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Abstract. Landslide susceptibility (LS) assessment provides
a relative estimate of landslide spatial occurrence based on
local terrain conditions. A literature review revealed that LS
evaluation has been performed in many study areas world-
wide using different methods, model types, different parti-
tion of the territory (mapping units) and a large variety of
geo-environmental data. Among the different methods, sta-
tistical models have been largely used to evaluate LS, but
the minority of articles presents a complete and comprehen-
sive LS assessment that includes model performance analy-
sis, prediction skills evaluation, and estimation of the errors
and uncertainty

The aim of this paper is to describe LAND-SE (LAND-
slide Susceptibility Evaluation) software that performs sus-
ceptibility modelling and zonation using statistical models,
quantifies the model performances, and the associated uncer-
tainty. The software is implemented in R, a free software en-
vironment for statistical computing and graphics. This pro-
vides users with the possibility to implement and improve
the code with additional models, evaluation tools, or output
types. The paper describes the software structure, explains
input and output, and illustrates specific applications with
maps and graphs. The LAND-SE script is delivered with a
basic user guide and three example data sets.

1 Introduction

Landslide susceptibility (LS) is the likelihood of a land-
slide occurring in an area based on local terrain conditions
(Brabb, 1984). In mathematical language, LS quantifies the
spatial probability of landslides occurrence in a mapping
unit, not considering the temporal probability of failure or

the magnitude of the expected landslides. Landslide suscepti-
bility has been evaluated in many locations around the world
since the early 1980. Authors have evaluated LS using differ-
ent partitioning of the territory as mapping units, diversified
combination of explanatory variables, and distinct methods.
Methods for the LS evaluation and mapping can be broadly
grouped in geomorphological mapping, analysis of landslide
inventories, heuristic- or index-based methods, statistically
based models, and geotechnical or physically based mod-
els (Guzzetti et al., 1999). Among the different approaches,
the statistical models have been largely used to assess LS.
A recent revision of papers on statistical models (Malamud
et al., 2014), have shown that more than 95 different model
types were proposed in the literature. Malamud et al. (2014)
grouped them in 20 classes, with the most frequent corre-
sponding to logistic regression, neural networks, and data
overlay. According to them, the relevant number of statis-
tical models described in the literature is probably related to
the recent increasing number of commercial and open-source
packages for statistical analysis that can combine and inte-
grate geographical data and/or Open Source Geographic In-
formation System (GIS) (i.e. SAGA GIS, GRASS GIS). The
review analysis also revealed that authors not always present
a complete and comprehensive assessment of the models per-
formance, the prediction skills evaluations, and the estima-
tion of errors and uncertainty. On account of the large variety
of applications of statistical approaches, but the scarcity of
model evaluation and quantification of the errors, we have
implemented LAND-SE (LANDslide Susceptibility Evalua-
tion), a software developed to prepare landslide susceptibility
models and zonation at basin and regional scale, with spe-
cific functions focused on results evaluation and uncertainty
estimation. The software is implemented in R, a free soft-
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ware environment for statistical computing and graphics (R
Core Team, 2015). This provides users with the possibility
to implement and improve the code with additional models,
evaluation tools, or output types.

The paper describes LAND-SE structure, explains input
and output, illustrates them with maps and graphs, some ap-
plications, and provides a basic user guide. The description
of the characteristics and results of statistical models and the
advantage/disadvantage of model evaluation tools and ma-
trixes is outside the scope of this paper. We have introduced
a test area only to show and demonstrate possible potential
applications and different output of LAND-SE.

The paper is structured as follows: Sect. 2 describes the
software, its modelling approaches and the main output
types, Sect. 3 illustrates the test area to illustrate the range of
applications and different output of LAND-SE, and Sect. 4
formalizes some final remarks. The paper is completed by a
Supplement containing the software code, a user guide and
example data sets.

2 Software description

LAND-SE, a software for landslide susceptibility modelling
and zonation was implemented and improved with respect to
the code proposed by Rossi et al. (2010). The new version is
coded in R (R Core Team, 2015) and it is open source. The
software holds on the possibility to perform and combine
different statistical susceptibility modelling methods, eval-
uate the results and estimate the associated uncertainty. As
compared to the previous version (Rossi et al., 2010), the
main improvements are related to (i) the possibility to use
different cartographic units (pixel-based vs. polygon-based);
(ii) the capacity to perform different types of validation anal-
yses (spatial, temporal, random); (iii) the ability to evaluate
the model prediction skills and performances using success
and prediction rate curves (Chung and Fabbri, 1999, 2003);
(iv) the possibility to provide results in standard geographi-
cal formats (shapefiles, geotiff); (v) an optimization and sta-
bilization of the modelling algorithms; (vi) the possibility to
use additional computational parameters to tune the calcula-
tion procedure, for the analysis of large data sets. This soft-
ware version presents a relevant computer code restructuring
(code refactoring), allowing for the implementation of new
single statistical approaches (e.g. support vector machines,
regression tree-based approaches) that can be added as new
modules, preserving the basic software structure. The new
structure simplifies the maintainability and improvement of
the source code.

Figure 1 shows the logical schema of LAND-SE subdi-
vided in the following five functions:

i. input data preparation

ii. single susceptibility models and zonation
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Figure 1. Logical schema of the LAND-SE software for landslide
susceptibility modelling and zonation.

iii. combination of single models using a logistic regression
approach

iv. evaluation of single and combined LS models

v. estimation of uncertainty of single and combined LS
models.

2.1 Data input preparation

The input data preparation, follows two steps: (i) the choice
of the cartographic unit and (ii) the selection of the criteria
for the definition of the training and the validation data set.

LAND-SE is designed to use different cartographic units,
reducible to pixels or to polygon-like subdivisions (e.g. slope
units, geomorphological subdivisions, administrative bound-
aries). The input data shall be provided in tabular format,
where each line represents one mapping unit with the as-
sociated attributes. Since raster data cannot be used directly
as input, a preliminary conversion is required to perform the
pixel-based analysis.
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The choice of the mapping unit is crucial because it also
determines how landslides are sampled to prepare the train-
ing and prediction (validation) subsets for the susceptibility
modelling. In grid-based susceptibility assessments, several
strategies are used to sample landslide pixels, the more fre-
quent are (1) single pixel selected as the centroid of the entire
landslide or the scarp area; (2) all the pixels within the entire
landslide body or the scarp area; (3) the main scarp upper
edge (MSUE) approach, which selects pixels on and around
the landslide crown-line; and (4) the seed-cell approach that
selects pixels within a buffer polygon around the upper land-
slide scarp area and sometimes part of the flanks of the ac-
cumulation zone (Atkinson et al.,1998; Atkinson and Mas-
sari, 2011; Goetz et al., 2015; Heckmann et al., 2014; Hussin
et al., 2016; Regmi et al., 2014; Van Den Eeckhaut et al.,
2010). The analysis of model sensitivity to different landslide
mapping strategies and the significance of different variable
combinations can be performed using LAND-SE, preparing
different input files. Given the numerous possibility of varia-
tions required to set this type of evaluation, we decided not to
include such functionalities in the current LAND-SE release,
but we designed and implemented a command line interface
(see Sect. S5 of the LAND-SE User Guide v1.0 in the Sup-
plement) to make this analysis possible using external proce-
dures.

To identify and separate the training and the validation
data set, different criteria can be adopted. Temporal, spatial,
or random subdivisions can be selected guiding the type of
validation analysis. When the temporal validation is selected,
secondary information not used in the model training must
be provided for the area under analysis. Adopting a tempo-
ral subdivision approach, the training and the validation set
are composed by the same mapping units and the analysis
is performed using the same explanatory variables but dif-
ferent grouping variable (e.g. a different landslide inventory
map, often more recent than what is used during the training
phase). Differently, in the spatial and random approach, the
training, and the validation data set contain different map-
ping units, characterized by different grouping and explana-
tory variables. The main difference between the spatial and
the random validation is the method chosen to separate the
training and the validation data set: in the first case, the data
sets are spatially different (the two areas can be contiguous or
not), in the second the subdivision is performed using a ran-
dom selection. For the pixel-based approach, the definition of
the training and the validation data set can follow the same
criteria, but in the literature, the subdivision is commonly
performed using a random selection (Van Den Eeckhaut et
al., 2010; Felicísimo et al., 2013; Petschko et al., 2014).

2.2 Single susceptibility models estimation (single
susceptibility maps)

LAND-SE uses different supervized multivariate statistical
models to evaluate the landslide spatial probability, identify-

ing and quantifying the relation between dependent and in-
dependent variables. According to previous studies (Carrara
et al., 1991; Rossi et al., 2010; Guzzetti et al., 2006, 2012),
dependent variable (or grouping variable) is computed as the
absence/presence of landslides in the mapping units and is
usually derived from a landslide inventory. The independent
variables (explanatory variables) are obtained from available
thematic information (morphometry, land cover/use, lithol-
ogy, etc.). Each model is executed in two phases: a train-
ing phase, where the model reconstructs the relationships be-
tween the dependent and the independent variables, and a
validation phase, where these relationships are verified in dif-
ferent conditions. LAND-SE calculates landslide susceptibil-
ity with four single models (Rossi et al., 2010): (i) linear dis-
criminant analysis (LDA) (Fisher, 1936; Brown, 1998; Ven-
ables and Ripley, 2002), (ii) quadratic discriminant analysis
(QDA) (Venables and Ripley, 2002), (iii) logistic regression
(LR) (Cox, 1958; Brown, 1998; Venables and Ripley, 2002),
and (iv) neural network (NN) modelling (Ripley, 1996; Ven-
ables and Ripley, 2002). The logistic regression model was
significantly improved with respect to Rossi et al. (2010),
substituting the previous code based on the “Zelig” package
(Owen et al., 2013), with a more stable and performing code
based on the “glm” function, included in the well-tested base
R implementation (R Core Team, 2015).

2.3 Combined model using a logistic regression
approach (combined susceptibility maps)

LAND-SE uses a combination model (CM) based on a logis-
tic regression approach, where the grouping variable is the
presence or absence of landslides in the mapping units, and
the explanatory variables are the forecasts of the selected sin-
gle susceptibility models (Rossi et al., 2010). Similarly, to
the single logistic regression model, the original code based
on the Zelig package was substituted with the glm function.
LAND-SE allows one to enable, or not enable, the execution
of the combined model selecting different combinations of
single models.

2.4 Susceptibility model evaluation

In the training phase, LAND-SE reconstructs the relation-
ships between dependent and independent variables and eval-
uates the prediction skills of single and combined models
(i.e. the capability to predict the original data). In the vali-
dation phase, LAND-SE verifies the results in different con-
ditions and evaluates the models capability to predict inde-
pendent data. Model output of both phases is evaluated using
the same tools and in particular the following statistical met-
rics and indices:

– the dependence among explanatory variables (Belsley,
1991; Hendrickx, 2012);
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– contingency tables (i.e. confusion matrixes) (Jollifee
and Stephenson, 2003);

– contingency plots or fourfold plots summarising the
mapping units correctly and incorrectly classified by the
models (Jollifee and Stephenson, 2003);

– error maps showing the geographical distribution of the
mapping units correctly and incorrectly classified by the
models (Rossi et al., 2010);

– plots showing receiver operating characteristic (ROC)
curves (Green and Swets, 1966; Mason and Graham,
2002; Fawcett, 2006) and the associated area under
curve (AUC) statistics;

– evaluation plots showing the variation of the sensitivity
(hit rate), the specificity (1-false positive rate), and of
the Cohen’s kappa index (Cohen, 1960);

– success and prediction rate curves (Chung and Fabbri,
1999, 2003).

The description and discussion of the characteristics and
advantage/drawbacks of these statistical metrics/indices are
outside the scope of this paper and they will not be described
in detail.

2.5 Uncertainty evaluation (single and combined
susceptibility zonation)

For each single and combined model, LAND-SE evaluates
and quantifies the uncertainty adopting a “bootstrapping” ap-
proach. Bootstrapping is a resampling technique for estimat-
ing the distributions of statistics based on independent ob-
servation. Bootstrapping can refer to any test or metric that
relies on random sampling with replacement (Efron, 1979;
Davison and Hinkley, 2006). The technique has been largely
used to estimate errors and uncertainties associated with clas-
sification models (among the others, Kuhn and Kjell, 2013).
In the training phase, a user-specified number of runs are per-
formed varying the selected data set. Descriptive statistics for
the probability (susceptibility) estimates, including the mean
(µ) and the standard deviation (σ ), are obtained from an en-
semble of model runs (i.e. a user-defined number of LAND-
SE simulations are executed to obtain the two descriptive
statistics). Such information is portrayed in plots showing es-
timates for the model uncertainty in each mapping unit and
in maps showing the geographical distribution of the uncer-
tainty (Guzzetti et al., 2006; Rossi et al., 2010). To model the
uncertainty associated with each LS zonation, the mean and
the standard deviation are fitted using a parabolic function
(Fig. 3d). Such a function is used to estimate the uncertainty
in the validation phase. The map showing the geographical
distribution of the uncertainty can provide additional and rel-
evant information for the use of LS zonation in environmen-
tal planning studies. A proper interpretation of the map may

provide for each mapping unit a proxy of a degree of confi-
dence associated with the LS estimate.

The sampling procedure implemented in LAND-SE is
only focused to the estimation of the uncertainty associated
with the susceptibility zonation. However, the software also
outputs estimates of the performance variability in the train-
ing and validation phases providing confidence levels in the
ROC plots (NCAR, 2014) and in the fourfold or contingency
plots (Meyer et al., 2015). In addition, the execution of anal-
yses that investigate sensitivity or variability of model results
when varying inputs (e.g. using sampling procedures) is fa-
cilitated by the LAND-SE command line interface, which
makes these analyses possible using external procedures.

2.6 Software output formats

LAND-SE can be executed in two different modes: the stan-
dard that provides textual and graphical results stored re-
spectively in .txt and .pdf, and the geomode providing also
geographical output as shapefiles and GeoTIFF. Some out-
put (i.e. the success and prediction rate curves) are produced
only in the geomode because they require geographical data
(shapefile) as additional input. A complete list of the out-
put with a detailed description is provided in the Supplement
(LAND-SE_UserGuide.pdf).

3 LAND-SE applications

To show LAND-SE functionalities and output types, we use
as example the landslide susceptibility modelling and zona-
tion originating from two articles published by Reichenbach
et al. (2014, 2015). In the area selected, as an example, we
perform the following analysis, using different configura-
tions:

– polygon-based landslide susceptibility zonation

– pixel-based landslide susceptibility zonation

– landslide susceptibility scenarios zonation.

The applications use different mapping units and distinct
schema to select the training and validation data set. The last
analysis illustrates an application focused to evaluate the im-
pact of different land use scenarios on landslide susceptibil-
ity. This type of analysis and results can be relevant informa-
tion in environmental planning and management.

3.1 Description of the example area and available data

A small area was selected to show applications and out-
put of LAND-SE. The area is located in the eastern por-
tion of the Briga catchment (Fig. 2), in the Messina province
(Sicily, southern Italy). The elevation ranges from the sea
level to about 500 m and the terrain gradient from 0 to 80◦.
Landslides, including shallow soil slides and debris flows,
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Figure 2. Shaded relief of the study area located in the Briga catch-
ment, along the Ionian coast of Sicily (Italy). Red polygons show
landslides triggered by the 1 October 2009 rainfall event.

deep-seated rotational and translational slides, and complex
and compound failures (Varnes, 1984), are abundant, and
caused primarily by rainfall (Ardizzone et al., 2012; Reichen-
bach et al., 2014, 2015). On 1 October 2009, the Briga
catchment and the surrounding areas were hit by an intense
storm (Maugeri and Motta, 2011) that triggered more than
1000 shallow landslides, mainly shallow soil slides and de-
bris flows (Varnes, 1984), caused 37 fatalities, numerous in-
jured people and severe damages in the affected villages and
along the transportation network.

After the event, a detailed landslide inventory map at
1 : 10 000 scale was prepared for the entire Briga catchment
(Ardizzone et al., 2012). The inventory was obtained through
a combination of field surveys carried out in the period from
October to November 2009, and visual interpretation of pre-
event and post-event stereoscopic and pseudo-stereoscopic
aerial photographs. The inventory map shows the distribu-
tion and types of landslides triggered by the 1 October 2009
rainfall event (Fig. 2), and the distribution and types of pre-
existing landslides. In addition, two maps reporting the land
use in different periods were prepared exploiting available
aerial photographs and very high resolution (VHR) satel-
lite imagery (Reichenbach et al., 2014, 2015). The first map
was derived from the analysis of the same black and white
aerial photograph used to map pre-event landslides. The sec-
ond map was obtained from the analysis of two QuickBird
satellite images, the first taken on 2 September 2006 and the
second on 8 October 2009 (Mondini et al., 2011).

In the area, landslide susceptibility zonation was prepared
using two mapping units: pixels and slope units. The slope
units (SU) are terrain subdivisions bounded by drainage and
divide lines (Carrara et al., 1991). SU were outlined using
a 5 m resolution DEM (digital elevation model) obtained re-
sampling the VHR DEM provided by the Italian national De-
partment for Civil Protection and using r.slopeunits, a soft-

ware recently written in Python for GRASS GIS (Marchesini
et al., 2012; Alvioli et al., 2016). The size and the geometrical
characteristics of the SU are controlled by modelling param-
eters defined by the user including the minimum half-basin
area (Metz et al., 2011) and the slope aspect variability. In
the study area, the procedure identified 238 SU, which repre-
sent the polygon-based mapping units for the determination
of LS. To explain the spatial distribution of landslides (Car-
rara et al., 1991, 1995), for each slope unit, we calculated the
percentage of the event landslides as dependent (grouping)
variables and the following explanatory variables: (i) descrip-
tive statistics (range, mean, standard deviation) of elevation
and slope; (ii) the percentage covered by each land use class;
and (iii) the percentage covered by old landslides.

For the pixel-based analysis, we used the VHR DEM
(1 m× 1 m) that accounts for about 5 million cells. Maps of
the elevation, slope, land use, and of the presence/absence
of old landslides were used as explanatory variables in the
analysis. The presence/absence of event landslides was used
as dependent variable (Carrara et al., 1991, 1995; Guzzetti
et al., 2006). The data originally in polygon format were
first converted in raster and all the data were converted to
the tabular format to be suited for LAND-SE (see LAND-
SE_UserGuide.pdf for details).

3.2 Polygon-based landslide susceptibility zonation

This example is focused to illustrate landslide susceptibility
zonation prepared using the slope unit as mapping unit. Two
spatial criteria were used to define the training and validation
data set, the first based on a random selection and the second
on the subdivision of the entire catchment in two contiguous
areas (north and south).

In the first case, the training set contained 70 % of the to-
tal slope units and the validation corresponded to the entire
basin. Landslide susceptibility models were trained using a
subset of available data and results were applied in validation
to the entire study area. Figure 3 shows the main graphical
and geographical output obtained during the training and the
validation phases, including susceptibility, error and uncer-
tainty maps, fourfold (contingency) plot, success and predic-
tion rate curves, ROC plot, evaluation, and uncertainty plots.
For simplicity, the figure shows only results of the combined
model, but output for each single model are available and
can be exploited for further analysis. In the example, the ran-
dom selection criteria resulted in similar training and vali-
dation performances (Fig. 3). This application simulates LS
zonation for a large territory, where landslide information is
spotted and does not cover the entire study area. In such con-
ditions, training cannot be performed on the entire area and a
random selection of the training data set, within the surveyed
area, is a reasonable solution.

In the second case, the SU located in the northern part of
the Briga catchment with respect to the main river were used
as a training set and the SU located in the southern portion as
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Figure 3. Landslide susceptibility maps (CM) for the training data set (a) and the validation data set (b) classified in five unequally spaced
classes (see legend). (a1, b1) Fourfold plots summarising the number of true positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN); (a2, b2) maps of the distribution of the four categories of slope units reported in the fourfold plots; (a3, b3) ROC
plots; (a4, b4) success and prediction rate curves; (c) variation in the model sensitivity, specificity, and Cohen’s kappa index; (d) plot
showing measures of the model error (2σ ) vs. the mean probability (µ), for each slope unit, (black circle); (a5, b5) maps of the geographical
distribution of the model error. Map coordinates and scale bar are shown in Fig. 2.

validation set. Figure 4 shows output, including susceptibil-
ity maps for the combined model, success and prediction rate
curves, and ROC plots. As shown in Fig. 4, the spatial sub-
division resulted in good model skill analysis, but reduced
validation performances, underlying a poor spatial transfer-
ability (von Ruette et al., 2011; Petschko et al., 2014) of the
model (i.e. poor applicability of the resulting model coeffi-
cients to different study areas). This type of application sim-
ulates LS zonation for areas where landslide information re-
quired to train the model is available only for a portion of the
area. Results obtained in the training phase are then applied
to estimate susceptibility to the portion of the territory where
landslide data are not available. This application can be use-
ful to evaluate the possibility to use the same model output
in different portion of territory or in different areas.

3.3 Pixel-based landslide susceptibility zonation

This example shows a landslide susceptibility zonation pre-
pared using the pixel as mapping unit. A random selection
was chosen to prepare the training set and the validation
was performed applying results on the entire study area. For
this purpose, in the training set all the pixels corresponding
to landslides and an equal number of pixels in stable areas
were selected. Figure 5 shows the main output of the com-
bined model prepared for the entire area during the validation
phase, including susceptibility, error and uncertainty maps,
fourfold (contingency) plot, prediction rate curve, ROC plot,
evaluation, and uncertainty plots.

This example simulates a common and widespread sus-
ceptibility zonation approach that exploits pixel-based anal-
ysis at basin and regional scale. In such conditions, reason-
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distribution of the four categories reported in the fourfold plot; (a3) prediction rate curve; (a4) variation in the model sensitivity, specificity,
and Cohen’s kappa index; (a5) ROC plot; (a6) map of the geographical distribution of the model error. Map coordinates and scale bar are
shown in Fig. 2.

able calculation times can be reached training the model with
a randomly selected subset and applying results to the en-
tire study area. Dealing with a large data set, we experienced
that training the models using reduced samples (randomly
selected) affects slightly the susceptibility model results and

performances with a minor increase in the model uncertainty.
As shown in Fig. 5, although the training was performed with
a subset of the data, the model performance for the entire
study area is adequate and acceptable.
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Figure 6. (a) Landslide susceptibility map (CM) prepared using the 2009 land use and (b) using the 1954 land use cover. LS maps are classi-
fied in five unequally spaced classes (see legend); (a1, b1) plot showing the model uncertainty estimated in each slope unit; (a2, b2) success
rate curves. Map coordinates and scale bar are shown in Fig. 2.

3.4 Landslide susceptibility scenarios zonation

This example illustrates how LAND-SE can be utilized to
evaluate the impact of different land use scenarios on land-
slide susceptibility zonation (Reichenbach et al., 2014, 2015)
comparing the distribution of stable/unstable slope units and
the success rate curves. The current, the past, and possible
future land use distributions were evaluated on landslide sus-
ceptibility classes. Single models (linear discriminant analy-
sis, quadratic discriminant analysis, and logistic regression)
and a combined model were prepared, exploiting the 2009
landslide events as grouping variable and morphological and
land use classes as explanatory variables.

To evaluate the influence of land use change on landslide
susceptibility zonation, results obtained with the 2009 land
use map were applied using the 1945 land use distribution.
Figure 6 portrays (on the left) the combined model prepared
using the 2009 land use map, and (on the right) the zona-
tion obtained applying the results to the 1954 land use cover.
Zonation maps obtained with the same models but using the
1954 land use map show a significant reduction in the num-
ber of unstable SU. Success rate curves reveal a decrease in
the model fitting performance when using the 1954 land use
map, due to a reduction of slope units classified as unstable
and an increase in stable terrain. In particular, the expansion
of bare soil to the detriment of forested areas, in the 56 years
from 1954 to 2009, determined a general increase in the sus-
ceptibility.

Moreover, to estimate the effect of land use distribution,
we have designed different scenarios obtained changing the
2009 land use cover and heuristic and empirical approach.
Assuming an increase in the forested areas, we have consid-
ered three types of changes computed at the slope unit scale
resulting in the following scenarios: (i) 75 % decrease in the
pasture extent (scenario 1); (ii) 75 % reduction of both pas-
ture and cultivated areas (scenario 2); and (iii) 75 % decrease

in bare soil where the slope-unit mean angle was greater than
15◦ together with 75 % decrease in pasture areas (scenario 3).
A fourth scenario was prepared assuming the effect of a for-
est fire in the southwest part of the area, where we simu-
lated a reduction of the forested cover and an increase in
bare soil (scenario 4). For each scenario, Fig. 7 shows the
CM zonation and the success rate curve measuring the fitting
performance of each model. The qualitative comparisons of
the maps and of the success rate curves obtained for the dif-
ferent scenarios confirm how land use changes significantly
affect the spatial distribution of unstable/stable slopes (Re-
ichenbach et al., 2014). This information can be applied to
evaluate the consequences of land use change on vulnerabil-
ity and risk. Moreover, the proposed approach can be helpful
to analyse the potential effects of land use planning and man-
agement on slope instability.

4 Final remarks

A recent review analysis on landslide statistical models re-
vealed a large variety of statistical types, but a significant
scarcity of a complete and comprehensive evaluation of the
models performance and prediction skills (Malamud et al.,
2014). Moreover, assessment of the input data quality (Ardiz-
zone et al., 2002), discussion on the scale applicability, and
the quantification of errors and uncertainty associated with
the models are limited. In recent years there has been an
increased number of commercial and open-source packages
for statistical analysis that integrate geographical data and/or
Open Source GIS, but software dedicated to landslide sus-
ceptibility zonation using statistical models is not available.

LAND-SE is an open-source software that performs LS
modelling, zonation, results evaluation, and associated un-
certainty estimation, using graphs, maps, and statistical met-
rics, which fill in the gaps in the large variety of statistical
methods already available. LAND-SE is mainly designed to
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Figure 7. (a, b, c, d) Landslide susceptibility maps (CM) classified in five unequally spaced classes prepared using different land use
scenarios; (a1, b1, c1, d1) success rate curves. Maps coordinates and scale bar are shown in Fig. 2.

evaluate landslide susceptibility from basin (medium) to re-
gional scale (small to very small scale). The quality, as well
as significance, of model output is highly related to the scale,
accuracy, and resolution of landslide and environmental input
data. In the field of landslide susceptibility zonation, LAND-
SE is designed to be properly and productively used by expe-
rienced geomorphologists. Experienced practitioners are ex-
pected to use the code, with the support of experts in the field
of environmental planning and management for an accurate
and reliable interpretation and exploitation of the results. A
proper LAND-SE execution requires (i) a basic knowledge
of R language to run the script; (ii) experience on multivari-
ate statistical models and on their evaluation skills/metrics
(ROC plot, contingency table and plots, success/prediction
rate curves, etc.); (iii) GIS skills to prepare and handle input
data; and (iv) specific expertise for an accurate and reliable
interpretations of the results. All the modelling types imple-
mented in LAND-SE are basically statistical classification
techniques applicable to any multivariate analysis with a bi-
nary grouping (dependent or response) variable. This makes
the code flexible and appropriate for use in other scientific
fields, with minor customization and tailoring, by user with
different expertise.

We think further improvements may include additional
models (i.e. forest tree analysis), and tools for the input data
preparation, tools for the visualization of results available
now only in textual format (i.e. test of the collinearity eval-
uation, number of significant variables). Moreover, the soft-
ware can be applied and customized to different applications,
providing the users with the possibility to implement and im-
prove the code with additional models, evaluations tools, or

output types. LAND-SE can also be used to prepare mod-
els to predict particular types of slope movements (e.g. de-
bris flow source areas, Carrara et al., 2008) or can be cus-
tomized to evaluate the probability of spatial occurrence of
completely diversified natural phenomena.

5 Code availability and licence

The LAND-SE code is provided as a Supplement together
with

1. the software user guide (LAND-
SE_UserGuide_v3_23sept2016.pdf);

2. data sets containing the software script (LAND-
SE_v1r0b30_20160118.R), the configuration files
(LAND-SE_configuration_spatial_data.txt, LAND-
SE_configuration.txt), and input files (training.txt,
training.shp, validation.txt, validation.shp) relative
to three examples applications: (i) polygon-based
landslide susceptibility zonation with a random se-
lection of the training data set and a validation on a
larger area; (ii) polygon-based landslide susceptibility
zonation with training and validation performed in two
different contiguous areas; (iii) pixel-based landslide
susceptibility zonation with a random selection of the
training data set and a validation on a larger area.

LAND-SE© Mauro Rossi. LAND-SE is free software; it can
be redistributed or modified under the terms of the GNU
General Public (either version 2 of the license, or any later
version) as published by the Free Software Foundation. The
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program is distributed in the hope that it will be useful, but
without any warranty; without even the implied warranty of
merchantability or fitness for a particular purpose. See the
GNU General Public License for more details.

6 Data availability

The LAND-SE code, the software user guide and three exam-
ple data sets are available at https://github.com/maurorossi/
LAND-SE (Rossi, 2016).

The Supplement related to this article is available online
at doi:10.5194/gmd-9-3533-2016-supplement.
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