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Abstract. The systematic underestimation observed in de-
bris flow early warning thresholds has been associated with
the use of sparse rain gauge networks to represent highly
non-stationary rainfall fields. Remote sensing products per-
mit concurrent estimates of debris-flow-triggering rainfall for
areas poorly covered by rain gauges, but the impact of using
coarse spatial resolutions to represent such rainfall fields is
still to be assessed. This study uses fine-resolution radar data
for ∼ 100 debris flows in the eastern Italian Alps to (i) quan-
tify the effect of spatial aggregation (1–20 km grid size) on
the estimation of debris-flow-triggering rainfall and on the
identification of early warning thresholds and (ii) compare
thresholds derived from aggregated estimates and rain gauge
networks of different densities. The impact of spatial aggre-
gation is influenced by the spatial organization of rainfall and
by its dependence on the severity of the triggering rainfall.
Thresholds from aggregated estimates show 8–21 % varia-
tion in the parameters whereas 10–25 % systematic variation
results from the use of rain gauge networks, even for densi-
ties as high as 1/10 km−2.

1 Introduction

Debris flows are among the most impactful natural hazards in
mountainous areas (Dowling and Santi, 2014; Badoux et al.,
2016). They are primarily triggered by heavy rainfall hitting
headwater catchments and, in many areas, their frequency

is expected to increase in response to the intensification of
the hydrological cycle caused by global warming (Westra et
al., 2014; Gariano and Guzzetti, 2016; Dietrich and Kraut-
blatter, 2017). Forecasting their occurrence is fundamental to
save lives and property and relies on early warning systems
(Borga et al., 2014).

Operational debris flow early warning systems are largely
based on empirical thresholds: meteorological and/or hydro-
logical conditions above which debris flows are likely to oc-
cur (Caine, 1980). These thresholds are often defined as re-
lationships between rain depth (or intensity) and duration,
and are identified from past records (Guzzetti et al., 2008).
Although rain-gauge-based thresholds are used in different
regions worldwide (Jakob et al., 2012; Segoni et al., 2015;
Ma et al., 2015; Piciullo et al., 2017), their accuracy depends
on the abundance and quality of in situ rainfall measurements
and debris flow observations (Nikolopoulos et al., 2014).

The uncertainty related to rain-gauge-based estimates of
debris-flow-triggering rainfall is emphasized by the specific
spatial organization of the triggering rainfall events. Recent
studies, based on fine-resolution radar estimates in the east-
ern Italian Alps, showed that the uncertainty related to rain-
gauge-based estimates of debris-flow-triggering rainfall is
emphasized by the specific spatial organization of the trig-
gering rainfall events: local rain depth peaks are often as-
sociated with the debris flow initiation points (Marra et al.,
2016), and the occurrence and magnitude of such peaks de-
pend on the severity of the triggering rainfall (Destro et al.,
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2017). This non-stationarity of the triggering rainfall fields
causes systematic underestimation in the rain gauge esti-
mates which propagates to the identification of the thresh-
old relationships, decreasing their efficiency in separating
triggering versus non-triggering events (Nikolopoulos et al.,
2014, 2015a; Marra et al., 2014; Abancó et al., 2016).

Remote-sensing rainfall products provide debris-flow-
concurrent estimates at the regional and global scales, al-
lowing for the monitoring of areas poorly covered by rain
gauge networks. Derivation of debris flow occurrence thresh-
olds from such data sets can be used to develop local, re-
gional, or global warning systems. Moreover, it enables a di-
rect and consistent comparison between thresholds in differ-
ent regions, allowing us to separate the contribution of hydro-
geomorphological features other than rainfall, such as geol-
ogy, pedology, and slope, to the debris flow triggering. How-
ever, the use of remote-sensing rainfall estimates is hampered
by two factors in particular: the coarse resolution of the prod-
ucts and the uncertainty due to current limitations in the re-
trieval algorithms. The vast majority of the studies dealing
with remote-sensing precipitation error over complex terrain
have been focused on hydrological applications rather than
debris flow or landslide triggering (Mei et al., 2014; Derin
et al., 2016; Maggioni et al., 2017), or evaluated the com-
bined effect of resolution and estimation uncertainty without
separating the contribution of each factor (Hong et al., 2006;
Kirschbaum et al., 2012, 2013; Rossi et al., 2017; Nikolopou-
los et al., 2017). Particularly in the case of debris flows, the
small size of the initiation catchments is expected to high-
light the impact of spatial resolution. It is thus important
to quantify the effect of this factor on threshold-based early
warning systems.

In this study, we analyse the effect of using coarse-
resolution data for the identification of debris flow occur-
rence thresholds, leaving aside considerations on their pre-
diction efficiency. In particular, (i) we quantify the impact
of rainfall spatial aggregation, representing the resolution of
remotely sensed estimates, on the estimation error of debris-
flow-triggering rainfall, and on the identification of the pa-
rameters of debris flow occurrence thresholds, and (ii) we
compare thresholds derived from spatially aggregated rain-
fall estimates with those obtained from synthetic rain gauge
networks of different densities, in order to assess the rela-
tive advantages of the two rainfall estimation methods. We
explore the usual spatial scales of radar and satellite prod-
ucts (1–20 km grid size) and rain gauge network densities of
1/10–1/100 km−2.

2 Impact of spatial aggregation on the estimation of
debris-flow-triggering rainfall

We build upon a unique high-resolution (1 km grid size,
5 min) data archive of radar rainfall estimates available for
11 storms which collectively triggered 99 debris flows in the

eastern Italian Alps (Fig. 1). All the events are represented
by channelized debris flows triggered in very small basins.
Event duration ranged between 1.5 and 26 h and the trigger-
ing rainfall between 8 and 180 mm. This data set is a repre-
sentative sample (∼ 20 %) of the debris flows that occurred
in the study region in the period 2000–2014 (Nikolopoulos
et al., 2015b). See Destro et al. (2017) for additional infor-
mation on the debris flow database and on the storm events.
Weather radar rainfall estimates were corrected for errors due
to attenuation in heavy rain, wet radome attenuation, beam
blockage, and vertical profile of reflectivity (Marra et al.,
2014), and were then gauge-adjusted at the event scale using
quality-controlled rain gauge measurements. The radar data
quality was checked at each step of the elaboration (Marra
et al., 2014), and, as a result, the radar estimates are consid-
ered the best available spatial representation of debris-flow-
triggering rainfall. To the authors’ knowledge, this is among
the largest and most accurate radar-based dataset of debris-
flow-triggering rainfall currently available worldwide.

Rainfall events were identified as separated by 24 h dry pe-
riods (Nikolopoulos et al., 2014). The triggering rain depth
(E) was computed as the total rainfall estimated above the
triggering location during the event duration (D). Since no
information is available on the exact time of occurrence of
the debris flows, the events were extended until the end of
the rainfall. Spatially aggregated estimates were computed
by spatially averaging the radar estimates on 1–20 km grid
size. These scales reproduce the equivalent areal resolution
of the most commonly used remote-sensing rainfall products
(Hsu et al., 1997; Hong et al., 2004; Huffman et al., 2007;
Joyce et al., 2004; Huffman et al., 2015). To quantify the es-
timation error due to spatial aggregation, we used the relative
error (RE), calculated as

RE=
E

E∗
, (1)

where E is the aggregated rainfall estimate and E∗ is the
corresponding 1 km grid size value. Median and interquartile
range (IQR) of the RE were used to characterize the error
distribution.

Following the results reported by Destro et al. (2017),
we related the distribution of the estimation error to the
severity of the triggering rainfall. The return period of the
triggering rainfall (T ) was computed from depth–duration–
frequency curves derived for the region using the method of
theL-moments, and a kriging interpolation procedure in a re-
gional generalized extreme values framework (Destro et al.,
2017). The severity of the debris-flow-triggering rainfall was
classified as mild (T ≤ 2 years, 21 debris flows), moderate
(2 < T ≤ 50 years, 41 debris flows), and severe (T > 50
years, 37 debris flows), depending on the return period of the
1 km grid size rainfall estimated above the triggering loca-
tions. Figure 2 shows the relative error for rainfall estimates
aggregated on 1–20 km grid sizes. Results are shown for all
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Figure 1. Map of the study area including terrain elevation, rain gauge network (dots), and debris flows included in the study (triangles).
Location of the study area within Europe is shown.

the debris flow events (Fig. 2a) and for the three severity
classes separately (Fig. 2b).

When all the events are considered, the spatial aggregation
yields a consistent decrease in the estimated rainfall, with RE
reaching 0.52 for 20 km grid size while the IQR increases up
to ∼ 0.4 for aggregation scales of ∼ 13 km grid size. This
suggests that an approximate 50 % underestimation of the
triggering rainfall amount is expected at 20 km grid size as a
result of the spatial aggregation alone. This pattern is caused
by local rain depth peaks that correspond to the area most
severely hit by the event-generating convective cells. Such
peaks are frequently observed in close proximity of the trig-
gering locations (Marra et al., 2016) so that, when rainfall
is spatially aggregated, lower rainfall amounts are progres-
sively included in the estimate.

Figure 2b shows that the scale dependency pattern depends
strongly on the severity of the triggering rainfall. Moderate
and severe events (i.e. the 78 events triggered by T > 2-
year rainfall) exhibit similar underestimation, dominating the
distribution observed in the general case. Conversely, mild
events (T ≤ 2 years) show a substantially different pattern,
with aggregated estimates overestimated even for 20 km grid
sizes. In fact, as shown by Destro et al. (2017), debris flows
triggered by short-return-period rainfall are often located
close, but not corresponding, to the local rain depth peaks,
so that the spatial aggregation is expected to include larger
rain depths. The IQR is as high as 0.93 for 12 km grid size,
and decreases to 0.8 for 20 km grid size.

3 Impact of spatial aggregation on the identification of
debris flow occurrence thresholds

Rainfall thresholds for the occurrence of debris flows were
derived in the form of power law relationships between the
triggering rain depth (E) and the rainfall duration (D), as in
(Guzzetti et al., 2008)

E = αp ·D
β . (2)

The use of rainfall depth is equivalent to the use of rain inten-
sity, but avoids the need to calculate rain intensity from the
event rain depth and duration. The parameters of the thresh-
old were objectively identified from the empirical data using
the frequentist method proposed by Brunetti et al. (2010).
In an operational environment, the spatial–temporal char-
acteristics of rainfall have rarely been considered, despite
the observed non-stationarity of the rainfall fields around
the debris-flow-triggering locations reported by Marra et al.
(2016). Because our objective is to analyse the impact of
this non-stationarity on the use of spatially aggregated rain-
fall information, it is crucial for us to focus on the triggering
events, i.e. on the events in which the systematic spatial fea-
ture is observed, and to use an objective and straightforward
method, such as the frequentist, that allows a clear interpreta-
tion of the results. The shape parameter β was derived from
the linear regression of the (E, D) pairs plotted on logarith-
mic scale; the scale parameter αp was calculated assuming a
normal distribution of the regression residuals (log residuals,
hereinafter), and setting the required exceedance probability
p to the desired level. Therefore, the offset of the rainfall
threshold with respect to the regression line depends on the
distribution (i.e. standard deviation) of the log residuals. In
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Figure 2. Relative error in the rainfall estimates as a function of the
aggregation scale for (a) all the 99 considered debris flow events,
and (b) different classes of severity (return period of the 1 km grid
size triggering rainfall). Solid lines show median values and shaded
areas the interquartile ranges.

this study, we used p = 5%, but the results we present hold
for any probability level lower than 50 %, i.e. for any thresh-
old representing a lower envelope curve to the (E, D) pairs.
The debris flow occurrence thresholds were calculated, to-
gether with the regression relationships (i.e. the thresholds
for p = 50%) using the rain depth obtained from different
aggregation scales, whereas the rainfall duration was kept
unchanged. It can be pointed out that, in principle, a bi-
ased threshold may be efficient when used with equally bi-
ased rainfall estimates. However, Nikolopoulos et al. (2014,
2015a) showed that uncertainty in the estimation of the trig-
gering rainfall strongly decreases the efficiency of thresholds
in operational use.

Figure 3a–c show the debris flow occurrence thresholds
and regression relationships for rainfall aggregated at 1, 10,
and 20 km grid size. As shown by the slope of the rela-
tionships in Fig. 3a–c, the shape parameter undergoes only
minor variations (< 8 %) with spatial aggregation, implying
that, in our sample, the distribution of event severity is ap-
proximately uniform with the event duration. Large differ-
ences are observed in the scale parameter of the regression

relationships α50 %, which decreases from 26.5 at 1 km grid
size to 13.4 at 20 km grid size. Conversely, minor variations
are found for the scale parameter of the 5 % threshold α5 %,
which rises from 8.2 at 1 km grid size to 9.4 at 10 km grid
size, and then decreases to 6.5 at 20 km grid size (Fig. 3a–
c). Figure 3d–f show the distribution of the log residuals as a
function of the return period of the triggering rainfall for 1,
10, and 20 km grid size. For 1 km grid size, the log residuals
regularly scale with severity (Fig. 3d). As the information is
spatially aggregated, this regular scaling is progressively lost
(Fig. 3e–f), due to the different effect of spatial aggregation
on moderate/severe and mild events (Fig. 2b).

4 Comparison between thresholds derived from
spatially aggregated and rain-gauge-based estimates

Synthetic rain gauge networks were produced using the pro-
cedure proposed by Nikolopoulos et al. (2015a) and Destro
et al. (2017). The location of the rain gauges was randomly
generated to obtain densities of 1/A, with A set to 10, 20,
50, and 100 km2. To avoid clustering of the rain gauges, a
minimum distance between two synthetic stations was set to
0.5
√
A. Rainfall estimates of the synthetic rain gauges were

defined as the value of the radar rainfall corresponding to
the simulated gauge locations. The rain gauge estimation of
triggering rainfall was then defined as the value reported by
the rain gauge closest to the triggering location. This nearest-
neighbour method proved to be the least-biased estimator for
debris-flow-triggering rainfall, when compared with kriging
and inverse-squared distance methods (Nikolopoulos et al.,
2015a; Destro et al., 2017). The synthetic rain gauge esti-
mation operation was iterated to obtain 100 Monte Carlo re-
alizations for each rain gauge network density. Debris flow
occurrence thresholds were derived for each realization and
density and the estimated parameters were compared with the
ones previously derived from spatially aggregated estimates.
The uncertainty related to the synthetic network parameters
was quantified as the IQR of the corresponding set of real-
izations.

Figure 4 shows the relative error of the threshold and re-
gression parameters derived from (a) spatially aggregated
and (b) rain-gauge-based estimates, together with the stan-
dard deviation of the respective log residuals (c and d). As
anticipated in the previous section, the shape parameter (β)
slightly increases with the aggregation scale, resulting in
an 8 % increase at 20 km grid size, whereas the regression
scale parameter (α50 %) exhibits a remarkable underestima-
tion, with −51 % at 20 km grid size (Fig. 4a). The scale pa-
rameter of the threshold (α5 %) increases up to ∼ 7 km grid
size (RE= 1.19) and then monotonically decreases for larger
grid sizes (RE= 0.79 for 20 km grid size, Fig. 4a). This de-
pendence is explained by the combination of two effects:
(i) the mean value of the estimated rainfall decreases with
spatial aggregation (Fig. 2a) and (ii) the standard deviation of
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Figure 3. Threshold and regression relationships for 1, 10, and 20 km grid sizes (a–c, respectively) and corresponding residuals of the
regressions in logarithmic scale (log residuals) as a function of the return period of the 1 km triggering rainfall (d–f). Light grey lines in (b)
and (c) reproduce, for reference, the 1 km grid size relationships.

the log residuals decreases by ∼ 30 % at 10 km grid size and
remains almost unchanged for larger grid sizes (Fig. 4c). This
second effect is caused by the dependence of rainfall spa-
tial pattern on the severity seen in Fig. 2b: moderate/severe
events are increasingly underestimated and mild events are
increasingly overestimated up to ∼ 7 km grid size, while, for
larger grid sizes, the overestimation decreases.

Results obtained using synthetic rain gauge networks are
remarkably different (Fig. 4b). The shape parameter β ex-
hibits a more marked increase and both α5 % and α50 % are
systematically underestimated. Interestingly, the threshold
scale parameter α5 % is more underestimated than the regres-
sion scale parameter α50 %. This is explained by the large
spatial variability of rainfall around the triggering locations:
as the network density decreases, the estimation variance of
synthetic rain gauge estimates increases, causing the stan-
dard deviation of the log residuals to increase (Fig. 4d). As a
result, debris flow occurrence thresholds obtained using ag-
gregation scales of 20 km grid size (corresponding to averag-
ing areas as large as 400 km2) are comparable to the ones
derived from relatively high-density rain gauge networks,
such as 1/10 km−2 for 5 % exceedance probability thresh-
olds or 1/100 km−2 for 50 % exceedance probability thresh-
olds. Lower densities cause larger errors in both the shape
parameter β and the scale parameter α5 % of the threshold.

In general, the estimation variance controls the scale pa-
rameter of the threshold relationship acting on the standard
deviation of the log residuals. In fact, an increased estima-

Figure 4. Relative error of the parameters of the debris flow occur-
rence thresholds and associated regressions (a–b) and standard de-
viation of the log residuals (c-d) obtained from spatial aggregation
of rainfall (a, c), and nearest-neighbour interpolation of synthetic
rain gauge networks (b, d) – shaded areas represent the interquar-
tile range of the Monte Carlo realizations.
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tion variance increases the dispersion of the rainfall depth–
duration pairs, causing the threshold relationship, a lower en-
velope curve, to decrease. As reported by Marra et al. (2016),
even in the presence of random estimation errors alone, an in-
crease (decrease) in the estimation variance translates into an
increase (decrease) in the log residuals, causing the threshold
scale parameter to decrease (increase).

5 Conclusions

We examined the impact of using spatially aggregated es-
timates (1–20 km grid size) for the estimation of debris flow
triggering rainfall and for the identification of debris flow oc-
currence thresholds in the form of power law depth–duration
relationships.

Results show that errors in the aggregated estimates of de-
bris flow triggering rainfall strongly depend on the severity
of the triggering rainfall. Moderate-to-severe triggering rain-
fall (> 2-year return period) is consistently underestimated,
whereas mild triggering rainfall (≤ 2-year return period) is
generally overestimated up to 20 km grid size. The estima-
tion variance controls the scale parameter of the threshold
relationship, acting on the dispersion of the rainfall depth–
duration pairs. The impact of spatial aggregation on the
derivation of debris flow occurrence thresholds is thus con-
trolled by the different response of mild and moderate/severe
triggering rainfall to the spatial aggregation. Consequently,
spatial aggregation causes up to 21 and 8 % variation in the
scale and shape parameters of the identified debris flow oc-
currence thresholds. Conversely, rainfall estimates from syn-
thetic rain gauge networks present large estimation variance
so that debris flow occurrence thresholds at 5 % exceedance
probability derived from densities as high as 1/10 km−2 can
be comparable to 20 km grid size spatial aggregation and
thresholds from sparser networks are largely underestimated.
These findings reveal a complex pattern of scale dependency,
which should be considered when identifying and compar-
ing triggering rainfall amounts or debris flow occurrence
thresholds derived from different products. In general, rain-
fall spatial aggregation is more consistent than rain-gauge-
based estimation in the identification of the threshold param-
eters across the examined spatial scales.

Results from this study are subject to uncertainty due to the
limited size of the dataset. However, to the authors’ knowl-
edge, this is among the largest and most accurate dataset of
debris flow triggering rainfall currently available worldwide.
It includes ∼ 20 % of the debris flows that have occurred in
the study region in the last 15 years and can thus be con-
sidered quantitatively representative of the climatology of
debris-flow-triggering rainfall in the area. Given the general
and objective formulation used, results from this study are
qualitatively transferrable to those situations in which lower
envelope curves are used to predict the occurrence of point-
like events in the presence of non-stationary fields, such as in

the case of shallow landslides (e.g. Guzzetti et al., 2008) or
urban flooding (e.g. Yang et al., 2016) prediction.

Future studies, quantifying the impact of (i) estimation un-
certainty due to rainfall retrieval algorithms and (ii) tempo-
ral resolution of remote-sensing data, are required before the
operational use of remotely sensed rainfall products in de-
bris flow early warning systems. To this end, the performance
of new satellite–rainfall products (e.g. IMERG, Huffman et
al., 2015), available at high space/time resolution (e.g. 0.1 ◦,
0.5 h), seems promising and calls for subsequent analysis.

Data availability. Weather radar and debris flow data used for this
study are available on the HYLAND project website (http://intra.
tesaf.unipd.it/cms/hyland/).
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