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A B S T R A C T

Satellite rainfall products have been available for many years (since '90) with an increasing spatial/temporal
resolution and accuracy. Their global scale coverage and near real-time products perfectly fit the need of an early
warning landslide system. Notwithstanding these characteristics, the number of studies employing satellite
rainfall estimates for predicting landslide events is quite limited.

In this study, we propose a procedure that allows us to evaluate the capability of different rainfall products to
forecast the spatial-temporal occurrence of rainfall-induced landslides using rainfall thresholds. Specifically, the
assessment is carried out in terms of skill scores, and receiver operating characteristic (ROC) analysis. The
procedure is applied to ground observations and four different satellite rainfall estimates: 1) the Tropical Rainfall
Measurement Mission Multi-satellite Precipitation Analysis, TMPA, real time product (3B42-RT), 2) the
SM2RASC product obtained from the application of SM2RAIN algorithm to the Advanced SCATterometer
(ASCAT) derived satellite soil moisture (SM) data, 3) the Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Network (PERSIANN), and 4) the Climate Prediction Center (CPC) Morphing
Technique (CMORPH). As case study, we consider the Italian territory for which a catalogue listing 1414 rainfall-
induced landslides in the period 2008–2014 is available.

Results show that satellite products underestimate rainfall with respect to ground observations. However, by
adjusting the rainfall thresholds, satellite products are able to identify landslide occurrence, even though with
less accuracy than ground-based rainfall observations. Among the four satellite rainfall products, CMORPH and
SM2RASC are performing the best, even though differences are small. This result is to be attributed to the high
spatial/temporal resolution of CMORPH, and the good accuracy of SM2RSC. Overall, we believe that satellite
rainfall estimates might be an important additional data source for developing continental or global landslide
warning systems.

1. Introduction

Worldwide, rainfall-induced landslides occur every year causing
fatalities, considerable damage and relevant economic losses. Italy is
one of the countries most prone to landslide risk (Guzzetti et al., 2005)
and where the population is heavily affected. In the 50-year period
1964–2013, 1354 people died due to landslides (Salvati et al., 2014).
Moreover, climate changing is expected to exacerbate the impact of
landslides, mostly due to the increase in heavy rainfall (Fischer and
Knutti, 2015; Ciabatta et al., 2016; Gariano and Guzzetti, 2016). In
order to mitigate landslide risk, early warning systems for the predic-
tion of rainfall-induced failures were developed in several countries
based on different approaches and input data sets (Keefer et al., 1987;
Baum and Godt, 2010; Rossi et al., 2012; Lagomarsino et al., 2013;

Segoni et al., 2015; Piciullo et al., 2016). The forecast of rainfall-in-
duced landslides relies upon physically-based (e.g., Baum et al., 2010;
Lepore et al., 2013; Segoni et al., 2010; Alvioli and Baum, 2016) or
empirical rainfall thresholds (e.g., Caine, 1980; Innes, 1983; Aleotti,
2004; Guzzetti et al., 2007; Guzzetti et al., 2008; Brunetti et al., 2010;
Peruccacci et al., 2012). Empirical rainfall thresholds are calculated
analyzing past rainfall events that have or have not resulted in land-
slides. In operational landslide warning systems, empirical rainfall
thresholds are compared with rainfall measures, estimates, and fore-
casts to evaluate the possible occurrence of failures. Guzzetti et al.
(2007) grouped empirical rainfall thresholds in three main categories:
(i) thresholds using rainfall measures for a specific rainfall event (e.g.,
mean rainfall intensity-rainfall duration ID thresholds, Aleotti, 2004;
Brunetti et al., 2010; Berti et al., 2012; Martelloni et al., 2012; Rosi
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et al., 2012); (ii) thresholds considering the antecedent conditions (e.g.,
explicitly including rainfall and/or SM, Crozier, 1999; Glade et al.,
2000; Ponziani et al., 2011; Brocca et al., 2012; Chen et al., 2017); and
(iii) other thresholds. To date, the ID and the cumulated rainfall-rainfall
duration ED thresholds (e.g., Peruccacci et al., 2012; Vennari et al.,
2014; Gariano et al., 2015; Giannecchini et al., 2016) are the most used
worldwide.

The accurate estimation of rainfall is the primary task in all the early
warning systems mentioned above, and the reliability of the final
forecasts is strongly dependent on the quality of rainfall inputs (Hong
et al., 2006). Specifically, the spatial-temporal occurrence and the
number of landslides are dependent on different rainfall attributes such
as rainfall climatology, antecedent rainfall accumulation, rainfall in-
tensity, cumulated event rainfall and duration. In the scientific litera-
ture, the vast majority of studies developing landslide forecasting sys-
tems used rain gauge measurements (e.g., Baum and Godt, 2010).
However, it is well known that rain gauge observations are affected by
several errors, primarily related to their small spatial representative-
ness, but also to the measurement accuracy (Nikolopoulos et al., 2014;
Marra et al., 2017a). Additionally, the maintenance of real-time rain
gauge networks is costly and not easy to achieve, mainly when net-
works operate in extreme weather conditions. The use of rain gauges for
rainfall monitoring is less applicable in many parts of the world in
which rain gauge networks have very low density, or even they are
absent (Kidd et al., 2017). To overcome this issue, in the last three
decades remote sensing observations have been used for providing
rainfall estimates on a global scale at ever increasing spatial/temporal
resolution and accuracy. The Satellite Application Facility on Support
to Operational Hydrology and Water Management (H SAF, http://hsaf.
meteoam.it/, Mugnai et al., 2013), the Tropical Rainfall Measurement
Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA, Huffman
et al., 2007), and the recent Global Precipitation Measurement (GPM,
https://pmm.nasa.gov/GPM, Hou et al., 2014) mission are examples of
project and missions addressed to the development of satellite-based
rainfall products. The first attempt of using satellite rainfall product by
TMPA for global landslide hazard assessment was carried out by Hong
et al. (2006, 2007) who performed a preliminary analysis for assessing
the capability of a global system in predicting the occurrence of large
landslide events worldwide. The system was further updated and im-
proved by Kirschbaum et al. (2009, 2012), who highlighted some issues
in the original system due to the spatial resolution of the susceptibility
map and the need to re-compute the ID threshold for better considering
regional climatology. The system was made operational at https://
trmm.gsfc.nasa.gov/publications_dir/potential_landslide.html and it
will be updated by replacing TMPA product with the new GPM data,
with expected improved performances (Sidder, 2016). Another study
was carried out by Farahmand and AghaKouchak (2013) who im-
plemented a satellite-based global landslide model but using a different
precipitation product, i.e., the Precipitation Estimation from Remotely
Sensed Information Using Artificial Neural Networks, PERSIANN (Hsu
et al., 1997; Sorooshian et al., 2000) and a machine learning approach
as landslide prediction model. More recently, some authors employed
satellite precipitation data for regional and local scale analyses (Liao
et al., 2010; Kirschbaum et al., 2015; Robbins, 2016; Cullen et al., 2016;
Rossi et al., 2017; Marra et al., 2017b; Nikolopoulos et al., 2017).
Specifically, Marra et al. (2017a) investigated the effect of spatial ag-
gregation due to satellite rainfall product in the assessment of rainfall
threshold for debris flow occurrence prediction. Nikolopoulos et al.
(2017) evaluated different satellite rainfall products for debris flow
prediction over the upper Adige River basin in the eastern Italian Alps.
A couple of studies employed both soil moisture (SM) estimates and
satellite-based precipitation in order to monitor independently initial
conditions and rainfall and, hence, better forecast landslide occurrence
(Ray and Jacobs, 2007; Posner and Georgakakos, 2015; Cullen et al.,
2016). Ray and Jacobs (2007) used the Advanced Microwave Scanning
Radiometer (AMSR) for monitoring antecedent SM conditions and

TMPA for estimating precipitation at three sites worldwide (California,
Nepal and Philippines). A clear relationship between landslide occur-
rence and high SM and precipitation conditions as estimated by satellite
sensors was highlighted.

Based on the brief literature review reported above, it is evident that
satellite-based rainfall estimates have been scarcely used for predicting
the spatial-temporal occurrence of landslides. The reasons may be at-
tributed to: 1) the bias characterizing near real-time satellite pre-
cipitation estimates, which is temporally varying not consistently year-
by-year (being dependent on the satellite sensors used for obtaining the
estimates), 2) the spatial/temporal resolution, 3) the timeliness, which
is often insufficient for operational purposes, and 4) a general (often not
justified) skepticism in the use of satellite products for land applications
(Brocca et al., 2017; AghaKouchak et al., 2015). Satellite-based pre-
cipitation records have been made available since ~15 years, spanning
a period of> 30 years and with a spatial-temporal resolution that
might be appropriate for landslide studies. Arguably, due to the limited
spatial representativeness of point information from rain gauges, the
spatial issue of remote sensing products related to their coarse resolu-
tion is also encountered with ground-based observations. However, as
mentioned above, currently rain gauges are the only source of in-
formation used in landslide early warning system. Here, we test the use
of satellite-based rainfall estimates through a comparative analysis of
satellite-based rainfall product with rain gauge measurements.

On this basis, we intend to address here the following scientific
question: How far are we from the use of satellite rainfall products for
landslide forecasting? Indeed, we believe that there is a lot of un-
explored potential in using such data sets for landslide prediction. Their
importance will be invaluable in developing countries where early
warning systems for landslides are much more useful, and needed.
Connected to the main scientific question, the following objectives are
explored: which satellite-based rainfall product performs best in terms
of landslide prediction? How to evaluate the quality of satellite-based
rainfall products in the context of landslides?

To address the above questions, we perform a thorough study in
Italy where detailed information about the occurrence of landslide
events is available (Brunetti et al., 2015; Peruccacci et al., 2017).
Specifically, we explore a catalogue listing 1414 rainfall-induced
landslides in Italy, in the 7-year period 2008–2014. Four different sa-
tellite-based precipitation products are considered: 1) 3B42-RT (version
7) by the Tropical Rainfall Measurement Mission (TRMM) Multi-sa-
tellite Precipitation Analysis, TMPA (Huffman et al., 2007), 2)
SM2RAIN-ASCAT product (http://dx.doi.org/10.13140/RG.2.2.10955.
18728) that is based on the application of SM2RAIN algorithm (Brocca
et al., 2014) to ASCAT (Advanced SCATterometer) SM product (Wagner
et al., 2013), 3) Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Network (PERSIANN, Hsu et al.,
1997), and 4) the Climate Prediction Center (CPC) Morphing Technique
(CMORPH, Joyce et al., 2004). In addition, a ground-based rainfall data
set obtained from a dense network of rain gauges (~3000) spanning the
entire Italian territory is used as reference (Ciabatta et al., 2017). To
assess the reliability of the different rainfall products (satellite- and
ground-based), their relative performance in landslides detection is
compared by using the well-established ED threshold approach
(Peruccacci et al., 2017). We note that such a system is used for the
rainfall-induced landslide forecast within the National Department of
Civil Protection in Italy (Rossi et al., 2012). Therefore, the results of this
study could have an impact also for operational landslide forecasting
systems. However, our main purpose here is to assess the quality of
satellite-based precipitation products in Italy where we have detailed
information on landslides events and an established modeling system.

2. Study area

Italy is a boot-shaped peninsula that extends for about 300,000 km2

in the Mediterranean Sea including the major islands of Sicily and
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Sardinia (Fig. 1).
Given its location and latitude, climate varies largely from northern

to southern Italy. The coldest period occurs in December and January,
the hottest in July and August. In the northern part of Italy, which
includes the Po River Valley and the Alps mountain range, the climate is
typically cold in winter and warm in summer with abundant rain.
Snowfalls are common in autumn and spring over 1500m on the Alps.
Along the peninsula and in the islands the climate is temperate, with
cold winters and dry summers with mean temperature increasing going
southward. Mean annual precipitation ranges from<400mm in Sicily
and Sardinia, to> 2000mm in the northern Apennines and the eastern
Alps. Generally, November is the wettest and July the driest month
(Desiato et al., 2015).

Except for the Po River Valley and narrow coastal belts, the Italian
mainland is generally hilly and mountainous. The topography causes
widespread and frequent landslides, actually more than half a million
recognized and mapped (Trigila et al., 2015). Most of the failures occur
after intense or prolonged rainfall (Guzzetti et al., 1994; Guzzetti and
Tonelli, 2004).

3. Data and methods

3.1. Landslide and rainfall data

Landslide information is obtained from a catalogue of rainfall events
responsible for failures in Italy collected by Peruccacci et al. (2017). We
use a subset of 1414 rainfall-induced landslides in the 7-year period
between 2008 and 2014 that matches the time interval of rainfall in-
formation available from satellite estimates used in this study.

Landslide information is derived from digital and printed news-
papers, blogs, technical documents, and landslide event reports. The
documented rainfall-induced landslides are mapped as single points,
using Google Earth™ (white dots in Fig. 1).

Each landslide in the catalogue has a temporal accuracy in three
classes. The first class contains failures for which the exact time
(hourly) of occurrence is known, while the second and the third classes
include landslides for which the part of the day or the day of occurrence
is inferred, respectively.

As mentioned above, we use here one rain gauge and four satellite-
based rainfall data sets. The rain gauge based product, hereinafter OBS,

Fig. 1. Map of Italy showing the distribution of the rainfall-induced landslides in the period 2008–2014 (white dots).
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is obtained from the Italian Civil Protection Department meteorological
monitoring network. This data set is obtained by interpolating via an
advanced kriging technique the data from about 3000 rain gauges
available throughout the Italian territory (Pignone et al., 2010). The
data set provides hourly rainfall observations over a grid with spacing
of 10 km (Ciabatta et al., 2017). Although this source of information is
impacted by spatial representation issues, here, we consider OBS data
set as “reference”.

The TMPA 3B42-RT product (Huffman et al., 2007, hereinafter
3B42-RT), version 7 (http://trmm.gsfc.nasa.gov), is obtained by com-
bining rainfall estimates from various satellite sensors. The multi-
satellite platform uses the TRMM Microwave Imager (TMI), the Special
Sensor Microwave Imager (SSM/I) on board the Defense Meteorological
Satellite Program (DMSP) satellites, the Advanced Microwave Scanning
Radiometer EOS, AMSR-E, and the Advanced Microwave Sounding
Unit-B (AMSU-B) on board the National Oceanic and Atmospheric Ad-
ministration (NOAA) satellite series. In addition, the 3B42-RT product
also uses Geostationary (GEO) Infrared data, characterized by higher
spatial and temporal resolution than the microwave data, through a
constellation of GEO satellites. The 3B42-RT product is provided by the
National Aeronautics and Space Administration (NASA) with a

temporal resolution of 3 h and a spatial resolution of 0.25° (~25 km) for
the± 50° north–south latitude band with a latency of about 8 h.

The SM2RASC product is obtained through the application of the
SM2RAIN (Brocca et al., 2013, 2014) algorithm to the ASCAT SM data
set. The SM data are obtained from the Metop-A and -B satellite, and
they are characterized by a spatial resolution of 25 km, enhanced to
12.5 km after observation resampling, and a daily temporal resolution.
The SM2RASC product has been specifically developed for Italy during
the period 2008–2015 over the 12.5 km grid with daily temporal re-
solution. More in details, the algorithm has been applied to the H109
product provided by the H SAF project (http://hsaf.meteoam.it/) and
has been calibrated during the period 2013–2014 against ground-based
observations. Due to the temporal resolution of SM2RASC, the product
shows limitations in the definitions of shorter precipitation events (at
sub-daily). The algorithm is also not able to estimate rainfall where the
soil is close to saturation, as in such conditions, no variation of the soil
water content can be observed during a rainfall event. Finally, the
quality of rainfall estimation is strictly related to the quality of SM input
data. SM retrievals over complex topography or densely vegetated areas
are characterized by low quality and should be used carefully. Never-
theless, the product showed good capabilities in identifying rainfall at

Fig. 2. Maps of Pearson's correlation between ground-based rainfall observations (OBS) and (a) SM2RASC, (b) 3B42-RT, (c) CMORPH and (d) PERSIANN satellite rainfall products.
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daily temporal resolution, as shown in Ciabatta et al. (2015, 2017).
CMORPH rainfall estimates are obtained by exploiting the same

microwave sensors used for 3B42-RT rainfall product; the infrared data
are used to fill the gap at the times between two successive microwave
satellite overpasses, through morphing technique. The product is pro-
vided by the Climate Prediction Center (CPC) of the National Oceanic
and Atmospheric Administration (NOAA) at the spatial resolutions of
0.25° and 8 km on a daily, 3-hourly or 30-minute basis for the±60°
latitude band. Here we used the high resolution product (8 km at the
equator every 30min) obtained via interpolation of individual satellite-
derived estimates (~12×15 km). For further details regarding
CMORPH rainfall product, the readers are referred to Joyce et al.
(2004). The product is provided about 18 h after observation.

PERSIANN (Hsu et al., 1997) data set uses the artificial neural
network technique to estimate rainfall rate from geostationary infrared
data at each 0.25° pixel at different temporal resolutions, for the±60°
latitude band. In this work, the 3-hour temporal resolution is chosen.
Rainfall estimation is carried out by training the infrared data to the
collocated microwave estimates, when available. The product is de-
veloped by the Center for Hydrometeorology and Remote Sensing of
University of California, Irvine, and it is available since March 2000
(http://chrsdata.eng.uci.edu/) about 2 days after observations.

The accuracy of 3B42-RT, PERSIANN and CMORPH depends mostly
on the quality of the passive microwave and infrared precipitation re-
trievals, and particularly on the availability of frequent satellite over-
passes over the region of interest (Nijssen and Lettenmaier, 2004). If the
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Fig. 3. Comparison between the box plot for (a) the rainfall duration D and (b) the cumulated rainfall E of RE and RE⁎ for OBS (green), SM2RASC (red), 3B42-RT (blue), CMORPH
(magenta) and PERSIANN (gray) data sets. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Example of ED rainfall thresholds calculated using RE⁎ at exceeding probabilities
from 1% (T1) to 50% (T50) for the OBS data set. Light gray dots are the (D,E) pairs.

M.T. Brunetti et al. Remote Sensing of Environment 210 (2018) 65–75

69

http://chrsdata.eng.uci.edu


overpasses frequency is not sufficiently high, a rainfall event could be
underestimated or completely missed (Ciabatta et al., 2017).

For this study, we decided to consider the best spatial and temporal
resolution of each satellite-based product (except CMORPH that is
slightly degraded from ~8 km, 30min to 10 km, 1 h). Therefore, we
choose an analysis grid with spacing of 10 km to which all the products
are interpolated through the nearest neighboring approach that does
not change the spatial pattern of coarser resolution products (i.e., 3B42-
RT, PERSIANN and SM2RASC). In terms of temporal resolution, we
consider the native temporal sampling of each satellite rainfall pro-
ducts, i.e. the 3-hour blocks for 3B42-RT and PERSIANN and 24-h block
for SM2RASC. The CMORPH product is aggregated at hourly resolution
(originally at 30min).

3.2. Algorithm for rainfall event reconstruction

The algorithm proposed by Melillo et al. (2015) is exploited to
calculate the rainfall responsible for the observed landslides. For the

purpose, the algorithm analyzes the daily rainfall obtained from
ground-based stations and satellite sensors, and reconstructs distinct
rainfall events (RE) in terms of their duration D (in h) and cumulated
rainfall E (in mm), i.e. (D, E) pairs. In particular, to separate two con-
secutive rainfall events the algorithm requires a minimum dry period
(i.e., a period without rainfall or with a negligible amount of rainfall).
The length of the dry period varies depending on the local seasonal and
climatic conditions. Specifically, dry periods of 48 h (two days) and
96 h (four days) are used to identify rainfall events in the warm and in
the cold season, respectively (Peruccacci et al., 2017). After re-
constructing RE, and with the information on the occurrence day of
each landslide and on the rainfall of the pixel containing the landslide,
the algorithm identifies the rainfall events responsible for each failure
(RE⁎). Note, that when the landslide occurs after the end of the event
the corresponding RE⁎ is equivalent to RE. Otherwise, the duration of
RE⁎ is shorter than that of RE, and the cumulated rainfall is lower
(Melillo et al., 2015). For each data set, we discard those RE⁎ having a
delay between the rainfall ending time and the landslide occurrence

Fig. 5. Rainfall duration vs. cumulated event rainfall conditions in Italy in the period 2008–2014, compared with thresholds at 50% (T50%) non-exceedance probability level (dashed
black lines) for (a) OBS, (b) SM2RASC, (c) 3B42-RT, (d) CMORPH and (e) PERSIANN. Legend: TP, true positives; TN, true negative; FP, false positive; FN, false negative.

M.T. Brunetti et al. Remote Sensing of Environment 210 (2018) 65–75

70



Fig. 6. Values of the POD, POFD and HK skill scores obtained varying the threshold non-exceedance probability for the five data sets. Values in red are those that maximize HK. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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time longer than 48 h. This should prevent the use of wrong informa-
tion (i.e., incorrectly dated landslides) in the definition of the thresh-
olds.

The reconstructed RE⁎ for OBS, SM2RASC, 3B42-RT, CMORPH and
PERSIANN data sets are analyzed to define empirical rainfall thresholds
for the possible initiation of landslides in Italy. Note that the number of
RE⁎ is less than the number of landslides since in some cases the rainfall
measured before the failure was null.

3.3. Method for calculation and selection of ED rainfall thresholds

To calculate the empirical cumulated event rainfall-rainfall duration
(ED) thresholds for the five data sets, we adopt the well-established
frequentist method proposed by Brunetti et al. (2010), and modified by
Peruccacci et al. (2012). The method assumes in a Cartesian plane the
threshold curve of the form:

= ± ⋅
±E α α D( Δ ) γ γ( Δ ) (1)

where E is the cumulated rainfall (in mm), D the rainfall duration (in
hours), α is a scaling constant (the intercept), γ is the shape parameter
(that defines the slope of the power law curve), and Δα and Δγ represent
the uncertainties of α and γ, respectively. The method determines
thresholds for any non-exceedance probability level, e.g., a threshold at
5% probability level leaves 5% of the (D,E) pairs with landslides below
the curve.

In order to determine the non-exceedance probability providing the
best performance in landslide forecasting we use the following valida-
tion procedure. For each rainfall data set (OBS, SM2RASC, 3B42-RT,
CMORPH, and PERSIANN), we construct synthetic series randomly
selecting 85% of rainfall events with landslides (RE⁎). Then, we use the
remaining 15% of RE⁎ to assess the threshold performance. For the
purpose, rainfall thresholds are used as binary classifiers of rainfall
events that triggered (RE⁎) or did not trigger landslides. In a DE plane, a
RE⁎ located above the threshold is a true positive (TP), and below the
threshold is a false negative (FN). Analogously, a rainfall event without
landslides above the threshold is a false positive (FP), and below is a
true negative (TN). We repeat 100 times the random selection of
rainfall events, and we get a contingency table with the mean values of
TP, FN, FP and TN.

As the threshold non-exceedance probability rises, the number of FN
increases, and the number of TP decreases correspondingly. Conversely,
when lowering the threshold non-exceedance probability, the number
of FP increases and the number of TN decreases. In case the thresholds
are used in a landslide warning system, FP results in “false alarms” and
FN in “missed alarms”. It is worth noting that FP can be overrated by
the lack of information on landslide occurrence i.e., landslides may
have occurred but not reported. Consequently, even the number of TN
can be overestimated (Gariano et al., 2015). In addition, we would
notice that the validation of the rainfall thresholds is a complicated
issue; at first glance, the occurrence of a rainfall-induced landslide is a
stochastic mechanism, i.e. the same rainfall conditions may trigger a
landslide in an area and may not in a different place. Indeed, the pre-
diction of rainfall-induced landslide does not depend exclusively upon
correct rainfall forecasts (and measurements), it is instead largely in-
fluenced by the local characteristics of the terrain (slope, soil type, soil
moisture, etc.), which are mostly unknown for large areas.

From the contingency table, we obtain, the POD (Probability Of
Detection) and the POFD (Probability Of False Detection) skill scores:

=
+

POD TP
TP FN (2)

=
+

POFD FP
FP TN (3)

More specifically, POD (or Hit Rate) is the fraction of RE⁎ above the
threshold, i.e. predicted correctly, and POFD (or False Alarm Rate) is
the fraction of RE above the threshold, i.e. predicted incorrectly. We use
POD and POFD to draw the receiver operating characteristic (ROC)
curves (Fawcett, 2006) and to calculate the HK (i.e., the difference
POD-POFD) skill score (Hanssen and Kuiper, 1965). The quality of the
satellite-based rainfall product is evaluated by comparing the ROC
curves and the HK skill score whose optimal value is 1.

4. Results

In the following, we assess the capability of the satellite-based
rainfall products to forecast rainfall-induced landslides using the
ground-based rainfall product as a reference. Based on the statistical
criteria described above, we compare the performances of SM2RASC,
3B42-RT, CMORPH and PERSIANN data sets. In addition, we evaluate
the best performing threshold for each product calculating skill scores
and ROC.

As a preliminary analysis, we investigate the performance of the
four satellite rainfall products against ground observations for the
whole period of analysis. Specifically, we compute the temporal
Pearson's correlation between OBS and satellite-based rainfall for each
pixel and results are shown in Fig. 2. The correlation maps clearly show
that the SM2RASC product (Fig. 2a) has generally improved perfor-
mances with respect to the other products. For instance, the median
correlation for the whole Italian territory is equal to 0.60 for SM2RASC,
0.55 for 3B42-RT and CMORPH and 0.42 for PERSIANN. All the

Fig. 7. ROC curves built by skill scores obtained varying the threshold non-exceedance
probability for OBS (green), SM2RASC (red), 3B42-RT (blue), CMORPH (magenta) and
PERSIANN (gray) data sets. Horizontal and vertical bars represent the range of variation
of POFD and POD for the 100 runs in which RE⁎ are randomly selected. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Table 1
Rainfall ED thresholds for the possible initiation of landslides in Italy.

Data set Threshold name Threshold equation Duration range
(h)

OBS T20,OBS E=(1.6 ± 0.1)×D(0.84±0.02) 1–312
SM2RASC T20,SM2RASC E=(0.3 ± 0.1)×D(1.05±0.02) 24–360
3B42-RT T20,3B42-RT E=(1.6 ± 0.1)×D(0.69±0.02) 3–273
CMORPH T20,CMORPH E=(3.2 ± 0.3)×D(0.56±0.03) 1–271
PERSIANN T20,PERSIANN E=(0.7 ± 0.1)×D(0.76±0.03) 3–183
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products perform poorly over the Alps and high mountainous areas in
central Italy; 3B42-RT (Fig. 2b) and CMORPH (Fig. 2c) perform very
similarly with better correlations in central Italy while SM2RASC is the
best product over southern Italy (Fig. 2a).

Fig. 3 shows the box plots of the duration D (Fig. 3a and b) and of
the cumulated rainfall E (Fig. 3c and d) for RE and RE⁎ calculated using
the ground-based and satellite-based data sets.

Inspection of Fig. 3a reveals that OBS and SM2RASC rainfall events
(RE) exhibit a similar median value of D, whereas 3B42-RT, CMORPH
and PERSIANN rainfall events have a shorter duration. The duration of
RE⁎ for SM2RASC is longer than that in other data sets (Fig. 3b) likely
due to its temporal resolution (24 h). From Fig. 3c it is evident that the
E median value for 3B42-RT and CMORPH is comparable to that of
OBS. Not surprisingly, the E median value for SM2RASC is higher since
the rainfall is cumulated every 24 h. Fig. 3d shows that satellite pro-
ducts generally underestimate the cumulated rainfall responsible for
the failures measured by OBS, except for SM2RASC. As expected, for all
the products E for RE⁎ (Fig. 3d) is generally higher than E for RE
(Fig. 3c).

Applying the frequentist method to the synthetic series obtained
using 85% of the reconstructed RE⁎ (Section 3.3), we calculate the
mean ED rainfall thresholds at different non-exceedance probabilities
for the four data sets. An example of thresholds for the OBS data set is
shown in Fig. 4.

Using the remaining 15% of RE⁎, we simulate the application of the
thresholds in a hypothetical landslide warning system. Fig. 5 portrays,
as an example, the classification of rainfall events in the four con-
tingencies (TP, FP, FN and TN) based on the 50% rainfall thresholds for
the five data sets. Each graph in Fig. 5 represents one out of 100 syn-
thetic series.

Applying the classification illustrated in Fig. 5 to the different non-
exceedance probability levels, we find POD and POFD skill scores. For
civil protection purposes, the priority is to minimize the number of
missed alarms (FN) and secondary to limit false alarms (FP), which
means maximizing POD and minimizing POFD, i.e. maximizing HK.
Fig. 6 shows for each data set the POD, POFD and HK values at different
non-exceedance probability.

Following this criterion for each data set, we select the threshold
probability level that maximizes the HK skill score. For OBS the highest
HK is obtained with the threshold at 10% non-exceedance probability
that also maximizes the POD value; for the satellite-based data sets
except PERSIANN, the highest HK with the maximum POD is obtained
with the threshold at 20%. The threshold at 25% is the most suitable for
PERSIANN. Using POD and POFD, we also build the ROC. Fig. 7 shows
the comparison between the ROC curves for the five data sets. As ex-
pected, OBS gives the best performance at all the non-exceedance
probability levels. Among the curves of satellite-based rainfall data,
CMORPH and SM2RASC are performing slightly better than 3B42-RT,
while PERSIANN is the worst.

In order to compare the thresholds of ground-based and satellite-
based data, Table 1 shows the equations at 20% non-exceedance
probability. The OBS data set exhibits the highest threshold, except for
D < ~12 h, where the CMORPH curve is slightly higher. We ac-
knowledge here that the comparison could be unfair when dealing with
different data sources and resolution.

5. Discussion and conclusions

In this study, we compared different satellite rainfall products to
address the following question: how far are we from the use of satellite
rainfall products in landslide forecasting? For the purpose, we devel-
oped a specific procedure that simulates the use of satellite (and ob-
served) rainfall data in a hypothetical landslide warning system. Based
on this procedure, we are able to infer the potential of the satellite
rainfall products in predicting landslides occurrence.

Results shown in Fig. 3 underline that satellite rainfall products,

except SM2RASC, tend to underestimate observed rainfall, especially in
terms of rainfall events responsible for the landslides (Fig. 3d). This
result is somehow expected as the OBS data set is obtained by the in-
terpolation of point rainfall measurements (from rain gauges) and,
hence, larger rainfall intensities are expected with respect to the sa-
tellite rainfall products that provide a spatially averaged measurement
at the pixel scale. We maintain that such underestimation is not an issue
in the development of a landslide warning system based on satellite
data. Indeed, the underestimation will result in a lower threshold curve
in the DE plane (Rossi et al., 2017), as shown in Table 1, but the product
performance in terms of capability of detecting rainfall events resulting
in landslide failure is not affected. Certainly, the underestimation is not
a problem if it is spatially and temporally homogeneous. Differently, if
satellite rainfall products are biased in particular regimes (e.g., oro-
graphic rainfall) or in particular locations (e.g., dense vegetated areas
for SM2RASC), the accuracy of the warning system is significantly af-
fected.

In order to assess the satellite rainfall products for landslide fore-
casting, results shown in Figs. 5–7 should be evaluated. We constructed
standard contingency tables that are used to determine if the considered
rainfall product is able to correctly identify landslide events. Therefore,
we computed the specific categorical scores (POD and POFD) and then
we performed a ROC analysis. By analyzing results in Figs. 6 and 7,
interesting conclusion can be drawn. Indeed, we obtained, as expected,
that the OBS rainfall data set (from ground observations) provides the
best results. Then CMORPH and SM2RASC are found to be the best
performing satellite rainfall products, followed by 3B42-RT that pro-
vides similar results, and finally PERSIANN is performing the worst.

Based on these results, we can conclude that the temporal resolution
is an important factor for forecasting landslides. Indeed, the occurrence
time of the landslide is highly relevant, and the use of daily aggregated
data may produce a significant overestimation of the rainfall needed to
trigger the landslide if it is occurring at the beginning of the day. On the
one hand, PERSIANN is performing worst according to its low corre-
lations with long-term rainfall observations as shown in Fig. 2. On the
other hand, SM2RASC is the best product in reproducing rainfall ob-
servations (Fig. 2), even though this may be partly attributed to its
calibration over the study area. The same product is not the best one in
terms of landslide forecasting due to its daily temporal resolution. To
assess this aspect, we performed also computations by aggregating all
satellite rainfall products at daily time resolution (not shown for
brevity) and in this case, SM2RASC is found to be the best satellite
rainfall product also in terms of landslide forecasting. Therefore, the
higher temporal resolution of CMORPH and 3B42-RT, and their good
accuracy, is likely the main reason for the obtained results. In future
studies, the integration of CMORPH (or 3B42-RT) and SM2RASC will be
also investigated (see e.g., Ciabatta et al., 2015, 2017; Chiaravalloti
et al., 2018), as we expect that the complementarity of the two satellite
rainfall products will bring to improved performances.

In terms of spatial resolution, we expected that the 8-km resolution
CMORPH product would have obtained the best results. However, as
the propagation in time of rainfall estimates is carried out by using
infrared measurements, less accurate than microwave sensors for
rainfall retrieval, it is possible that the enhanced temporal resolution
brings to lower accuracy. This might be an explanation for the un-
expected result, but further studies are needed to fully understand this
behavior.

In summary, in order to reply to the original scientific question, we
believe that satellite rainfall products considered here are able to sa-
tisfactorily predict landslide occurrence in Italy (see Fig. 6), and the
lower performance with respect to ground observations are due to the
high-quality of OBS data set (based on ~3000 rain gauges). In Italy, the
satellite-based rainfall estimates will never replace the ground-based
measurements, which provide the most accurate landslide prediction.
Indeed, we anticipate that the obtained results will have a more im-
portant use in scarcely gauged regions (e.g., developing countries), and
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a global scale dedicated study will be the natural next step of this re-
search activity. This task will face several issues, like the availability of
ground rainfall data and landslide catalogue. While the first point could
be addressed by considering global precipitation data sets (e.g., Beck
et al., 2017) and by taking the non-homogenous spatial distribution of
rainfall stations into account, the latter point will use global landslide
catalogue, as the one described by Kirschbaum (2014). We expect that
satellite rainfall estimates might be an important additional data source
for developing continental or global landslide warning systems.
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