ0 (Fig. 12). The pattern of the best kernel

is only slightly dissimilar from the average one: significant

weights can, in fact, be appreciated up to 14 days, and then

between 20–22 and 25–26 days.

By applying the average kernel, a validation was per-

formed against the remaining date of activation (cf. Ta-

ble 1, no. 11; multiple events occurred on 10 January 1997).

The validation that resulted was fully satisfied, as shown in

Fig. 13: the value of the mobility function for event no. 11

is well above the zcr threshold (49.01 vs. 18.05), and is

ranked as the second highest value among the function max-

ima (Fig. 13a). The same peak can also be appreciated as the

maximum of the period ±tb (Fig. 13b). Accordingly, when

adopting the average kernel, event no. 11 of landslide activa-

tion could properly be predicted by the model.

5.2 Application to the Uncino landslide

In Table 6, the statistics related to the family of optimal

kernels are summarized. From such values, a low variabil-

ity of tb and 1zcr can be appreciated. The average kernel

(Fig. 14) is characterized by fitness = 1, 1zcr = 0.0644, and

tb = 66 days. Based on such a kernel, antecedent rains from

www.geosci-model-dev.net/8/1955/2015/ Geosci. Model Dev., 8, 1955–1978, 2015
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Figure 12. Sorrento Peninsula case study. Kernels providing (a)

the best fitness (8max = 0.807), (b) the minimum base time tb min

(26 days), (c) the 1zcr max (0.00801), and (d) the minimum first-

order momentum, µ0 min (9.460).

Table 6. Uncino landslide case study. Statistics for the 100 best ker-

nels.

1zcr tb

Min 0.0524 57.0

Average 0.0581 69.5

Max 0.0692 82.0

Median 0.0581 69.0

Mode 0.0558 69.0

SD 0.00373 3.12

1 to 17 days, and from 27 to 45 days, mainly affect landslide

instability. Relatively smaller weights pertain to the rains that

occurred more than 53 days before the triggering; for periods

older than 66 days, the weights are negligible.

In Fig. 15, the mobility function related to the average ker-

nel highlights that all the 5 dates of activation are well cap-

tured by the model (they are ranked at the first 5 positions

among the function maxima). When considering the remain-

Table 7. Uncino landslide case study. Results of progressive cali-

bration. Key: L, tb, zj−min, zcr,1zcr): model parameters concern-

ing calibration (for explanation, cf. text); 8v) fitness obtained by

validating the “average kernel”, obtained in calibration, against the

6 dates of activation. In italics, results obtained when calibrating the

model by using all the six available dates (no validation performed).

L tb zj−min zcr 1zcr 8v

2 30 13.93 13.89 0.0029 0.59

3 54 11.05 11.04 0.0009 0.78

4 55 10.21 10.20 0.0010 0.87

5 80 16.44 16.34 0.0061 0.95

6 80 18.63 17.43 0.0644 1.00

ing relative maxima of the function, only 4 of them evidence

quasi-critical situations (between 1965 and 1966, and subor-

dinately in 1970 and 1977).

During calibration, the best fitness (8= 1) was first

reached after 684 iterations (at 13th individual) with 1zcr =

0.0595. The best kernel (Fig. 16) was obtained at iteration

993, at 8th individual, with1zcr = 0.0631. Its pattern results

very similar to the average one, with a tb of 66 days.

By applying the average kernel, a validation was per-

formed against the last known date of activation (cf. Table 2,

no. 6, which occurred in December 1980). The validation that

resulted was fully satisfied, as shown in Fig. 17: the value of

the mobility function for event no. 6, in fact, is well above

the zcr threshold (17.49 vs. 16.87), and is ranked as the sixth

highest value among the function maxima (Fig. 17a). The

same peak can be appreciated as the maximum of the period

±tb (Fig. 17b). Accordingly, when adopting the average ker-

nel, event no. 6 could properly be predicted by the model.

6 Self-adaptive procedure and sensitivity analyses

The capability of the model to react and self-adapt to input

changes, such as new dates of landslide activation, was eval-

uated by a progressive, self-adaptive procedure of calibra-

tion and validation, using the information available for the

Uncino case study. To simulate the adoption of GASAKe in

a landslide warning system, the model was iteratively cali-

brated by the first 2, 3, 4, and 5 dates of activation (L), and

validated against the remaining 4, 3, 2, 1 dates, respectively.

In each experiment, the GA parameters listed in Table 4 were

adopted. Finally, the model was merely calibrated by consid-

ering all the 6 dates of activation. The results of the self-

adaptive procedure are listed in Table 7. The related kernels

are shown in Fig. 18. As a result, a progressive increase in

fitness and predictive ability (1zcr), together with the base

time (ranging from 30 to 80 days), can be appreciated when

employing a greater number of dates of activation.

Furthermore, aiming at evaluating the sensitivity of the

model with respect to the GA parameters, a series of anal-

Geosci. Model Dev., 8, 1955–1978, 2015 www.geosci-model-dev.net/8/1955/2015/



O. G. Terranova et al.: GASAKe 1969

Figure 13. Sorrento Peninsula case study. (a) Validation of the average kernel against the no. 11 event. (b) Particular of (a), limited to the

period ±tb, including the date of validation. Key as in Fig. 11. The blue label indicates the date of validation. Grey background marks the

period after the event that may be employed for re-calibration.

Figure 14. Uncino landslide case study. Average kernel obtained

from the 100 best filter functions.

yses was performed by considering again the Uncino case

study. The experiments carried out are listed in Table 8.

Each simulation stopped after 1500 iterations: GA parame-

ters were initialized by considering the “benchmark experi-

ment” (cf. values in Table 4), except for the parameter that

was in turn varied, as indicated in Table 8. The obtained

maximum fitness (8max), safety margin (1zcr), number (ni)

of iterations needed to first reach 8max, and base time (tb)

of the average kernel are shown in Fig. 19. If experiments

with 8max = 1 are only taken into account, the minimum

and maximum numbers of GA iterations needed to reach

Table 8. Uncino landslide case study. Values of the parameters

adopted in the sensitivity analyses. In bold, the experiments with

8max = 1. In italics, the worst experiment. Underlined, the best

one.

Symbol Values

ne 6 7 8∗ 9 10

pc 60 % 67.5 % 75 %∗ 82.5 % 90 %

pm 20 % 22.5 % 25 %∗ 27.5 % 30 %

pmh1 60 % 55 % 50 %∗ 45 % 40 %

pmh2 140 % 145 % 150 %∗ 155 % 160 %

pme 20 % 22.5 % 25 %∗ 27.5 % 30 %

pmtb 0.25/4 0.22/4.5 0.2/5∗ 0.18/5.5 0.17/6

N,ne 25, 8 20, 8∗ 15, 8

N,ne 25, 12 25, 10 25, 8

∗ Reference values (i.e., those of the benchmark experiment – cf. Table 4).

8max (3min, 3max), the minimum and maximum base times

of the average kernel (tb_min, tb_max), and the minimum and

maximum safety margins of the average kernel (1zcr_min,

1zcr_max), are listed in Tables 9, 10 and 11, respectively.
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Figure 15. Uncino landslide case study. Mobility function, z(t), of the average kernel. The red line (zcr = 17.85) shows the maximum value

of the mobility function (critical condition) that is unrelated to known activations. The green line (zj−min = 18.98) shows the minimum value

of the mobility function related to known activations. When the mobility function exceeds the threshold marked by the red line, landslide

activation may occur. The red dots represent the maxima of the mobility function corresponding to dates of landslide activation considered

for calibration.

Figure 16. Uncino landslide case study. Kernel providing the best

fitness.

7 Discussion and conclusions

In the present paper, the GASAKe model is presented with ex-

amples of application to shallow landslides in the Sorrento

Peninsula (Campania), and to the medium-size Uncino land-

slide at San Fili (Calabria). Furthermore, the capability of

the model to simulate the occurrence of known landslide ac-

tivations was evaluated by a progressive, self-adaptive pro-

cedure of calibration and validation against the Uncino case

study. Finally, the sensitivity of the model with respect to the

GA parameters was analyzed by a series of experiments, per-

formed again by considering the latter landslide.

Regarding the Sorrento Peninsula case study, the maxi-

mum fitness obtained during calibration is smaller than unity.

For the 100 best kernels, 8max, 1zcr and tb vary in a small

range (ca. 0.1, 4.8, and 13 %, respectively). Furthermore, as

mentioned above, for specific types of application (e.g., civil

protection), the observed small values of 1zcr would imply

short warning times. Consequently, a suitable kernel should

be rather selected by privileging the shortest tb or the smallest

µ0. From Fig. 12, it can be noticed that the greatest weights

for the first 12–15 days are obtained by selecting the kernel

characterized by the smallest µ0, thus allowing for the most

Table 9. Minimum (3i_min) and maximum (3i_max) numbers

of GA iterations needed to reach 8max (only experiments with

8max = 1 are considered). In the first column, the letters refer to

Fig. 19. In bold, the best and worst experiments. An asterisk marks

the experiment e, in which 8max was reached only for pc = 75.

In italics, the combinations of parameters of the benchmark experi-

ment (cf. Table 4).

§ N Parameter 3i_min 3i_max

a 20 ne = 8 684

a 20 ne = 10 279

c 25 ne = 8 469

c 25 ne = 12 1477

e 20 pc = 75 684*

g 20 pm = 25 684

g 20 pm = 27.5 1086

i 20 pmh1 = 50 684

i 20 pmh1 = 55 836

k 20 pme = 25 684

k 20 pme = 30 996

m 20 pmtb = 5 684

m 20 pmtb = 5.5 1052

o 15 ne = 8 405

timely advice if used within an early-warning system. In the

average kernel, the greatest weight can be attributable to the

first 12 days, with a maximum base time of about 4 weeks,

reflecting the general shape of the curves in Fig. 7, and in

good agreement with the shallow type of slope instability

considered. Furthermore, the validation of the average kernel

is satisfactory, as the validation date (no. 11 in Table 1) cor-

responds to the second highest peak of the mobility function.

In addition, no missing alarms and only four false alarms in

about 5 years are to be found (i.e., in the period from the last

date used for calibration to the one for validation). The peaks
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Figure 17. Uncino landslide case study. (a) Validation of the average kernel against the no. 6 event. (b) Particular of (a), limited to the period

±tb including the date of validation. Key as in Fig. 15. The blue label indicates the date of validation. Grey background marks the period

after the event that may be employed for re-calibration.

Table 10. Minimum (tb_min) and maximum (tb_max) base times of

the average kernel (only experiments with 8max = 1 are consid-

ered). In the first column, the letters refer to Fig. 19. In bold, the

best and worst experiments. An asterisk marks the experiment e, in

which 8max was reached only for pc = 75. In italics, the combina-

tions of parameters of the benchmark experiment (cf. Table 4).

§ N Parameter tb_min tb_max

a 20 ne = 8 66.59

a 20 ne = 10 144.85

c 25 ne = 8 132.00

c 25 ne = 12 56.17

e 20 pc = 75 66.59*

g 20 pm =25 66.59

g 20 pm = 27.5 139.20

i 20 pmh1 = 50 66.59

i 20 pmh1 = 55 44.00

k 20 pme = 25 66.59

k 20 pme = 30 146.93

m 20 pmtb = 5 66.59

m 20 pmtb = 4 136.06

o 15 ne = 8 145.79

Table 11. Minimum (1zcr_min) and maximum (1zcr_max) safety

margins of the average kernel (only experiments with8max = 1 are

considered). In the first column, the letters refer to Fig. 19. In bold,

the best and worst experiments. An asterisk marks the experiment

e, in which8max was reached only for pc = 75. In italics, the com-

binations of parameters of the benchmark experiment (cf. Table 4).

§ N Parameter 1zcr_min 1zcr_max

a 20 ne = 7 0.007

a 20 ne = 9 0.002

c 25 ne = 8 0.014

c 25 ne = 12 0.002

e 20 pc = 75 0.005*

g 20 pm = 22.5 0.006

g 20 pm = 27.5 0.001

i 20 pmh1 = 50 0.005

i 20 pmh1 = 55 0.004

k 20 pme = 25 0.005

k 20 pme = 30 0.006

m 20 pmtb = 5 0.005

m 20 pmtb = 4 0.009

o 15 ne = 8 0.055

o 20 ne = 8 0.005
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Figure 18. Uncino landslide case study. Average kernels obtained

in calibration against the 2, 3, 4, 5, and 6 dates of activation.

of the mobility function corresponding to the activation dates

can roughly be grouped into two sets, characterized by dis-

tinct values: a first set, with z(t) > 40, generally includes the

most ancient plus the validation dates (no. 1, no. 2, no. 4,

no. 5, no. 6, and no. 11); a second set, with 18< z(t) < 25,

includes nos. 3, 7, 8, 9, and 10. False alarms result more fre-

quently and higher in the first period (from 1963 to 1980),

presumably due to a lack of information on landslide activa-

tions.

Regarding the Uncino case study, the maximum fitness in

calibration reaches unity. With respect to the Sorrento Penin-

sula case study, 1zcr and tb of the 100 best kernels vary in

a greater range (ca. 25 and 30.5 %, respectively), with 1zcr

1 order of magnitude greater. In this case, the kernel would

in fact allow for a safety margin of ca. 5 %. In the average

kernel, three main periods can be recognized with heavier

weights, attributable to (i) the first 17 days, (ii) 27–45 days,

and (iii) 54–58 days. The base time ranges from about 8 to

12 weeks, in good agreement with the medium-size type of

the considered slope instability. Furthermore, the validation

of the average kernel was performed successfully: in fact,

the validation date (no. 6 in Table 2) corresponds to the third

highest peak of the mobility function; even in this case, nei-

ther missing alarms nor false alarms in about 2 years (from

the last date calibration date to the validation one) are to be

found. The peaks of the mobility function corresponding to

the activation dates are characterized by z(t) > 18.

In the self-adaptive procedure applied to the Uncino case

study, values for L= 6 merely refer to calibration, whilst the

ones for 2≤ L≤ 5 concern validation. With regard to Table 7

and Fig. 20, it can be noticed that

– for 2≤ L≤ 5, tb increases 2.7 times with L, and then

remains constant for L≥ 5;

– from L= 2 to L= 4, zj−min and zcr slightly decrease,

and then abruptly increase for L≥ 5;

– for L≥ 4, 1zcr monotonically increases 72 times with

L (being almost constant in the 2–4 transition);

– 8v monotonically increases 1.7 times with L.

As a whole, a satisfying performance is obtained starting

from three dates (i.e., correct predictions in more than three

out of four times). For L= 5, only one false alarm is ob-

served. Finally, the calibration performed by considering all

six dates of activation provided fully satisfying results. Ac-

cordingly, the results of the progressive procedure underlined

how GASAKe can easily self-adapt to external changes by op-

timizing its performances, providing increasing fitness val-

ues.

The average kernels obtained by considering two to six

dates of landslide activation show increasing base times, with

significant weights for the most ancient rains of the tempo-

ral range (Fig. 18). Such a result is in good accordance with

the extent of the slope movement and, therefore, with the ex-

pected prolonged travel times of the groundwater affecting

landslide activation.

In the sensitivity analyses, again performed by consider-

ing the Uncino landslide, 8max = 1 was obtained in 60 % of

the experiments (cf. Table 8). The results (cf. Fig. 19 and Ta-

bles 9, 10, and 11) permit one to select the set of parameters

that allow for faster GA performances. More in detail,

– a ratio between the number of elitist individuals and the

whole population of ne/N = 10/20 or 8/15 allows for

the fastest GA performances (3i_min ∼ 41 % of the ref-

erence value); nevertheless, for increasing both ne and

N , this effect seems to vanish (e.g., ne/N = 12/25);

– with respect to the benchmark experiment, the explored

changes in pc, pm, pmh1, pme, and pmtb do not sub-

stantially affect the GA performances with respect to

3i_min;
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Figure 19.
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Figure 19. Maximum fitness (8max), safety margin (1zcr), number (ni) of iterations needed to first reach 8max, and base time (tb) of the

average kernel, based on GA parameters listed in Table 8.

– with respect to the benchmark experiment, the explored

changes of parameters determine the variation of tb
from 66 to 219 %;

– in case of civil protection applications, the combina-

tion of parameters with pmh1 = 55 allows for activat-

ing early-warning procedures with the greatest advance;

and

– concerning 1zcr_max, the best result (increase by 10

times) is obtained when reducing N to 15.

The calibration experiments discussed in this paper were

performed on a standard PC platform (3 GHz CPU, 4 GB

RAM, SQL stand-alone system and application process). For

the study cases of the Sorrento Peninsula and the Uncino

landslide, 2.5 and 1.1 GA iterations were, respectively, per-

formed per minute, reaching 8max in 11 h 40 m and 10 h

20 m. Depending on the availability of high-performance
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Figure 20. Uncino landslide case study. Results of progressive cal-

ibration. Variation of 1zcr and 8v for L increasing from 2 to 6.

computing clusters, the mentioned durations may strongly

be reduced, thus allowing for prompt civil protection appli-

cations, e.g., based on short-term weather forecasts. By the

way, the time needed to calibrate the model can profitably

be shortened by properly initializing the kernel, based on ex-

pected characteristics of the phenomena under consideration

(e.g., the range of tb strongly depends on landslide size).

In this study, a two-step efficiency criterion was employed:

the relative position of the peaks of the mobility function

with respect to the dates of landslide activation was first con-

sidered, and the fitness computed. Based on the value of

1zcr, the obtained solutions were further ranked. Average,

synthetic filter functions could then be computed by select-

ing the 100 best kernels for successive validation purposes.

Alternative metrics (cf. among others, Krause et al., 2005)

for the fitness function are being tested. However, due to

uncertainties concerning input data (i.e., rainfall and dates

of landslide activation), the adoption of sophisticated tech-

niques does not sound very promising. In addition, problems

of over-fitting may depend on both data uncertainties and the

number of parameters. Commonly, kernels characterized by

a complex pattern (and then by many parameters) are needed

for simulating groundwater dynamics (Pinault et al., 2001).

Nevertheless, more complex kernels do not necessarily im-

ply higher predictive uncertainties (Fienen et al., 2010; Long,

2015). Still, the adopted discrete approach allows one to fo-

cus only on the timing of the peaks of the mobility function,

thus somewhat relieving the computational effort. Due to the

cited uncertainties in input data, a “temporal window” was

in fact employed to help in matching dates of activation with

the peaks of the mobility function. Further attempts at defin-

ing the fitness function by different metrics, and the analysis

of its effects on calibration and validation, are being consid-

ered against another case study (San Benedetto Ullano, in

Calabria, southern Italy), whose mobility phases have been

recently monitored by the same authors (Iovine et al., 2010;

Capparelli et al., 2012).

As mentioned above, model calibration may be hampered

by either quality or completeness of input data. Commonly,

missing dates of activation (mainly in remote periods or in

isolated areas) and unsuitability of the rain gauge network

(e.g., due to excessive distance of gauges from the landslides)

negatively affect model results. Depending on the availability

of new dates of activation, stemming from further mobiliza-

tions or improvement of historical investigations, the predic-

tive capability of the model can be increased through addi-

tional calibrations, hence providing new families of optimal

solutions, constituted by fewer, highly significant kernels.

The above considerations suggest an indirect link between

the model – despite being empirical in type – and the physi-

cal characteristics of the slope movements (e.g., dimensions,

permeability, initial water content of the slope, length of sub-

surface water paths). In general, to select the kernel to be

applied, it is rather preferable to consider a set of optimal

kernels or the average one, instead of a single solution.

Further efforts are in progress to improve the model and its

chances of practical application, mainly concerning the im-

plementation of different GA techniques of optimization (in

addition to the elitist one, employed here), the parallelization

of the model, and the adoption of a genetic programming ap-

proach. Finally, through the analytical study of the optimal

kernels, a mathematical formulation of discrete filter func-

tions is presently being attempted, aiming at synthesizing op-

timal and average kernels for an easier comparison with the

results of other models available in the literature.

Code availability

The release by GASAKe of the Self Adaptive Kernel model,

discussed in this paper, has been developed by scientists

working at CNR-IRPI under Microsoft Windows, Visual Stu-

dio, and SQL Server integrated development environment.

It can be requested by the public to the corresponding au-

thor of the paper, together with examples of input data and

technical support (a user manual is not available yet, but it

should be released soon). The model is presently undergo-

ing further refinements and developments, mainly concern-

ing types of GA-selection techniques, the post-processing of

the results in terms of continuous analytical functions, and

the implementation of a library of case studies. The authors

are willing to cooperate with external users to further im-

prove the model through applications to case studies from

different geo-environmental contexts.
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