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We model effects of color fluctuations (CFs) in the light-cone photon wave function and for the first time 
make predictions for the distribution over the number of wounded nucleons ν in the inelastic photon–
nucleus scattering. We show that CFs lead to a dramatic enhancement of this distribution at ν = 1 and 
large ν > 10. We also study the implications of different scales and CFs in the photon wave function on 
the total transverse energy �ET and other observables in inelastic γ A scattering with different triggers. 
Our predictions can be tested in proton–nucleus and nucleus–nucleus ultraperipheral collisions at the 
LHC and will help to map CFs, whose first indications have already been observed at the LHC.
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1. Introduction

One of key features of high energy processes in the target rest 
frame is that the wave function of a projectile is the superposition 
of coherent (so-called frozen) configurations [1,2], which is a con-
sequence of the uncertainty principle and Lorentz slowing down of 
the interaction time. In the pre-QCD times, coherence of high en-
ergy processes has been extensively studied in the photon–nucleon 
(γ N) and photon–nucleus (γ A) collisions, for a review, see [3]. 
In particular, it was established that the resolved photon is domi-
nated by the contribution of the light vector meson component of 
the photon wave function, which is responsible for about 70% of 
σtot(γ N). The origin of the photon components, which are respon-
sible for the remaining 30% of the γ N cross section, is a matter of 
debate.

In QCD coherence of high energy processes is well under-
stood theoretically and established experimentally, for a review, 
see, e.g. [4,5]. A distinctive feature of the QCD dynamics is that 
the interaction strength of different configurations of quarks and 
gluons, which are QCD constituents of projectile hadrons, pho-
tons, etc., varies. We refer to this phenomenon as color fluctuations 
(CFs). In the literature one alternatively uses the term cross section 
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fluctuations, which refer predominantly to soft hadron (photon) in-
teractions at high energies.

A particular dramatic example of CFs is the phenomenon of 
color transparency (CT) when, as a consequence of color screening, 
the strength of the interaction of a high energy hadron (photon) 
in a configuration with a small transverse size is much smaller 
than the average interaction strength, for a recent review, see [6]. 
While CT is a natural mechanism for the interaction with the 
strength smaller than the average one, several mechanisms like 
fluctuations of transverse size, gluon density, the phenomenon of 
spontaneously broken chiral symmetry, etc. can contribute to fluc-
tuations with the larger-than-average interaction strength.

It has been demonstrated long ago by the direct calculations 
that the contribution of planar diagrams to the total cross sec-
tion of a hadron–hadron collision tends to zero with an increase 
of the collision energy [7]. Therefore, the contribution of consecu-
tive multiple rescatterings of a hadron projectile to the total cross 
section of the hadron–nucleus scattering described by planar Feyn-
man diagrams rapidly decreases with an increase of the invariant 
collision energy s [8]. Thus, within a quantum field theory mul-
tiple interactions of the projectile are dominated at high energies 
by the contribution of non-planar diagrams. The Gribov–Glauber 
approximation [1] has been suggested to resolve this theoretical 
puzzle. It accounts for the contribution of non-planar diagrams and 
employs duality between non-planar diagrams and a sum of the 
elastic contribution and the diffractive intermediate states (duality 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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between s and t channels) to rewrite formulae in the form rather 
similar to the Glauber approximation [1]. This theoretical descrip-
tion accounts for coherence of high energy processes and predicts 
that the geometry of h A collisions should be rather close to that 
expected within the Glauber approach. Hence the Gribov–Glauber 
approximation is routinely used in the evaluation of geometry of 
the heavy ion collisions. By virtue of duality the Gribov–Glauber 
approximation includes diffractive intermediate states, which al-
low one to account for energy–momentum conservation, see the 
discussion in [9]. The presence in the formulae of the contribu-
tion of inelastic diffractive states leads to the inelastic shadowing 
correction for σtot(p A) [8]. The inelastic shadowing correction was 
evaluated in a number of papers and found to agree well with the 
data, see discussion and references in, e.g., [10].

It has been suggested that the interaction matrix of the ini-
tial hadron or diffractively produced hadronic states with target 
nucleons, which arises within Gribov–Glauber approach, can be 
diagonalized [11,12]. In the particular case, when diffractive inter-
mediate states are resonances, this diagonalization has been per-
formed in [13]. The method of CFs developed in [14] and discussed 
below is the further generalization of the Gribov–Glauber approx-
imation, which allows one to account for the fluctuations of the 
interaction strength and other implications of QCD.

Several effects were observed at collider energies, which nat-
urally emerge in the CF framework. First, the ATLAS study [15]
of the charged-particle pseudorapidity distribution dNch/dη in 
proton–lead (p Pb) collisions at 

√
sN N = 5.02 TeV as a function of 

centrality and the pseudorapidity η showed that CFs affect the col-
lision geometry by broadening the distribution of the number of 
participating nucleons Npart for large Npart (Fig. 13 of Ref. [15]). It 
can be interpreted as broadening of the distribution in the number 
of wounded nucleons naturally emerging in the CF approach [14]
(note that in these early papers, CFs were called cross section fluc-
tuations). It results in a milder dependence of dNch/dη(〈Npart〉/2)

on centrality, especially at large negative rapidities in the Pb-going 
direction (Figs. 11 and 12 of Ref. [15]) than that expected in the 
combinatorics of the geometric Gribov–Glauber model [16]. The 
numerical results for the distribution of CFs in the proton used in 
the analysis of [15] are consistent with the expectations of [17,18].

The second effect is the observation of a large violation of 
the Gribov–Glauber approximation for the dependence of the jet 
production on the centrality observed in p A collisions at the 
LHC [19] and in dA collisions at RHIC [20], for which a large-x
parton momentum fraction of the proton is involved. The central-
to-peripheral RCP ratio is suppressed by as much as 80% at the LHC 
and 50% at RHIC at the largest measured pT . At the same time 
the combinatorics given by the geometric Glauber picture works 
very well for the collisions with up to eight nucleons, if x is small 
enough, x ≤ 0.1. While CFs only increase the deviation of RCP from 
unity, this pattern is consistent with the x-dependence of CFs ex-
pected within QCD [21].

The third effect is the significant suppression of the rate of 
ρ meson production in the coherent γ A → ρ A reaction mea-
sured in Pb–Pb ultraperipheral collisions (UPCs) at the LHC [22]
as compared to the expectations of the vector dominance model 
combined with the Gribov–Glauber approximation for the photon–
nucleus interaction. This was explained in [23] by taking into ac-
count the effect of CFs in the photon wave function, which reduce 
the effective ρ–nucleon cross section by suppressing the overlap of 
the vector meson and photon wave functions and lead to sizable 
inelastic (Gribov) nuclear shadowing due to the photon inelastic 
diffraction into large masses.

In this paper we argue that one can map CFs in the photon 
wave function using ultraperipheral collisions (UPCs) of heavy ions 
at the LHC. Although feasibility of UPC studies was analyzed at 
length in [24], the studies discussed below were not addressed. 
Primarily this is because such analyses became feasible due to 
the experience accumulated in the analysis of p A collisions at the 
LHC. In a long run studies along these lines at the Electron–Ion 
Collider [25,26] would provide a detailed information on CFs in 
the photon and their dependence on the photon virtuality. The 
main challenge for building a realistic description of the photon–
nucleon (nucleus) interactions at collider energies is to take into 
account the multi-scale structure of the light-cone wave function 
of the photon associated with presence of soft and hard intrin-
sic scales. In particular, the photon wave function contains sev-
eral types of configurations: large-σ configurations characterized 
by small transverse momenta kt < 0.5 GeV and invariant masses 
comparable to the masses of light vector mesons interacting with 
the strength ∼ σπ N (σπ N is the total pion–nucleon cross section), 
configurations interacting with σ much larger than σπ N related to 
the presence of soft large-mass diffraction, and small-σ configu-
rations with large kt ≥ 1 GeV, whose contribution results in the 
leading twist nuclear shadowing. UPCs at the LHC correspond to 
a wide interval of invariant energies W ≤ 500 GeV, where hard 
physics should be well described within the DGLAP approximation, 
see [27] and references therein. Thus, a more rapid increase of par-
ton distributions with energy at extremely small x, which is often 
discussed in the literature, is beyond the scope of this paper.

We propose a model of CFs in the hadronic component of the 
photon wave function by combining the information obtained in 
the analysis of photoproduction of ρ mesons at the LHC ener-
gies [23], which enables us to model the photon configurations 
interacting mostly with the strength exceeding the typical ρ–
nucleon cross section, with that obtained in photoproduction of 
J/ψ mesons [28], which is amenable to the perturbative QCD 
(pQCD) description of the weakly-interacting configurations. Since 
the information on coherent photoproduction of ρ and J/ψ is 
available for W ∼ 100 GeV, we focus in this paper on this energy 
range. The W dependence of the discussed effects for higher W
will be considered elsewhere.

We apply the resulting model of the photon CFs to the calcu-
lation of the distribution over the number of wounded nucleons, 
ν , involved in the inelastic γ A scattering. We show that as a 
consequence of CFs around the average value, the soft inelastic nu-
clear shadowing effect is strongly enhanced as compared to p A
collisions. We also take into account an additional effect of the 
different pattern of the interaction of small dipoles, which leads 
to the leading twist nuclear shadowing and which is absent in 
the Gribov–Glauber approximation. This effect leads to the signifi-
cant probability for small dipoles to interact with several nucleons, 
which noticeably reduces the distribution over ν for small values 
of ν .

This paper is organized as follows. In Sect. 2 we develop a 
model for CFs in the photon wave function for the photon–nucleon 
interaction. In Sect. 3 we present and discuss our predictions for 
the distribution over the number of wounded nucleons (inelastic 
interactions) in the inelastic photon–nucleus scattering. In the cal-
culations we use our model for CFs in the photon without and with 
an additional effect of the leading twist nuclear shadowing for 
the configurations interacting with small cross sections. In Sect. 4, 
we make a prediction for the transverse energy 

∑
ET distribu-

tion in γ A collisions using as a starting point the model of [15]
for the dependence of 

∑
ET on ν . Finally, in Sect. 5 we discuss 

possibilities of special triggers, which would allow one to use γ A
scattering to map out different components of the photon wave 
function.
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2. Color fluctuations in γ A scattering: general formalism

At sufficiently high photon energies Eγ in the target rest frame, 
the coherence length associated with the hadronic fluctuation 
(component) of the photon wave function of mass M exceeds the 
target radius RT , lcoh = 2Eγ /M2 > RT . In this case, the forward 
photon–target amplitude (the total photoabsorption cross section) 
can be expressed in terms of the dispersion representation over 
the masses M2 [29]:

σγ N = αe.m.

24π2

∫
dM2

M2
Re+e−→hadrons(M2)σMN , (1)

where αe.m. is the fine structure constant; Re+e−→hadrons(M2) =
σ(e+e− → hadrons)/σ (e+e− → μ+μ−) is the ratio of the e+e−
annihilation cross sections into hadrons (everything) and a muon 
pair, respectively, of a given invariant mass squared M2; σMN is the 
total cross section for the interaction of a given component with 
the target. It is important to emphasize that non-diagonal transi-
tions between different photon components have been neglected 
in Eq. (1), which can be justified at present in the case of a heavy 
nuclear target [29].

In the vector meson dominance model (VMD), 70% of the in-
tegral in Eq. (1) is due to the sum of ρ , ω and φ mesons, which 
interact with hadrons with a strength similar to that of a pion (for 
ρ and ω) [3,30,31].

A straightforward generalization of Eq. (1) to the case of deep 
inelastic scattering (DIS) leads to a gross violation of the approx-
imate Bjorken scaling, and hence to the contradiction with the 
leading twist QCD expectations. In the framework of the parton 
model, the qualitative resolution of the paradox was suggested 
by Bjorken [32] by assuming that the interaction is dominated 
by the so-called aligned quark–antiquark pairs, where the quarks 
share asymmetrically the photon longitudinal momentum and 
have small transverse momenta pt . Such aligned quark–antiquark 
pairs configurations are strongly interacting with a nuclear tar-
get and correspond to typical vector meson-like (and/or other 
hadronic) configurations. Their contribution to the total virtual 
photon–nucleon cross section σγ ∗ N is suppressed by a factor of 
μ2/M2, where μ is a soft QCD scale, which leads to the scaling 
of σγ ∗N .

In QCD the situation is somewhat different [33]: in addition to 
the aligned pairs, configurations with large pt also contribute to 
σγ ∗N ; their noticeable contribution is proportional to αs(p2

t )/p2
t , 

where αs is the strong coupling constant, and grows with an in-
crease of the collision energy.

Overall this leads to the following approximate picture of the 
hadronic component of the wave function of the photon: the ma-
jority of the configurations interact with strengths similar to the 
one given by CFs in the γ → ρ, ω transitions; they dominate at 
large and medium σ ≥ σπ N . (They also include the fluctuations in 
the aligned jet component.) Note that with an increase of colli-
sion energies, these configurations are likely to be somewhat more 
localized than those in the elastic vector meson–nucleon scatter-
ing [23]. In addition, there is a component which dominates for 
small σ and which is described by the perturbative (dipole) wave 
function interacting with the strength given by perturbative QCD.

The formalism of cross section fluctuations was introduced be-
fore advent of QCD to explain presence of inelastic diffraction at 
small t [11,12]. Its connection to the Gribov inelastic shadowing 
for double scattering was pointed out in [34]. The basic idea of this 
approach is to diagonalize the interaction matrix which arises in 
the Gribov–Glauber approach in the basis of elastic and diffractive 
states. The obtained matrix describes the distribution over the val-
ues of the cross section. If diffractive states are hadron resonances, 
this program can be effectively performed [13]. It was possible to 
extend this formalism by accounting for the well understood QCD 
phenomena to reconstruct the form of the distribution Pγ (σ , W )

[13,35], where W is the invariant photon–proton energy. While the 
form of Pγ (σ , W ) can be calculated from the first principles only 
for small σ [36], it can be constrained by the following integral 
relations:∫

dσ Pγ (σ , W )σ ≡ 〈σ 〉 = σγ p(W ) ,∫
dσ Pγ (σ , W )σ 2 ≡ 〈σ 2〉 = 16π

dσγ p→Xp(W , t = 0)

dt
, (2)

where σγ p(W ) is the total photon–nucleon cross section;
dσγ p→Xp(W , t = 0)/dt is the cross section of photon diffractive 
dissociation on the proton including the ρ meson peak, which de-
termines the dispersion of CFs encoded in Pγ (σ , W ). Note that 
the distribution Pγ (σ , W ) is not normalizable [36], i.e., the inte-
gral 

∫
dσ Pγ (σ , W ) is divergent at the lower integration limit due 

to the infinite renormalization of the photon Green’s function (the 
vacuum polarization).

Therefore, to model CFs in the photon, we build a model inter-
polating between the regimes of small and large σ . For the former, 
we use the color dipole model (CDM) of the photon wave func-
tion, where the (usually virtual) photon is treated as superposition 
of quark–antiquark pairs (dipoles). The dipoles interact with the 
target with cross sections given by the factorization theorem of 
perturbative QCD for small dipoles [38]. Note that in the literature 
there is a popular assumption that the contribution of light vector 
mesons to the photon–nucleon cross section is dual to the integral 
over the small masses of qq̄ pairs (for example, M2 ≤ 1 GeV2 for 
ρ, ω-mesons). The CDM gives a reasonable description of CFs for 
σ � σ(π N). For large σ , σ � σ(π N), the CFs are determined by 
non-perturbative effects both in terms of the photon configurations 
involved and the strength of the interaction. Therefore, we use the 
modified VMD (mVMD) approach [23] to model their effects.

In our analysis we use the results of the approach developed 
in [37], which gives a good description of the proton structure 
function F2p(x, Q 2) down to Q 2 ∼ 0.3 GeV2. In this approach, 
the dipole cross section σqq̄ is built in a piece-wise form. For 
small dipoles corresponding approximately to dt ≤ 0.3–0.4 fm, one 
has [38]:

σqq̄(W ,dt,mq) = π2

3
d2

t αs(Q 2
eff)xeff g(xeff, Q 2

eff) , (3)

where W is the invariant photon–nucleon center of mass en-
ergy, Q 2

eff = λ/d2
t for light quarks and Q 2

eff = m2
q + λ/d2

t for heavy 
quarks; xeff = 4m2

q/W 2 + 0.75λ/(W 2d2
t ); mq = 300 MeV for light 

u, d and s quarks and mc = 1.5 GeV. This choice of the quark 
masses ensures that the average transverse size of qq̄ configura-
tions in the photon wave function is close to that of the pion, 
dπ = 0.65 fm, and also leads to a smoother interpolation between 
small and large σ regimes. The parameter λ = 4 is chosen to best 
reproduce the HERA data on diffractive J/ψ photoproduction [39]. 
Note, however, that heavy quarks give a very small contribution to 
the quantities we discuss below.

For large dipole sizes, σqq̄ is constrained to be equal to the total 
pion–nucleon cross section at the appropriate energy at dt = dπ =
0.65 fm and to slowly grow for dt > 0.65 fm. Finally, for the in-
termediate values of 0.3–0.4 < dt < 0.65 fm, σqq̄ is modeled as a 
smooth interpolation between the low-σqq̄ (3) and large-σqq̄ limits.

As a result, one can write the interpolation formula for σγ p(W )

as

σγ p(W ) =
∑

e2
q

∫
dz d2dtσqq̄(W ,dt,mq)|�γ ,T (z,dt,mq)|2 , (4)
q
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where z is the fraction of photon momentum carried by the quark 
in the dipole; dt is the transverse distance between the quark and 
the antiquark; eq are the quark charge. The photon wave func-
tion squared in the mixed momentum–coordinate representation 
is given in [40].

It is worth emphasizing here that the dominant contribution 
to σγ p in Eq. (4) originates from the nonperturbative interactions 
of large-size multiparton hadron-like configurations in the photon 
wave function, which do not resemble qq̄ dipoles. Duality consid-
erations suggest that the contribution of such configurations can 
be approximated using the lightest vector meson. Hence, we first 
calculate Pγ in the model of Eq. (4) and next match it at moder-
ate σ to the nonperturbative model for CFs for transitions to light 
mesons.

Since σγ p(W ) = ∫
dσσ Pγ (σ , W ), one finds within the model 

of Eq. (4):

P dipole
γ (σ , W ) =

∑
q

e2
q

∣∣∣∣∣ πdd2
t

dσqq̄(W ,dt,mq)

∣∣∣∣∣
×

∫
dz|�γ ,T (z,dt(σqq̄),mq)|2∣∣σqq̄(W ,dt ,mq)=σ

.

(5)

Note that the right-hand side of (5) is expressed in terms of 
σqq̄(W , dt, mq), which is then identified with σ . The resulting 
distribution P dipole

γ (σ , W ) as a function of σ for different light 
quark masses mq and at W = 100 GeV is shown by the green 
dashed curves. To examine the sensitivity of P dipole

γ (σ , W ) to the 
choice mq , we varied the light quark mass in the interval 0 ≤
mq < 350 MeV; the results are shown in Fig. 1, where the dashed 
curves from the upper to the lower one correspond to mq = 0, 
mq = 250 MeV, mq = 300, and mq = 350 MeV, respectively.

Since in the used model the σ(qq̄N) cross section does not ex-
ceed approximately 40 mb, the resulting distribution P dipole

γ (σ , W )

of Eq. (5) has support only for 0 ≤ σ ≤ 40 mb.
For large σ , the distribution Pγ (σ , W ) can be well approxi-

mated by the distribution P (σ ) for the γ → ρ transition. Taking 
the sum of the ρ , ω and φ meson contributions, the resulting dis-
tribution reads:

P (ρ+ω+φ)/γ (σ , W ) = 11

9

(
e

fρ

)2

P (σ , W ) , (6)

where P (σ , W ) is taken from [23]; the coefficient of 11/9 takes 
into account the ω and φ contributions in the SU(3) approximation 
(which somewhat overestimates the rather small contribution of φ
mesons). The form of P (σ , W ) is motivated by Pπ (σ , W ) for the 
pion and takes into account presence of the large-mass diffraction 
at high energies. It is also constrained to describe the HERA data 
on ρ photoproduction on the proton, which requires to account for 
a suppression of the overlap of the photon and ρ wave function as 
compared to the diagonal case of the ρ → ρ transition.

The resulting P (ρ+ω+φ)/γ (σ ) at W = 100 GeV is shown by the 
blue dot-dashed curve in Fig. 1.

We build a hybrid model of Pγ (σ , W ) by interpolating between 
the regime of small σ ≤ 10 mb, where perturbative dipole ap-
proximation is applicable and there is no dependence on the light 
quark mass mq , and the regime of large σ , where the soft con-
tribution due to the lightest vector meson dominates (hence we 
neglect the soft contribution of configurations with the large mass 
and small kt ). In particular, in our analysis we use the following 
expression:
Fig. 1. The distributions Pγ (σ , W ) for the photon at W = 100 GeV. The red solid 
curve shows the full result of the hybrid model, see Eq. (7). The green dashed and 
blue dot-dashed curves show separately the dipole model and the vector meson 
contributions evaluated using Eqs. (5) and (6), respectively. (For interpretation of 
the references to color in this figure, the reader is referred to the web version of 
this article.)

Pγ (σ , W ) =
⎧⎨
⎩

P dipole
γ (σ , W ) , σ ≤ 10 mb ,

P int(σ , W ) , 10 mb ≤ σ ≤ 20 mb ,

P (ρ+ω+φ)/γ (σ , W ) , σ ≥ 20 mb .

(7)

where P int(σ ) is a smooth interpolating function. The resulting 
Pγ (σ , W ) is shown by the red solid curve in Fig. 1.

Our model for Pγ (σ , W ) satisfies the constraints of Eq. (2) and 
gives the good description of the total and diffraction dissociation 
photon–proton cross sections at W = 100 GeV. Indeed, for σγ p , 
we obtain 

∫ 100 mb
0 dσσ Pγ (σ , W ) = 135 μb, which agrees with the 

PDG value of σγ p = 146 μb [41]. For the cross section of diffrac-

tive dissociation, we obtain 
∫ 100 mb

0 dσσ 2 Pγ (σ , W )/(16π) =
240 μb/GeV2. It agrees with our estimate of dσγ p→Xp(t = 0)/dt ≈
220 μb/GeV2, which is obtained by integrating the data of [42]
over the produced diffractive masses and extrapolating the result-
ing cross section to the desired W = 100 GeV.

To quantify the width of CFs, one can introduce the disper-
sion ωσ . For the photon, it can be introduced by the following 
relation:∫

dσσ 2 Pγ (σ , W ) = (1 + ωσ )

(
e

fρ
σ̂ρN

)2

, (8)

where σ̂ρN is the ρ meson–nucleon cross section. The use of our 
Pγ (σ , W ) in Eq. (8) gives ωσ ≈ 0.93, which should be compared 
to ωρ

σ ≈ 0.54 for the pure ρ meson contribution to Pγ (σ , W ) and 
to ωπ

σ ≈ 0.45 for CFs in the pion [35].

3. Color fluctuations and the number of wounded nucleons in 
γ A scattering

One of important advantages of the Gribov–Glauber approxi-
mation is that it accounts for diffractive processes in the inter-
mediate states including the photon diffraction into large masses 
and, therefore, conserves energy–momentum by virtue of duality 
between the parton model and hadronic descriptions. On the con-
trary, the Gribov–Glauber model, which accounts for elastic inter-
mediate state only [16], violates energy–momentum conservation 
for the processes with multiple multiplicity of wound nucleons; 
it is proven by direct calculations of the energy released in such 
processes. A Monte-Carlo procedure including finite size effects in 
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the elementary cross section and short-range correlations between 
nucleons was developed in [18]. Thus, the formulae for the num-
ber of wounded nucleons follow directly from the formulae for the 
CFs but differ from the combinatorics of the Glauber model due 
to the need to average over values of the cross section. For hard 
processes, nuclear shadowing and its impact on the number of 
wounded nucleons is calculated separately through the QCD fac-
torization theorem.

It has been understood long ago that the large coherence length 
prevents cascading of rapid secondary hadrons since they are 
formed outside of a target. Thus, only low-energy cascades are 
allowed. Hence, the number of wounded nucleons given by the 
formulae below can be probed by selecting a kinematical region in 
the rapidity, where the contribution of cascades is expected to be 
small, see the discussion in the next section.

Previously we used the CF model to calculate the cross section 
of inelastic interactions with exactly ν nucleons, σν , in p A colli-
sions. The model was found to be consistent with the data at least 
up to ν ∼ 10 [15]. Hence it is natural to use a similar approach to 
account for the CF in the photon wave function in γ A scattering 
for the interaction strength comparable or larger than σ(π N) (CF 
effects due to the contribution of small-size configurations to be 
discussed later, see Eq. (11)). Then, for the photon–nucleus cross 
section corresponding to exactly ν inelastic interactions with the 
target nucleons, σν , one obtains in the Gribov–Glauber model in 
the optical model limit:

σν =
∫

dσ Pγ (σ , W )

(
A
ν

)∫
d2�b

[
σin(σ )T A(b)

A

]ν

×
[

1 − σin(σ )T A(b)

A

]A−ν

, (9)

where �b is the impact parameter; σin is the inelastic, non-
diffractive cross section for the configuration characterized by the 
total cross section σ ; T A(b) = ∫

dzρA(b, z) in the nuclear opti-
cal density, where ρA(r) is the density of nucleons. Note that we 
use σin = 0.85 σ (it is based on our estimate that in the con-
sidered range, the elastic cross section constitutes approximately 
15% of the total one) and the Wood–Saxon density of nucle-
ons for the 208Pb target [18] in our analysis. In the derivation 
of Eq. (9), we employ the discussed above equivalence between 
the Gribov–Glauber model and cross section fluctuations approach. 
This equivalence becomes trivial, if one uses the approximation of 
completeness over diffractively produced states. It is worth em-
phasizing that we consider here soft interaction of the multiparton 
configurations of the hadronic component of the photon wave 
function. For the interaction of the projectile consisting exactly
of two constituents, only ν = 1, 2 are allowed, see Ref. [7,43].

The probability to have exactly ν wounded nucleons in γ A
scattering, P (ν), reads:

P (ν, W ) = σν∑∞
1 σν

, (10)

where σν are given by Eq. (9). The probability distribution P (ν, W )

calculated using Eqs. (9) and (10) is shown in Fig. 2 by the curve 
labeled “Color Fluctuations”. For comparison, we also show the re-
sults of the calculation, where the effect of CFs is neglected and 
the photon is represented by an effective fluctuation interacting 
with the total cross section σ = 25 mb; the corresponding curve is 
labeled “Glauber”.

Equation (9) does not take into account that in QCD, configura-
tions corresponding to a small cross section of the interaction with 
the nucleon at high energies interact with the collective small-x
gluon field of the nucleus, which is suppressed compared to the 
Fig. 2. The probability distributions P (ν, W ) of the number of inelastic collisions ν . 
Predictions of Eqs. (9) and (11) are shown by the curves labeled “Color Fluctuations” 
and “Generalized CF”, respectively. For comparison, the Gribov–Glauber model cal-
culation with σ = 25 mb, which neglects the effect of CFs, is shown by the curve 
labeled “Glauber”.

sum of the individual gluon fields of the nucleons due to the phe-
nomenon of the leading twist (LT) nuclear shadowing [44]. This is 
supported by the observation of the large LT shadowing in coher-
ent photoproduction of J/ψ in Pb–Pb UPCs at the LHC [45–47]. 
This implies that Eq. (9) underestimates the probability of the 
interaction with two and more nucleons for small σ , which is 
determined by the LT nuclear shadowing. It effectively takes into 
account the implication of QCD factorization theorem: the pres-
ence of the multiparton configurations in a small size qq̄ configu-
rations which are ignored in the eikonal models and in particular 
in Eq. (9).

To take into the account this effect, we modify Eq. (9) and use 
the following expression:

σν =
∞∫

0

dσ Pγ (σ , W )

(
A
ν

)[
σ in

σ in
eff

�(σ0 − σ) + �(σ − σ0)

]

×
∫

d2�b
[

σ in
effT A(b)

A

]ν [
1 − σ in

effT A(b)

A

]A−ν

, (11)

where σ0 = 20 mb (see details below); σ in/σ in
eff ≈ σ/σeff < 1 is the 

suppression factor modeling the effect of the LT shadowing. The ef-
fective cross section of σeff (note that σ in

eff = 0.85σeff) is a function 
of σ , which we determine using the following procedure. For large 
σ > σ0, we set σeff = σ . For σ < σ0, σeff is defined as the cross 
section corresponding to the gluon shadowing ratio R g(x) [44] cal-
culated in the high-energy eikonal approximation:

R g(xeff, Q 2
eff) = xg A(xeff, Q 2

eff)

AxgN(xeff, Q 2
eff)

= 2

Aσeff

∫
d2�b

(
1 − e−σeff/2T A(b)

)
, (12)

where xeff and Q 2
eff are the light-cone momentum fraction and the 

resolution scale, respectively, which correspond to the dipole cross 
section for the given cross section σ = σqq̄(W , dt, mq) (the trans-
verse size dt ), see Eq. (3). This prescription for σeff is based on the 
observation that since the non-vector-meson component of Pγ (σ )

is relatively small, the gluon shadowing can be considered in a 
simplified approximation, where CFs for the interaction with N ≥ 2
nucleons are small and, hence, R g is given by the single effective 
rescattering cross section σeff.
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To estimate the value of σ0, we notice that the factor of nuclear 
suppression of coherent J/ψ photoproduction on nuclei is de-
scribed very well for the LT nuclear shadowing. In particular, R g ≈
0.6 for x = 10−3 [47], which according to Eq. (12) corresponds 
to σeff = 17 mb. Therefore, in our analysis we take σ0 = 20 mb. 
Our numerical analysis indicates that the results of our calculation 
depend weakly on the method of smooth interpolation in Eq. (7)
and the assumption about the value of the ratio σ in/σ in

eff. We call 
the resulting approach to the calculation of photon–nucleus in-
elastic cross sections σν the generalized color fluctuation (GCF) 
model. The result of the calculation of the distribution over ν us-
ing Eq. (11) is shown in Fig. 2 by the curve labeled “Generalized 
CF”.

The results presented in Fig. 2 deserve a discussion. For one in-
elastic photon–nucleus interaction (ν = 1), CFs in the photon lead 
to an almost a factor of two enhancement of P (ν) compared to 
the calculation neglecting CFs. Thus, an inclusion of the approxi-
mately 30% small-σ component of the photon wave function (see 
the discussion in the Introduction), leads to a large effect in the 
inelastic γ A scattering. This effect is reduced approximately by a 
factor of two when we include the LT nuclear shadowing (com-
pare the “Color Fluctuations” and “Generalized CF” curves). As ν
increases, the small-σ contribution to the distribution Pγ (σ , W )

becomes progressively less important and all three models give 
similar results for 2 < ν < 8, where the contribution of the two 
terms in the integrand of Eq. (11) approximately compensate each 
other. For large ν > 10, the two models including the effect of CFs 
in the photon predict a much broader distribution P (ν) than the 
model neglecting CFs: the enhancement at large ν comes from the 
contribution of the large-mass inelastic diffractive states implicitly 
included in Eqs. (9) and (11).

4. Color fluctuations and the distribution over transverse energy

It is impossible to directly measure the number of inelastic 
interactions ν for collisions with nuclei. Modeling the distribu-
tion over the hadron multiplicity is also difficult due to the lack 
of the relevant data from γ p scattering and issues with imple-
menting energy–momentum conservation. However, the analysis 
of [15] suggests that the distribution over the total transverse en-
ergy, �ET , sufficiently far away from the projectile fragmentation 
region (at sufficiently large negative pseudorapidities) is weakly in-
fluenced by energy conservation effects (due to the approximate 
Feynman scaling in this region) and is also weakly correlated with 
the activity in the rapidity-separated forward region. This expecta-
tion is validated by a recent measurement of �E T as a function of 
hard scattering kinematics in pp collisions at the LHC [48].

Due to the weak sensitivity to the projectile fragmentation re-
gion, we expect that the �ET distributions in p A and γ A scatter-
ing at similar energies should have similar shapes for the same ν . 
In Ref. [15], a model was developed for the distribution over �E T

as a function of centrality in p A scattering at large negative pseu-
dorapidities (in the Pb-going direction) and 

√
s = 5.02 TeV. In 

our discussion below, using the one-to-one correspondence be-
tween centrality and ν , we denote this distribution fν(�ET ) =
1/NevtdN/d�ET . In the spirit of the KNO scaling, it is natural to 
expect that the distribution over the �ET total transverse energy 
in γ A scattering, when normalized to the average energy release 
in pp scattering 〈�ET (N N)〉, weakly depends on the incident col-
lision energy. That is, the distribution over y = �E T / 〈�ET (N N)〉
has approximately the same shape at different energies. Hence we 
model the distribution over y for photon–nucleus collisions using 
Fν(y) = 〈�ET (N N)〉 fν(y), where the factor of 〈�ET (N N)〉 is a Ja-
cobian to keep normalization of 

∫
Fν(y)dy = P (ν).
Fig. 3. The probability distributions Fν (y) over y = �ET / 〈�ET (N N)〉 for differ-
ent numbers of inelastic interactions ν in the Generalized Color Fluctuations (GCF) 
model.

The results of the calculation of Fν(y) are presented in Fig. 3
for the Generalized Color Fluctuations (GCF) model showing con-
tributions of events with different ν to the normalized distribution 
over y. We separately show the contributions corresponding to 
ν = 1, 2, 3, and 4, and the total contribution corresponding to the 
sum over all ν (the curve labeled “Total”). One can see that the 
net distribution is predicted to be much broader than that for the 
ν = 1 case corresponding to the γ p scattering. Also, our results in-
dicate that for y = �ET (γ N)/ 

〈
�ET (γ N)

〉 ≤ 1, the contribution of 
the interactions with one nucleon dominates. On the other hand, 
the distribution over y in γ p scattering can be measured in p A
UPCs. A first step would be to test that the y distribution in γ p
and in the γ A process with ν = 1 [for example, in the interaction 
of the direct photon (xγ = 1) with a gluon with xA ≥ 0.01] is the 
same. Among other things this would give a valuable information 
on the rapidity range affected by cascade interactions of slow (in 
the nucleus rest frame) hadrons which maybe formed inside the 
nucleus.

Next one would be able to compare the rates of y < 1 events 
in γ p and γ A to determine the fraction of the ν = 1 and ν > 1
events, which is quite sensitive to the model, see Fig. 2. One can 
see that for a given y, a range of ν contributes into the cross sec-
tion. To a good approximation, 〈ν〉− 1 ∝ y. For y = 10, 〈ν〉 reaches 
2.8 (2.6, 3.1) for the GCF (CF, Glauber) model with the variance 
typically of about ∼ 0.15. The resulting smearing over ν for given 
y does not wipe out the difference between the models for the ν
distribution, see Fig. 4.

Since the distribution F (y) is predicted to be much broader 
in γ A collisions than in γ p scattering, the use of different for-
ward triggers makes it possible to determine the distribution over 
ν and use it to determine both 〈σ 〉 and the variance of the 
Pγ (σ , W ) distribution for selected configuration. For example, in 
the CF model of Eq. (9) (cf. [9,18]), which does not include the LT 
shadowing effects, one obtains the following relations for the aver-
age number of inelastic collisions 〈ν〉,

〈ν〉 = Aσin(γ N)

σin(γ A)
, (13)

and for the variance of the cross section for a specific trigger,〈
σ 2

trig

〉
〈
σtrig

〉 = (
〈
ν2

〉
/ 〈ν〉 − 1) A2

A−1∫
d2b T 2

A(b)
. (14)

Obviously similar considerations are applicable for the γ A in-
teractions with a special trigger including jet production, produc-
tion of charm, etc. In the case of forward dijet production, for 
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Fig. 4. The net probability distribution ∑ν Fν (y) as a function of y for different 
models including (curves labeled “Generalized CFs” and “Color Fluctuations”) and 
neglecting (the curve labeled “Glauber”) CFs in the photon.

direct photon for xA ≤ 0.01, the leading twist shadowing should 
set in resulting in a broader distribution over ν as compared to 
the interactions with xA > 0.01 (corresponding to ν = 1), see the 
discussion in sections 6.3 and 6.4 of [44]. For the resolved pho-
tons, the distribution over ν (and hence over �E T ) should become 
broader with an decrease of xγ since hadronic configurations with 
smaller xγ have a larger transverse size. One also expects that for 
sufficiently small xγ < 0.1, the hard process would select generic 
configurations in the photon and, hence, the distribution over �E T
would approach the distribution for generic (without trigger) γ A
collisions. Note that first studies of diffractive dijet photoproduc-
tion in pp, p A and A A UPCs at the LHC in next-to-leading order 
(NLO) QCD, where CFs in the photon were used to model the effect 
of factorization breaking, were reported in [49].

In the case of production of leading charm, small-size dipoles 
dominate (the variation of the transverse size is regulated by 
mc and pt(charm)), which allows one to study leading twist 
shadowing effects in the charm channel. For instance, for x ∼
10−3, one expects 〈ν〉 ∼ 2 and the corresponding reduction of 
σ charm

in (γ A)/Aσ charm
in (γ p), see Eq. (13).

5. Conclusions

In this paper, we quantify the general property of photon–
hadron interactions at high energies that the photon can be viewed 
as a superposition of configurations interacting with different cross 
sections, which we call the phenomenon of color fluctuations (CFs), 
and propose a model for the distribution Pγ (σ , W ) describing 
these CFs. Using this model and also additionally taking into ac-
count the effect of leading twist nuclear shadowing for small-σ
configurations, we for the first time give predictions for the dis-
tribution over the number of inelastic interactions ν in photon–
nucleus scattering. Our results show that CFs lead to a dramatic 
enhancement of this distribution at the small ν = 1 and the large 
ν > 10 compared to the combinatorics familiar from the Glauber 
model. We also study the effect of CFs on the total transverse en-
ergy �ET released in inelastic γ A scattering with different triggers 
and point to specific indications of the CF effect. Our predictions 
can be tested in the photon–nucleus (γ A) interactions in UPCs of 
ions at the LHC, which are characterized by high-intensity fluxes 
of quasi-real photons in a wide energy spectrum and which can be 
viewed as an effective “strengthonometor” of the different compo-
nents of the photon wave function.

It would also allow one to obtain (using central tracking of the 
LHC detectors) unique information on the centrality dependence of 
the production of forward hadrons carrying a large fraction of the 
photon momentum (xF ≥ 0.5). For soft interactions, experiments 
at fixed-target energies did indicate a strong suppression of the 
low-pt and large-xF hadron production. At the same time, very 
little experimental information is available on suppression of the 
leading hadron production at the collider energies and on its W
dependence. These and other related topics will be discussed in 
more detail elsewhere.

An alternative approach of [50] assumed the dominance of the 
single Pomeron exchange in the crossed channel, which branches 
into many Pomerons interacting with nucleons of nuclei. This ap-
proach predicts absence of the depletion of the yield of leading 
hadrons in high energy hadron–nucleus collisions. Hence, it is in 
variance with the existing data, see e.g. [51]. The physics of the 
Pomeron branching may become important at the energies sig-
nificantly exceeding energies achieved at UPCs and at future e A
collider, which are the subject of this paper.
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