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Do landslides follow landslides? Insights in path
dependency from a multi-temporal landslide inventory

Abstract Landslides are a major category of natural disasters,
causing loss of lives, livelihoods and property. The critical roles
played by triggering (such as extreme rainfall and earthquakes),
and intrinsic factors (such as slope steepness, soil properties and
lithology) have previously successfully been recognized and quan-
tified using a variety of qualitative, quantitative and hybrid
methods in a wide range of study sites. However, available data
typically do not allow to investigate the effect that earlier land-
slides have on intrinsic factors and hence on follow-up landslides.
Therefore, existing methods cannot account for the potentially
complex susceptibility changes caused by landslide events. In this
study, we used a substantially different alternative approach to
shed light on the potential effect of earlier landslides using a multi-
temporal dataset of landslide occurrence containing 17 time slices.
Spatial overlap and the time interval between landslides play key
roles in our work. We quantified the degree to which landslides
preferentially occur in locations where landslides occurred previ-
ously, how long such an effect is noticeable, and how landslides are
spatially associated over time. We also investigated whether over-
lap with previous landslides causes differences in landslide geo-
metric properties. We found that overlap among landslides
demonstrates a clear legacy effect (path dependency) that has
influence on the landslide affected area. Landslides appear to
cause greater susceptibility for follow-up landslides over a period
of about 10 years. Follow-up landslides are on average larger and
rounder than landslides that do not follow earlier slides. The effect
of earlier landslides on follow-up landslides has implications for
understanding of the landslides evolution and the assessment of
landslide susceptibility.
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Introduction
Existing landslide research recognizes the critical role that is
played by external triggers (e.g. extreme rainfall events, earth-
quakes and human interferences) along with intrinsic attributes
of site (e.g. slope and lithology) that contribute to landslide oc-
currence (Carrara et al. 1999; Crozier 1986; Guzzetti et al. 2008).
Much work has been done on the modelling of landslide suscep-
tibility and hazard. By definition, landslide susceptibility is a non-
temporal concept that refers to locations where landslides prefer-
entially occur (Guzzetti et al. 2005; Varnes 1984), whereas landslide
hazard describes the likelihood of landslide occurrence in time
and space (Guzzetti et al. 1999; Varnes 1984) along with the mag-
nitude of landslide occurrence (Guzzetti et al. 1999). Landslide
susceptibility and hazard have been studied using qualitative
(Barredo et al. 2000; Ruff and Czurda 2008; Van Westen et al.
2003) and quantitative (Godt et al. 2008; Guzzetti et al. 2005; Lan
et al. 2004; Remondo et al. 2003; Van Westen et al. 1997; Van
Westen and Terlien 1996; Yeon et al. 2010) approaches.

Qualitative approaches emphasize the role of experience and ex-
pert knowledge in determining landslide susceptibility (Van
Westen et al. 2003). Quantitative approaches assume that condi-
tions that lead to landslide occurrence in the past and present are
likely to cause landslides in the future, thus, the probability of
occurrence of future landslides is determined using correlations
among various conditioning factors and landslide inventories by
statistical methods (Tien Bui et al. 2016; Van Westen and Terlien
1996). Deterministic quantitative approaches use detailed geotech-
nical and hydrological data in combination with statistical models
to estimate the probability of slope failure (Aleotti and Chowdhury
1999; Van Westen and Terlien 1996).

Empirical landslide inventories that document the location
and sometimes the date, shape and type of landslides play an
important role in assessing landslide susceptibility and hazard
(Cardinali et al. 2006; Guzzetti et al. 2005, 2012; van Westen
et al. 2006, 2008). Most of the landslide inventories are pre-
pared through the interpretation of stereoscopic aerial photo-
graphs (Guzzetti et al. 2012). In addition, field mapping
(Brunsden 1993), analysis of surface morphology through high-
resolution DEMs and interpretation of satellite images (Guzzetti
et al. 2012) are used for mapping landslide inventories. Overall
statistics of landslide inventories have been studied, and it was
documented that the frequency–area distribution of landslides
follows a power-law distribution for medium and large land-
slides with an exponential rollover for small landslides (Guzzetti
et al. 2002, 2009; Malamud et al. 2004; Stark and Hovius 2001;
Turcotte et al. 2006; Wood et al. 2015).

Although a vast amount of research has been done on the
prediction of landslide occurrence, there has, to our knowledge,
been no empirical attention for the effect of earlier landslides on
future landslides. This effect is nonetheless expected because land-
slides typically change the surface morphology (Schuster and
Highland 2003), the sediment or regolith properties (Chen 2009),
the vegetation (Singh et al. 2014) and the slope angle (van Westen
et al. 2006), which are all factors that change landslide suscepti-
bility. If true, such importance of landslide history for landslides
susceptibility would be a form of path dependency (a concept
from complexity theory (Phil l ips 2006; Temme et al .
2015))—indicating that the history of the landsliding process af-
fects its future through one or more legacy effects. A likely reason
for the lack of attention for quantifying the effect of earlier land-
slides on future landslides is that multi-temporal landslide inven-
tories are very difficult to obtain (Atkinson and Massari 1998;
Brenning 2005) and high-resolution multi-temporal datasets of
intrinsic properties are virtually absent.

In this paper, we explore the possible effects of earlier
landslides on future landslides. For this, we will use a rich
multi-temporal landslide inventory from the Collazzone area in
central Umbria, Italy (Ardizzone et al. 2013; Galli et al. 2008;
Guzzetti et al. 2006).
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Our main objective is to investigate whether earlier landslides
determine the susceptibility for future landslides, i.e. whether
there is path dependency in landslide occurrence. We test two
hypotheses. The first hypothesis is that landslides follow land-
slides; i.e., that landslides increase the likelihood of another (in
our terms: follow-up) landslide occurring in the same place. We
operationalize this hypothesis without attention for the role of
intrinsic attributes (e.g. slope and geology) to offer a clear contrast
with existing approaches. The second hypothesis is that follow-up
landslides differ from other landslides in terms of their shape, size
and frequency–area distribution.

Study area and data
The Collazzone area extends for 78.9 km2 in central Umbria, Italy
(Fig. 1). Elevation in the area ranges from 145 to 634 m above sea
level, and the slope, computed from a 10 × 10 m Digital Terrain
Model (DTM), ranges from 0° to 63.7° with a mean value of 9.9°.
The terrain is hilly with asymmetrical valleys, with lithology and
attitude of bedding controlling the slopes. Only sedimentary rocks
crop out in the area and include (1) alluvial deposits, Holocene in
age; (2) travertine, Pleistocene in age; (3) continental deposits
(gravel, sand and clay), Plio–Pleistocene in age (Guzzetti et al.
2006); (4) layered sandstone and marl, Miocene in age and (5)
thinly layered limestone, Lias to Oligocene in age. The land use is
characterized by cropland, forests, urban areas, pastures,
vineyards, orchards and water. Farming in the area favours the
development of slope failures and erosion. Soils range in thickness
from a few decimetres to more than 1 m; they have a fine or
medium texture (Fiorucci et al. 2015). Soils have a xeric moisture
regime characterized by cold and moist winters and dry summers.
Precipitation is most abundant in October and November; with a
mean annual rainfall of 841 mm in the period from 1951 to 2013.
Snow falls in the area on average every 2–3 years. Landslides are
abundant and range in age, type, morphology and volume from
relict—partly eroded—large and deep-seated landslides, to young,
mostly shallow landslides involving the soil mantle. Landslides are
triggered predominantly by meteorological events, including in-
tense and prolonged rainfall and rapid snowmelt.

Description of the multi-temporal landslide inventory
A detailed multi-temporal landslide inventory is available for the
Collazzone area (Fig. 1 and Table 1). The inventory was originally
prepared at 1:10,000 scale through the visual interpretation of five
sets of stereoscopic aerial photographs taken unsystematically in
the period 1941–1997 at scales ranging from 1:13,000 to 1:33,000.
The landslide inventory was continued in the period from 1999 to
December 2005 through field surveys carried out after periods of
prolonged rainfall and in March and May 2010 using stereo satel-
lite images (Ardizzone et al. 2013).

Landslides ages were estimated from the date of the aerial
photographs and the morphological appearance of the landslide.
In each of the five sets of stereoscopic aerial photographs used to
prepare the multi-temporal inventory, landslides that appeared
‘fresh’ on the aerial photographs were separated from the other
landslides that had occurred since the previous photograph. The
date (i.e. year) of the aerial photographs used to identify the
landslides was assigned to the ‘fresh’ slope failures. The other
slope failures (i.e. the ‘non-fresh’ landslides) were attributed to

the period between the date of the aerial photograph where they
were identified and the date of the previous aerial photographs.

Galli et al. (2008) demonstrated the high quality of the multi-
temporal landslide inventory map for the Collazzone study area.
Nonetheless, we acknowledge that the mapping and age attribu-
tion are not perfect. Errors are probably largest in time slices that
were obtained through field mapping due to the difficulty in
translating lateral assessments onto vertical photographs, but even
here we expect the uncertainty in determining a landslide bound-
ary to be less than 3 m. For other time slices, the aerial photo-
graphs and satellite images that were used have resolutions of 1 m
or better, and hence, uncertainty is of the same order. With an
average size of landslides of over 5000 m2, it was expected that the
uncertainty in mapping did not substantially affect our results.

Methods
In addition to our use of the term path dependency (indicating
that previous process activity affects future process activity
through legacy effects), it is useful to clarify some other terms that
are important for our analysis. The mono-temporal inventories
that together make up our multi-temporal inventory are separately
called ‘time-slices’, whereas subdivisions of the multi-temporal
inventory based on topology (see below) are called ‘sub-invento-
ries’. We use ‘earlier’ and ‘follow-up’ to describe landslides based
on their relative order in the multi-temporal inventory. Note that
follow-up landslides are not reactivated landslides. We consider a
landslide a reactivated landslide when all or most of the landslide
moved down again, under the same general condition as the first
landslide. Instead, follow-up landslides are new landslides that
have different size and shape than the pre-existing landslide. The
particular topological relations of interest between landslides in
earlier and follow-up time slices were called ‘spatial association’.

To test our hypotheses, two sets of analyses were done on the
multi-temporal landslide inventory. The first set of analyses focus-
es on the effect of overlap between landslides on the total area
affected by landslides (Fig. 2 (a)), on the degree of overlap between
landslides from different time slices (Fig. 2 (b)) and on the number
of overlaps between landslides over the entire inventory (Fig. 2
(c)). The second set of analyses focuses on the properties of classes
of landslides that vary in their spatial association with landslides
from the earlier periods (Fig. 2 (d)).

Degree of overlap
We propose three complementary methods for this purpose to
express the importance of overlap between landslides: (1) unaf-
fected area, (2) overlap index and (3) number of overlaps (Fig. 2).

The first method measures the cumulative effect that landslide
overlapping has on the total area affected by landslides, by com-
paring a theoretically unaffected area with the actually unaffected
area. This method allows assessment of the amount of reduction in
affected area caused by (potentially followed-up) overlapping
landslides. The theoretically unaffected relative area (−, where −
denotes that this is a dimensionless parameter) if no overlap
between landslides would occur is defined as:

Theoretically unaffected areat ¼
X t

i¼1
ALTi

� �
=AS ð1Þ
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Fig. 1 Location of Umbria region and of the Collazzone study area (right map). Multi-temporal landslide inventory overlying a shaded relief image (left map). The
coordinate system of the relief image is EPSG:32633

Table 1 Properties of landslides in different time slices of the multi-temporal landslide inventory for the Collazzone area, Umbria, Central Italy. Period covered, number
and density of landslide per period, total affected area and inventory type per period. Inventory type: P, obtained from the systematic interpretation of stereoscopic aerial
photographs; F, obtained through direct field mapping; S, obtained from the interpretation of stereoscopic satellite images. Landslide periods are estimated from the date
of the aerial photographs and the morphological appearance of the landslide

Period covered Number of landslides(N) Density(N)/(Km2) Total Area of landslides(Km2) Inventory type

Relict 27 0.34 5.72 P

Older than 1937 269 3.41 6.55 P

1937–1941 706 8.86 4.09 P

1941–1954 63 0.79 0.42 P

1954 97 1.23 0.71 P

1954–1977 409 5.18 1.49 P

1977 252 3.19 0.69 P

1978–1985 105 1.33 0.62 P

1985 135 1.71 0.45 P

1986–1997 63 0.79 0.27 P

1997 413 5.23 0.78 P

1999–2000 17 0.21 0.07 F

May 2004 71 0.89 0.27 F

December 2004 154 1.94 0.38 F

December 2005 62 0.90 0.18 F

March 2010 158 2.00 0.29 S

May 2010 55 0.69 0.085 S
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where AS is the area of interest (m2) and ALTi is the total area (m
2)

of all landslides in the time slices i of an inventory. The relative
area that is actually unaffected by landslides over the entire period
is calculated as:

Actually unaffected areat ¼ ∪t
i¼1 ALTi

� �
=AS ð2Þ

where ∪ denotes the spatial union among landslides in consecu-
tive time slices, i.e. the total area covered by landslides after
accounting for overlaps.

The second method provides a standardized measure of over-
lap between landslides in consecutive time slices. This overlap
index (−), earlier termed relative area overlap (Maruca and
Jacquez 2002), is calculated as:

Overlap indext−tþn ¼ ALt∩ALtþn

ALt þ ALtþn− ALt∩ALtþnð Þ ð3Þ

where t is the assumed date of occurrence of landslides from a first
time slice (see below), and t + n is the average date of occurrence
of landslides in a later time slice, and ∩ denotes the geometric
intersection (i.e. the overlapping area) between two time slices.
This is qualitatively similar to the error index that has been used to
calculate the positional mismatch for pairs of corresponding land-
slides in the two inventories (Ardizzone et al. 2002; Carrara et al.
1992; Santangelo et al. 2015). The overlap index is non dimensional,
ranges from zero (no overlap) to unity (perfect overlap) and is not
a function of the size of the study area. The overlap index was
calculated for consecutive time slices and for pairs of time slices
that are two or three time slices apart. The value for the overlap
index was then related to the time that passed between time slices.

As explained above, in some time slices, there is more uncer-
tainty about the date of occurrence of a landslide than in others.
Uncertainty is larger in the time slices that describe longer periods,

such as the time slice describing landslides that occurred between
1954 and 1977 (see Table 1). In some other cases, the date of
occurrence is relatively well known, for instance in the time slice
made of landslides that occurred after the 01-01-1997 rapid
snowmelt event. These uncertainties, large or small, propagate
into uncertainty about the time elapsed between landslides.
We assumed uniform probability distributions of landslides in
the time slices that describe periods—meaning that landslides
may have happened at any moment during the considered
time slice, with equal probability. This is despite the fact that
there may have been significant rain, snowfall, and snowmelt
events in these periods that may have caused landslides to be
clustered in time. No information about this intra-period
variability was available. Using the uniform probability distri-
butions, we performed stochastic simulation, randomly plac-
ing 10,000 pairs of landslides in the periods of two time slices
and then recording the time passed between each pair. The
median time passed between time slices (t − t + n) was used
as the time passed between time slices, and the first and third
quartile were recorded to express uncertainty of the time
between both time slices. This approach is unbiased and
therefore no bias in consequent analyses is expected.

The third method quantifies the relation between area and
number of overlaps. This method was used to quantify repeated
overlapping over multiple time slices of the multi-temporal inven-
tory. Every time slice of the inventory was rasterized at 1 m reso-
lution, and the cells involved in landsliding in each inventory were
given a value of 1. Then, all raster were summed, resulting in a
raster where the values correspond to the number of overlaps over
the entire multi temporal inventory. The analysis was performed
using standard raster operations in ArcGIS. This measure does not
change with the order of time slices, but is affected by the area
involved in landsliding in the multi-temporal inventory and by the
number of time slices in it. Therefore, it was compared with the
number of overlaps from a null model in which the observed area
of landsliding per time slice was assigned randomly to the study
area, regardless of slope or lithology. Since spatial information was

Fig. 2 Overview of the analyses performed on the multi-temporal landslide inventory to test hypothesis 1 (a, b, c) and hypothesis 2 (d)
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not needed for this calculation, the null model was calculated in
Microsoft Excel.

Effect of different spatial association
Spatial associations between landslides from a given time slice
and the immediately preceding time slice were used (Fig. 2
(d)). Four classes of spatial association were defined (Fig. 3).
The ‘inside’ class contains landslides that are completely in-
side landslides from the earlier time slice. The ‘partial’ class
contains landslides that partially overlap landslides from the
earlier time slice. The ‘touching’ class contains landslides that
are outside landslides from the earlier time slice, but that
touch landslides from this time slice, and the ‘outside’ class
contains landslides that neither overlap nor touch landslides
from the earlier time slice. This classification was chosen
based on the assumption that different spatial associations
between landslides relate to different mechanisms in which
landslides affect the probability of follow-up landslides.
Landslides that are ‘inside’ earlier landslides, for instance,
may particularly point to saturation of materials on top of
an earlier landslide (Igwe and Fukuoka 2015), and landslides
that are ‘touching’ an earlier landslide may point to a slope-
effect because slopes are most strongly changed along the
borders of earlier landslides (van Westen et al. 2006). The
‘outside’ class was considered likely unrelated to earlier land-
slides, by any mechanism.

Standard GIS tools were used to separate landslides from
each time slice of the multi-temporal inventory, except the
first time slice, into the four classes of association. The sub-
classes of association (sub-inventories) were then merged over
the different time slices. Then, the following geometrical prop-
erties were calculated for landslides in each merged sub-

inventory: minimum, mean and maximum area, roundness
(a measure of shape) and the three parameters of the inverse
gamma distribution that are often used in landslide research
to describe frequency–area relationships (Malamud et al.
2004), see below. This allowed us to test our second hypoth-
esis that landslides following up on earlier landslides have
different geometric properties.

Minimum, mean, median and maximum sizes of landslides
were calculated with standard GIS tools. Roundness (−) is intro-
duced here as a simple measure of shape:

Roundness ¼ theoretical circular perimeter
actually measured perimeter

ð4Þ

where the theoretical circular perimeter (m) is the perimeter of the
landslide, if it would have been perfectly round with the same area:

Theoretical circular perimeter ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
AL

π

� �s
ð5Þ

where AL is the area of the landslide (m
2). Roundness values closer

to unity indicate round shapes, values close to zero indicate more
elongated shapes (Fig. 4). In earlier research, a landslide geometry
generating algorithm was used to approximate the shape of land-
slides using geometric features such as upper and lower length and
lateral boundary of the landslide scar (Chiang 2015). Taylor et al.
(2015) approximated landslide shapes by ellipses and then used the
length to width ratio of these ellipses to characterize shape. We
argue that the proposed roundness is a simpler measure that

Fig. 3 Examples of spatial association of landslides with landslides from the previous time slice

Landslides



makes no assumptions about landslide shape that nonetheless
captures the most important difference between landslide shapes.

To estimate power-law parameters, we fitted the three-
parameter inverse gamma distribution (Malamud et al. 2004) to
the four sub-inventories, using LANDSTAT software (version 9)
(Rossi and Malamud 2014). The three-parameter inverse gamma
distribution is:

pdf Aljα; η;λð Þ ¼ λ2α

Г αð Þ
� �

1
xþ η2

� � αþ1ð Þ" #
exp −

λ2

xþ η2

� �
ð6Þ

Parameter α controls the steepness of the right tail of the
probability density function. Parameter η controls the steepness
of the left tail of the probability density function. Parameter λ
controls the position of the rollover. From these parameters, the
rollover, the most likely size of a landslide, can be calculated.
Maximum likelihood estimation was used and uncertainties for
the three parameters and the rollover were calculated using
bootstrapping with 250 repetitions.

We used standard Analysis of Variance to test whether differ-
ences in landslide properties between sub-inventories are signifi-
cant, complemented with T-tests for normally distributed
properties (Student 1908) and U-tests for non-normally distribut-
ed properties (Mann and Whitney 1947).

Results

Degree of overlap
Over time, significant differences occur between the theoretically
unaffected area (Eq. 1) and the actually unaffected area (Eq. 2)
(Fig. 5). After the last time slice in the inventory, from May 2010,
7.8 % of the area has not experienced landsliding during the entire
period of observation because of overlapping landslides. Clearly,
there is a significant amount of overlap between landslides.

The overlap index (Eq. 3) appears to be negatively correlat-
ed with the time passed between time slices, although variation
in overlap index is large, especially when observations are close
together (Fig. 6). The overlap of landslides with those from an
earlier time slice appears to decrease substantially over a peri-
od of about 10 years. This suggests that the cause of new
landslides is not completely external. If the cause of overlap

was completely external (for instance through repeated
landsliding at particularly dangerous locations), then no rela-
tion between overlap index and the amount of time passed
between slides should exist.

Instead, earlier landslides themselves appear to affect the prob-
ability of reoccurrence to a substantial degree—probably through
legacy effects. Importantly, this effect decreases over time. This
means that if a landslide happened longer ago, it is less likely to be
overlapped by a future landslide. However, this is not always the
case: some time slices that are close together in time, have low
overlap index. Apparently, not all landslides affect their environ-
ment such that there is a larger probability for future landslides.

About 200 m2 of the study area has been affected seven times by
landslides in the 17 time slices of the multi-temporal inventory
(Fig. 7). In the null model in which landslide cells are placed
randomly in the study area, seven overlaps do not occur. Overall,
much more of the study area has been affected by three or more
overlapping landslides than in the random model, whereas the
area where no overlapping occurs, or where only one or two
overlaps occur, is less than in the random model. The relation
between number of overlaps and the logarithm of area is about
twice as steep in the random model than in the dataset, again a
clear sign of spatial overlap between follow-up landslides.

Effect of spatial association
Overall, 28 % of landslides are in the classes inside (9 %), partial
(10 %) and touching (9 %). The remaining 72 % of landslides
belong to the ‘outside’ class.

The mean size of the landslides with spatial association ‘inside’,
‘partial’ and ‘touching’ is larger than those with spatial association
‘outside’ (Table 2, p < 0.001). The subtle decrease in mean area
from ‘inside’ to ‘partial’ and ‘touching’ is not statistically signifi-
cant (p > 0.05).

Shape factor
Landslides that are not spatially associated with landslides
from the immediately preceding time slice appear to be more
round than other landslides (Fig. 8). The type of spatial
association is a significant determinant of shape (Table 2,
p < 0.001). This is because of the higher roundness of the
‘outside’ type—all other types of association are not signifi-
cantly different from each other (p > 0.05).

Fig. 4 Example shapes illustrating different degrees of roundness
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Frequency–area statistics
The frequency–area distributions for the four sub-inventories
representing different spatial association exhibit power-law scaling
for large and medium landslides with a rollover for small land-
slides (Fig. 9a–d). The three parameters of the inverse gamma
distribution, and the resulting rollover, differ between sub-
inventories (Table 2). When the strength of spatial association
between landslides decreases (from ‘inside’ to ‘partial’ and ‘touch-
ing’), the exponent of the inverse power-law (α) increases. The
average value of (α) in the spatially associated sub-inventories is
greater than in the ‘outside’ spatially un-associated sub-inventory.
Interestingly, the value of the rollover is much smaller for the un-
associated ‘outside’ sub-inventory than for the three other sub-
inventories. The rollover also decreases with decreasing strength
of spatial association. All differences between sub-inventories were
significantly different (p < 0.001).

Discussion
In this discussion, we will first focus on our findings relating to the
two hypotheses, before considering wider implications.

Do landslides follow landslides?
We found that the multi-temporal landslide inventory of our study
site recorded substantial overlap between landslides and an

associated reduction in the fraction of the study area affected by
landslides (Fig. 5). The overlap is more for landslides happening
sooner after an earlier landslide and decreases over a timescale of
about 10 years (Fig. 6). This indicates that landslides in our study
site do follow landslides. Importantly, it also suggests an internal
control on the landslide system next to the range of intrinsic
controls such as lithology, slope steepness and vegetation, which
are commonly the focus of landslide susceptibility studies
(Guzzetti et al. 2005; Van Westen et al. 1997). We propose that
the mechanisms that can explain the nature of this internal control
(i.e. a positive landslide-landslide effect that decreases over time)
fit into two categories. First, the probability of landslides overlap-
ping earlier landslides may decrease over time because the de-
posits of an earlier landslide stabilize due to, e.g. a more stable
slope geometry, the regrowth of vegetation and the repair of soil
structure and cohesion. Second, the probability can decrease over
time because follow-up landslides have already occurred, erasing
topographic instabilities that remained after an earlier landslide.
Targeted field observations with high temporal resolution could
quantify the relative importance of these two reasons by focussing
on vegetation regrowth and detailed topographic evolution.

Regardless of the mechanism, our findings suggest that there is
path dependency among landslides: older landslides act in some
way or other as initiators for follow-up landslides for a certain
period. This is also consistent with the number of landslide

Fig. 6 Overlap index as a function of time between time slices of the multi-temporal landslide inventory; the data shows a higher overlap index for time intervals up to
approximately 10 years

Fig. 5 Theoretically and actually relative unaffected area by landslides in the Collazzone study area
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overlaps over the entire period captured by the multi-temporal
inventory (Fig. 7). This number of overlaps is larger than in the
null model where landslides occur randomly in the study
area—although when considered separately from Fig. 6, this ob-
servation can also be explained by spatial differences in landslide
susceptibility. Such landslide self-organization (Turcotte et al.
2002) into emergent patterns is not captured in traditional
cause-effect studies of landslide susceptibility. It also adds an
important consideration to the discussion about landslide self-
organized critical behaviour (Guzzetti et al. 2002; Hergarten
2003; Turcotte et al. 2002). Apparently, not all landsliding potential
(‘metastable regions’, Guzzetti et al. 2002, p171) is removed by a
landslide—instead first landslides appear in some cases to in-
crease the potential for follow-up landslides. The interplay be-
tween the traditional cause-effect approach and path dependency
in a self-organization approach should be explored and quantified
in follow-up studies.

The period over which the positive landslide-landslide effect is
observed—about 10 years in our study area—is very likely specific
for the local settings and other areas with similar climate, geology,
topography, soils and vegetation. We maintain that this period is a
measure of landslide path dependency that reflects the rate of
processes that reduce landslide susceptibility after a first landslide,
or the rate at which follow-up landslides occur in our study site

(see above). In areas with more frequent landsliding, or in sites
with more rapid vegetation growth that restores stability, it may be
shorter (all other factors being equal).

Are follow-up landslides different?
We also hypothesised that follow-up landslides have different
properties in terms of size, shape and frequency–area statistics.
This is to some extent the case. Mainly, the mean size of landslides
is lower for landslides that are not spatially associated with earlier
landslides, than for those that are. Apparently, on average, follow-
up landslides are larger (although there are also less of them,
Table 2). In addition, our empirical data suggest that there may
be a slight decrease of size with decreasing strength of spatial
association between landslides (from ‘inside’ to ‘partial’ to ‘touch-
ing’ landslides).

The larger average size of follow-up landslides may be ex-
plained by conditions that have changed after occurrence of an
earlier landslide, leading to increased landslide susceptibility.
These changed conditions may relate to changes in surface mor-
phology (Schuster and Highland 2003), sediment properties (Chen
2009), the vegetation (Singh et al. 2014), slope angle and land use
(van Westen et al. 2006).

The shape of follow-up landslides differs from the shape of
other landslides (Table 2). Landslides that are spatially asso-
ciated with earlier landslides are less round (on average) than
those that are not (p < 0.01). The difference in roundness can
be explained by two mechanisms. First, weaker materials in
an earlier landslide may move faster, and therefore further
than other materials. This would then be reflected in less
round shape. Second, especially for landslides of the ‘touch-
ing’ class, an earlier landslide may be higher in the landscape,
deflecting landslides downslope, which leads to them being
more elongated.

Both spatially associated landslides (‘inside’, ‘partial’ and
‘touching’ sub-inventories) and spatially un-associated land-
slides (outside sub-inventory) follow a power-law scaling in
the right tail of inverse gamma distribution for large and
medium landslides with an exponential rollover in the left
tail of distribution. However, the exponent of the inverse
power-law (α) and rollover (λ) differs between spatially asso-
ciated landslides (even between sub-inventories) and spatially

Fig. 7 Area versus number of overlapping landslides. The area experiencing more
than four overlaps is larger for the observed dataset than for the random dataset

Table 2 Geometrical and area–frequency distribution properties of landslides depending on spatial association

Inventories Inside Partial Touching Outside

Area (ha) n 165 199 185 2480

Min 0.03 0.01 0.02 0.002

Mean ± SD 0.91 ± 0.013 0.89 ± 0.010 0.82 ± 0.011 0.51 ± 0.010

Median 0.38 0.46 0.46 0.21

Max 6.90 5.70 7.50 1.73

Roundness Mean ± SD 0.79 ± 0.10 0.78 ± 0.12 0.78 ± 0.12 0.83 ± 0.11

Area–frequency statistics α ± SD 1.04 ± 0.08 1.28 ± 0.50 1.78 ± 0.25 1.32 ± 0.04

η ± SD 16.2 ± 4.3 28.9 ± 2.6 32.8 ± 4.2 19.3 ± 0.5

λ ± SD 52 ± 6 69 ± 5 90 ± 11 49 ± 1

Rollover ± SD (m2) 1073 ± 157 1317 ± 158 1858 ± 241 670 ± 25
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un-associated landslides (Fig. 9a–d). The exponent of inverse
power-law (α) on average in spatially associated sub-inventories
(i.e. ‘inside’, ‘partial’ and ‘touching’) is greater than un-associated
sub-inventory (‘outside’). For landslides that are spatially associ-
ated with earlier landslides, the exponent of power-law (α) in-
creases when the strength of the spatial association (from ‘inside’

to ‘touching’) decreases (Table 2). The exponent of the inverse
power-law (α) for ‘touching’ landslides (α = 1.78) seems consistent
with themost reported range of values in the literature (1.5 < α < 2.5)
(Borgomeo et al. 2014; Guzzetti et al. 2002; Malamud et al. 2004; Van
Den Eeckhaut et al. 2007). The other landslides (i.e. ‘inside’, ‘partial’
and ‘outside’) exhibited lower values for exponent of the inverse
power-law (α) (i.e. 1 < α < 1.5) (Table 2). The small exponent of the
power-law in the sub-inventories suggests that larger landslides are
contributing to each sub-inventory (Borgomeo et al. 2014; Van Den
Eeckhaut et al. 2007).

The rollover (λ), which represents the size of the most
frequent landslide, is larger for spatially associated landslides
than for non-spatially associated landslides (‘outside’, Table 2).
Interestingly, the rollover for the ‘touching’ landslides is three
times larger than for the ‘outside’ landslides and larger than
for the ‘inside’ and the ‘partial’ landslides. Analogously to our
explanation for lower roundness, this may be explained by a
boundary effect that can be caused by steeper slopes on the
sides of an earlier landslide. The lateral boundary of a land-
slide is an intrinsically more disturbed part of a landslide,
where the mechanical properties are weaker and infiltration is
commonly larger. These factors contribute to instability, and
hence to larger landslides.

Fig. 8 Roundness as a measure of shape for different classes of spatial association.
Error bars indicate the standard error

Fig. 9 Comparison of the inverse gamma probability density function fit to frequency densities from four landslide sub-inventories representing different spatial
association types
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Implications for landslide susceptibility assessment
The traditional division between landslide susceptibility and haz-
ard is that the former describes spatial differences in landslide
probability, and the latter describes the likelihood of landslide
occurrence in time and space (Guzzetti et al. 1999; Varnes 1984).
Our results suggest that a time-related internal control—the time
that passed since an earlier landslide occurred—also plays a role
in determining how susceptible a location is to landsliding.
Apparently, susceptibility is not time-invariant and contains a
temporal element that traditionally was seen as part of the defini-
tion of hazard. Therefore, spatial and temporal probabilities of
landsliding are not independent (Guzzetti et al. 2005). This means
that the susceptibility of a location changes over time, as the effects
of an earlier landslide slowly disappear. This can be expressed as:

susceptibilitys;t

¼ f conditioning attributess; previous landslidess;t
	 


ð7Þ

where the susceptibility for landsliding of a certain location s at
time t is not only a function of conditioning attributes such as
slope or lithology, but also of the time passed since an earlier
landslide in the same location or close by. In our dataset, the
function describing the effect of earlier landslides on susceptibility
is positive and decreases over time (e.g. Fig. 6). An earlier landslide
appears to make a location more likely to experience landsliding
again over a period of about 10 years, after which susceptibility
appears to return to its previous value (Fig. 10). We explored
possible mechanisms for this effect above.

The effect of the type of spatial association with (or the
distance to) an earlier landslide is complex (Table 2). In
places, a closer spatial association of a landslide with an
earlier landslide leads to properties closer to spatially un-
associated landslides (e.g. for the rollover), whereas in other
places it leads to properties that are more different from un-
associated landslides (e.g. the mean area) (Table 2). This
complexity should be further researched since it may lead to
a deeper understanding of the processes causing follow-up
landsliding.

Other geomorphic settings could lead to different functions
describing the effect of earlier landslides. For instance, exhaustion
of sediment after landsliding, which occurs in locations where only

little soil overlies bedrock (e.g. the steep basalt slopes of the
Drakensberg in South-Africa (Singh et al. 2008)), would lead to a
decreasing of landslide susceptibility instead of an increase. Given
that weathering is required for new soil to form, it would also
probably be a longer term effect than the 10 years that we observed
(Fig. 6). The exhaustion of soft material apparently plays no
important role in our study site—fitting with its geology of pre-
dominantly soft, easily weatherable rocks. A complicating factor is
that when the duration of the effect of landslides on landslide
susceptibility increases much beyond a decade, other slow changes
will also start affecting susceptibility, such as land use changes (e.g.
deforestation, afforestation and changes in agricultural practises)
and climate changes. This makes it more difficult to observe the
effect that landslides themselves have on susceptibility.

The decreasing temporal effect of earlier landslides on suscep-
tibility is to some extent comparable with the legacy effect of
earthquakes on the occurrence of earthquake-induced landslides
(Lin et al. 2007; Marc et al. 2015; Parker et al. 2015). For instance,
Marc et al. (2015) demonstrated that landslide rates were signifi-
cantly elevated within 0.7–4.5 years after four earthquakes with
magnitude higher than 6 Richter. After this, rates dropped gradu-
ally back to pre-earthquake levels.

Implications for mapping and monitoring of landslide populations
Most landslide inventories are not multi-temporal, although they
do often describe landslides that occurred over a longer period or
in response to several events. From such inventories, it is not
possible to estimate the time-dependent effect of landslides on
landslide susceptibility. In settings where that effect is strong, this
may lead to susceptibility assessments that are biased. In statistical
terms, this would be because the landslide observations used to
estimate a susceptibility model or map are not independent. In
geomorphic terms, if the landslide-landslide effect is positive and
decreases over time (Fig. 6), resulting susceptibility maps would
probably be biased to a smaller range of conditioning attributes
than would be otherwise the case. Some places that are susceptible
to landsliding would then possibly be considered safe. In case of a
negative landslide-landslide effect, they would probably be biased
to a larger range of conditioning attributes. In this case, some
places that are safe would possibly be considered susceptible.
How substantial these biases should be the subject of further study.
Clearly, this calls for more multi-temporal landslide inventories.

Fig. 10 A landslide susceptibility map bases on slope units (coloured polygons) with the occurrence of landslides over time (ellipses with black outline). In the
susceptibility map, green means low risk, yellow means moderate risk, light red means high risk and dark read means very high risk. The implication of our work is
seen in the clustering of landslides after a first landslide happens within a time scale of about 10 years. This is reflected in a temporarily higher susceptibility in the affected
slopes. The two temporarily highly susceptible slopes (dark red polygons) experience different landslide dynamics as a result of different landslide histories
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Conclusions
In our study area, landslides follow landslides—and they do so
more often than expected based on a random control. This land-
slide path dependency is strongest over a timescale of about
10 years, after which the effect of earlier landslides on follow-up
landslides appears to decrease. This legacy effect has a consider-
able consequence on the relative area that is affected by landslides.
Follow-up landslides differ from non-follow-up landsides in terms
of size and shape: they are typically larger and less round. Also, the
exponent of the power-law (α) and the value of rollover in spa-
tially associated landslides on average are greater than in spatially
un-associated landslides. From these findings, we conclude that
landslide susceptibility in our study area should be considered as a
dynamic measure that reflects path dependency and self-
organization in landslides. Susceptibility changes because the ef-
fect of previous landslides on susceptibility, which in our case is
positive, decreases over a period of about 10 years. Although our
research concentrated on the Collazone region in Italy, we expect
these results to be relevant for other landslide prone areas as well.
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