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A B S T R A C T

We propose a novel approach to evaluate the spatial and the temporal distribution of societal landslide risk from
historical, sparse, point information on fatal landslides and their direct human consequences. We test the ap-
proach using a record of 5571 fatalities caused by 1017 landslides at 958 sites across Italy, in the 155-year period
1861–2015. Adopting a Zipf distribution, we model societal landslide risk for the whole of Italy, and for seven
physiographic and 20 administrative subdivisions of Italy. Results confirm that the Zipf distribution is adequate
to describe the frequency (and the probability) of fatal landslides, and show that societal landslide risk varies in
Italy depending on the largest magnitude landslide F, the number of fatal events E, and the scaling exponent of
the Zipf distribution s, which controls the relative proportion of low vs. large magnitude landslides. To model
societal landslide risk, we then test different grid spacings, g and circular kernel sizes, r finally adopting
g=10 km and r=55 km. Using such geometrical constraints, we prepare maps of the variables F, E and s,
revealing the complexity of landslide risk in Italy, which cannot be described properly with a single metric. For
each grid cell, we assign the {F, E, s} variables to the red, green and blue bands of a composite image to obtain a
single view of landslide risk to the population of Italy. Next, we prepare risk scenarios for landslides of increasing
magnitudes, which we validate checking the anticipated return period of the fatal events against information on
130 fatal landslides between 1000 and 1860, and eleven fatal landslides between January 2016 and August
2018. Despite incompleteness in the old part of the record for the low magnitude landslides, and the short length
and limited number of events in the recent period 2016–2018, the anticipated return periods are in good
agreement with the occurrence of fatal landslides in both validation periods. Despite the known difficulty in
modelling sparse datasets, the approach provided a coherent and realistic representation of societal landslide
risk in Italy. Our results give new insight on the spatial and temporal variations of societal landslide risk in Italy.
We expect this to contribute to improve existing zonings of landslide risk in Italy; to foster the efficacy of
national and regional landslide early warning systems; and to design and implement better landslide commu-
nication, mitigation and adaptation strategies. Our approach is general and not constrained to the information
on fatal landslides available for Italy. We therefore expect the approach to be used to model societal landslide
risk in other geographical areas for which adequate information is available, and to model the fatal consequences
of other hazards.

1. Introduction

Landslides are a widespread hazard that in many areas of the world
cause significant societal damage (Badoux et al., 2016; Dowling and
Santi, 2013; Froude and Petley, 2018; Grahn and Jaldell, 2017;
Guzzetti, 2000; Guzzetti et al., 2005b; Li et al., 2016; Lin and Wang,
2018; Pereira et al., 2015; Petley, 2012; Salvati et al., 2016, 2013,
2010). Due to their large natural variability, landslides and their da-
maging consequences remain difficult to predict (Guzzetti et al., 2012).
In many areas, this limits the ability to mitigate landslide risk and to

reduce their damaging consequences, and particularly the direct con-
sequences on the population, including deaths, missing and injured
people.

Italy is one of the few countries in the world for which there is a
long and accurate catalogue of landslides with human consequences
(Salvati et al., 2018; Van Den Eeckhaut and Hervás, 2012). The cata-
logue has been updated repeatedly, and has been used to define the
landslide risk to the population (Guzzetti, 2000; Salvati et al., 2016,
2013, 2012, 2010). Here, we use this unique record of historical, sparse,
point fatal landslide data to prepare a spatially distributed model of
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social landslide risk in Italy. The scope of the model is to provide a
complete and consistent picture of the social landslide risk in Italy, and
to allow the construction of social landslide risk scenarios in Italy.

The paper is organized as follows. After the introduction of the
nomenclature used in the paper (Section 2), we present a record of
historical fatal landslides in Italy (Section 3). Next, we define societal
landslide risk and we present estimates of societal landslide risk for
Italy, and for different physiographical domains and administrative
subdivisions of Italy (Section 4). Next, we introduce a spatially dis-
tributed model of societal landslide risk, which we evaluate with in-
dependent information, we propose scenarios and we study the tem-
poral variation of societal landslide risk in Italy (Section 5). This is
followed by a discussion of the model outcomes and their limitations,
and of the proposed method (Section 6). We conclude summarizing the
main results obtained (Section 7).

2. Nomenclature

We use the term “landslide” to encompass all types of mass move-
ments including e.g., rock falls and topples, debris flows, soil slips,
earthflows, rockslides, rock avalanches, shallow and deep-seated slides,
and complex and compound slope failures (Cruden and Varnes, 1996;
Hungr et al., 2014). A “landslide event” consists of one or more land-
slides caused by the same trigger (e.g., a rainstorm, a prolonged rainfall
period). “Landslide fatalities” are individuals who lost their lives due to,
or as a consequence of a landslide, and who would be – or would have
been – alive without the landslide event (Salvati et al., 2018). “Fatal-
ities” are the sum of the deaths and the missing persons, and “casual-
ties” are the sum of the fatalities and the injured people (Guzzetti et al.,
2005a). “Consequences” is a synonym for “fatalities”, and “fatal event”
a synonym for “fatal landslide”. The “magnitude” of a fatal landslide
event measures the landslide consequences, and it is given by the
number of the landslide fatalities. “Societal” (or collective) landslide
risk is the risk posed by a landslide on society as a whole (Australian
Geomechanics Society, Sub-Committee on Landslide Risk Management,
2000; Fell et al., 2005; Fell and Harford, 1997; Guzzetti, 2000; Guzzetti
et al., 2005a; Salvati et al., 2010). Unless specified otherwise, we use
“landslide risk” and “societal risk” as synonyms of “societal landslide
risk”.

3. Record of fatal landslides in Italy

Using different sources of information, including archives, chroni-
cles, newspapers, scientific journals, books, event records, damage and
technical reports, web sites, blogs and other sources, Guzzetti (2000),
Guzzetti et al. (2005b) and Salvati et al. (2016, 2013, 2010, 2003) have
compiled and updated repeatedly a catalogue of historical landslides
with direct human consequences to the population of Italy, including
deaths, missing persons, injured people, homeless and evacuees, from
68 BC to August 2018. The 2083.7-year-long record lists 1178 fatal
landslides that have caused 14,923 fatalities (including 14,887 deaths
and 36 missing persons) at 1079 sites. In addition, the record lists in-
formation on 230,233 homeless and evacuees caused by 2206 land-
slides in the same period. For 54 fatal landslides in the catalogue the
exact number of the fatalities is unknown, and only qualitative in-
formation is reported (e.g., many, some, hundreds). For 16 landslides
the number of the fatalities is known but the exact or approximate lo-
cation of the landslide is unknown. The catalogue further lists 450
landslides that have resulted in unknown numbers of homeless and
evacuees.

A typical fatal landslide has caused deaths at a single location, but
exceptions exist and five landslides in the catalogue have caused
fatalities at multiple sites. The Vajont rockslide of 9 October 1963 killed
1917, of whom 1709 at Longarone and 208 at Erto and Casso. The Val
Pola rock avalanche of 28 July 1987 killed 22 at Aquilone and seven
along the road from Aquilone to Sant'Antonio Morignone. For these and

other similar cases, we used the total number of fatalities caused by the
landslides (i.e., 1917 for the Vajont rockslide and 29 for the Val Pola
rock avalanche). Seventy landslide events have triggered multiple fatal
landslides at different sites. As an example, the “Sarno” debris flows
event of 5 May 1998 (Capparelli and Versace, 2014; Cascini et al.,
2011) killed 135 persons at Episcopio (caused by four landslides),
eleven at Quindici, six at Bracigliano (caused by two landslides), five at
Siano, and two at Sarno. For these cases, since the fatal landslides were
distinct, we attributed to each landslide the corresponding number of
deaths and missing persons. Further details on the sources of informa-
tion and on the methods used and the problems encountered in the
compilation of the catalogue of historical fatal landslides in Italy are
given in Guzzetti et al. (2005b) and Salvati et al. (2016, 2013, 2010).

As for other records of historical hazards and their consequences
(Albini et al., 2014; Glade et al., 2004; Guzzetti, 2000; Ibsen and
Brunsden, 1996; Kirschbaum Bach et al., 2009; Li et al., 2016; Mudelsee
et al., 2003; Rossi et al., 2010; Simkin et al., 2001; Stucchi et al., 2013;
Van Den Eeckhaut and Hervás, 2012), the completeness and accuracy of
the information in the Italian catalogue of landslides with human
consequences varies with time, and they improve in the recent part of
the record. In this work, to model societal landslide risk in Italy we use
the part of the record between 1861 and 2015 (Fig. 1), considering only
landslides for which the location of the fatalities is known (Fig. 2,
Table 1). In this 155-year period (t0) the record lists information on
5761 persons who were killed (5725) or went missing (36) as a result of
1017 fatal landslides at 958 different sites (Fig. 2a). This is an average
of 6.6 fatal landslides per year, and an average of 37.2 landslide
fatalities per year. For twelve of the 155 years in the record (7.7%) no
fatal landslides were recorded, of which 10 years before 1900 and 2
years (1904, 1944) after 1900. In the t0 period, the largest fatal land-
slide was the Vajont rockslide that killed 1917 (http://www.vajont.net,
Guzzetti et al., 2005b), the second largest was the Stava mudflow that
killed 268 on 19 July 1985, and the third largest was the Cetara mud
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Fig. 1. Historical fatal landslides in Italy. (a) 1026 fatal landslides in the 155-
year, t0 period 1861–2015 that have resulted in 5876 fatalities, including 1017
fatal landslides that have caused 5761 fatalities for which the location of the
fatalities is known. (b) 1163 fatal landslides in the 1016-year period 1000–2015
that have resulted in 14,881 fatalities, of which 137 fatal landslides in the 861-
year, 4 period 1000–1860 that have caused 9005 fatalities, including 8000
fatalities caused by 130 landslides for which the geographical location of the
fatalities is known. See Table 1 for length and statistics of the fatal landslides in
the different periods.
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and debris flows that killed 200 on 24 October 1910 (Guzzetti et al.,
2005b). In the t0 period, the vast majority of the fatal landslides (1013,
99.6%) and of the landslide fatalities (5753, 99.9%) were meteor-
ologically induced, chiefly rainfall induced, with only a very few fatal

landslides (4, 0.4%) and only eight landslide fatalities (0.1%) caused by
four earthquakes.

To evaluate the model of societal landslide risk in Italy, we further
use the portions of the catalogue between 1000 and 1860 (t4), and
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Fig. 2. Maps showing location of fatal landslides in Italy for
which the location of the fatalities is known. The magnitude of
the fatal landslides, measured by the number of the fatalities,
is shown in five classes using dots of increasing size and
shades of yellow and red colours. (a) E=1017 fatal landslides
(1≤ f≤1917) at 958 sites in the 155-year, t0 period
1861–2015. (b) E=130 fatal landslides (1≤ f≤1300) at
119 sites in the 861-year, t4 period 1000–1860. (c) E=11
fatal landslides (1≤ f≤2) at eleven sites in the 2.7-year, t5
period January 2016 – August 2018. See Table 1 for statistics
of fatal landslides in the periods. (For interpretation of the
references to colour in this figure legend, the reader is referred
to the web version of this article.)
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between January 2016 and August 2018 (t5). The older portion of the
historical record (t4), albeit certainly incomplete for the lower magni-
tude events, particularly in the earlier and the intermediate parts of the
record (Guzzetti et al., 2005b), lists information on 9005 fatalities
caused by 137 fatal landslides, including 8000 fatalities caused by 130
landslides for which the location of the fatalities is known at 119 sites
(Fig. 2b). The youngest portion of the record (t5) lists information on 13
fatalities caused by 11 landslides at 11 different sites (Fig. 2c).

4. Societal landslide risk in Italy

Societal risk is represented and quantified constructing “frequency-
consequences” plots that show the frequency (or the probability) of the
fatal events against the size of the consequences, measured by the
number of the fatalities (or the casualties) (Australian Geomechanics
Society, Sub-Committee on Landslide Risk Management, 2000; Fell and
Harford, 1997; Friedman, 2015; Guzzetti, 2000; Guzzetti et al., 2005b,
2005a). Empirical, non-cumulative distributions of population and
fatality data exhibit a distinct power law, scale-invariant behaviour
(Bohorquez et al., 2009; Salvati et al., 2010; Zipf, 1949), and are ty-
pically modelled using the Pareto, Zeta or Zipf distributions (Bohorquez
et al., 2009; Clauset et al., 2009; Newman, 2005; Reed, 2001; White
et al., 2008). The Zipf distribution, widely used in linguistics, ecology,
economics, geography and other natural and social sciences (Clauset
et al., 2009; Newman, 2005; Reed, 2001; Zipf, 1949), is a discrete
distribution defined for a population of finite size that prescribes a
power-law probability for the size of a random event that takes an in-
teger value of at least one (n∈ ℕ+, n≥ 1) (Newman, 2005). Since the
number of landslide fatalities is discrete and finite, Guzzetti et al.
(2005b) have argued that the Zipf distribution is a good descriptor of
the probability of fatal landslides of a given magnitude.

For a Zipf distribution, the probability mass function (PMF),
equivalent to the probability density function (PDF) for discrete data, is
given by:

=
=

PMF f s F
f

( ; , ) 1
s

f
F

f1
1
s (1)

where f∈ {1,2, … ,F} is the number of the fatalities caused by a land-
slide i.e., the magnitude of the fatal event, F is the largest number of
fatalities caused by a single fatal landslide in the empirical record, and
s∈ ℝ+ is the scaling exponent of the Zipf distribution model that
measures the proportion of small versus large magnitude fatal events in
the record.

To determine the PMF from the empirical data in the historical re-
cord shown in Fig. 1a adopting a Zipf distribution model, we used a
maximum likelihood estimation (MLE) approach to estimate the value
of the s parameter (White et al., 2008), and a bootstrapping re-sampling
technique (Davison and Hinkley, 1997; Efron, 1979) to determine its
variability (uncertainty) σs. Results are summarized in Table 2 and
portrayed in Fig. 3 that shows the estimated PMF of fatal landslides (a)
for the whole of Italy, (c) for seven physiographical subdivisions, and

(e) for 20 regional administrative subdivisions of Italy. Similarly, the
three plots on the right side of Fig. 3 show the corresponding estimated
Frequency Mass Functions (FMF, left y-axes), the related yearly Fre-
quency Mass Functions (yFMF, outside right y-axes), and the expected
return period, τ of the fatal landslides (inside right y-axes). To obtain
the FMFs, we multiplied the corresponding PMFs by the number of the
fatal landslides, E in the record. To obtain the yFMF, we normalized the
FMF by the length of the historical record, T=155 years (t0 in Table 1).
The return period τ is 1/yFMF.

For our physiographical analysis, we used the topographic sub-
division of Italy proposed by Guzzetti and Reichenbach (1994) (map in
Fig. 3c), who classified the Italian landscape into eight provinces using

Table 1
Statistics of fatal landslides in Italy, for different periods. Only landslides for which the location of the fatalities is known are considered.

Period ID Length F Ftot Fya E Eya Coverage
[yr] [#] [# | %] [#] [#] [#] [km2 | %]

1861–2015 t0 155 1917 5761 37.9 1017 6.6 235,900 | 78%
1966–2015 t1 50 268 1289 | 22.6% 25.7 399 | 39.4% 8.0 166,000 | 55%
1916–1965 t2 50 1917 3541 | 62.0% 70.8 488 | 48.2% 9.7 180,000 | 60%
1866–1915 t3 50 200 882 | 15.4% 17.6 126 | 12.4% 2.5 84,600 | 28%
1866–2015 t1–3 150 1917
1000–1860 t4 861 1300 8000 10.5 130 0.2 n.a.
1/2016–8/2018 t5 2.7 2 13 4.8 11 7.1 n.a.

F, largest number of fatalities caused by a single landslide. Ftot, total number of fatalities. Fya, yearly average number of fatalities. E, number of fatal landslides. Eya,
yearly average number of fatal landslides. Coverage, total (km2) and percentage (%) of the Italian territory covered by societal landslide risk models.

Table 2
Statistics of fatal landslides and related modelled societal landslide risk in the
155-year 1861–2015, t0 period, in Italy, in seven physiographical subdivisions
(topographic divisions of Guzzetti and Reichenbach (1994), and 20 adminis-
trative subdivisions (the Italian administrative Regions). Short names are used
in Fig. 3.

Area F Ftot E s σs

Italy ITA 1917 5876 1026 1.952 0.032

Physiographical subdivisions
Alpine Mountain System ALPS 1917 3354 444 2.040 0.053
North Italian Plain POPL 1 1 1 n.a. n.a.
Alps-Apennines Trans. Zone ALAP 19 117 37 1.451 0.183
Apennines Mountain System APEN 200 1716 291 1.719 0.052
Tyrrhenian Borderland TYRR 60 439 186 2.208 0.104
Adriatic Borderland ADRI 19 62 18 1.746 0.295
Sicily SICI 5 40 21 1.315 0.383
Sardinia SARD 8 32 19 2.194 0.433

Administrative subdivisions
Valle d'Aosta VAO 7 53 30 1.952 0.327
Piedmont PIE 15 395 121 1.364 0.106
Lombardy LOM 35 348 97 1.691 0.109
Trentino–Alto Adige TAA 268 521 138 2.475 0.142
Friuli–Venezia Giulia FVG 7 43 28 2.352 0.395
Veneto VEN 1917 2089 58 1.897 0.127
Liguria LIG 19 87 29 1.771 0.235
Emilia–Romagna EMR 48 175 26 1.410 0.173
Tuscany TUS 12 90 37 1.684 0.226
Marche MAR 19 66 18 1.483 0.266
Umbria UMB 6 22 12 1.914 0.541
Lazio LAZ 24 104 48 2.178 0.218
Abruzzo ABR 17 34 12 1.854 0.390
Molise MOL 2 6 3 n.a. n.a.
Campania CAM 200 1385 231 1.846 0.065
Basilicata BAS 17 62 15 1.426 0.295
Puglia PUG 5 9 5 1.929 0.906
Calabria CAL 40 238 62 1.703 0.135
Sicily SIC 18 117 37 1.648 0.200
Sardinia SAR 8 32 19 2.194 0.433

F, largest number of fatalities caused by a single landslide. Ftot, total number of
fatalities. E, number of fatal landslides. s, scaling exponent of the estimated Zipf
distribution model. σs, standard deviation of the scaling exponent of the Zipf
distribution model s.
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20 Sardinia, SAR19 Sicily, SIC18 Calabria, CAL17 Puglia, PUG16 Basilicata, BAS

15 Campania, CAM14 Molise, MOL13 Abruzzo, ABR12 Lazio, LAZ11 Umbria, UMB
10 Marche, MAR9 Tuscany, TUS8 Emilia–Romagna, EMR7 Liguria, LIG6 Veneto, VEN
5 Friuli–Venezia Giulia, FVG4 Trentino–Alto Adige, TAA3 Lombardy, LOM2 Piedmont, PIE1 Valle d’Aosta, VAO

Administrative regions

8 Sardinia, SARD7 Sicily, SICI6 Adriatic Lowland, ADRI5 Tyrrhenian Lowland, TYRR
4 Apennines Mountain System, APEN3 Alpine-Apennines Transition Zone, ALAP1 Alpine Mountain System, ALPS

Physiographic provinces
2 Po-Plain, POPL
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a semi-quantitative, stepwise approach that combined a cluster analysis
of four derivatives of terrain elevation, with the visual interpretation of
morphometric, geological and structural maps. For the geographical
analysis, we used the administrative subdivision of Italy in 20 Regions
(map in Fig. 3e).

Fig. 3a shows the PMF of the Zipf distribution model obtained for
the E=1026 fatal landslides in Italy from 1861 to 2015 (Fig. 1a), in the
range of fatalities from f=1 (593 events) to F=1917 (the Vajont
landslide). Fig. 3b shows the corresponding FMF, the yFMF for a period
T=155 years, and the estimated return period, τ. The scaling exponent
of the Zipf model is s=2.21, with an associated uncertainty σs=0.03
(Table 2).

Considering the physiographical subdivisions, inspection of Fig. 3c
reveals that for very small magnitude landslides (f=1), the PMF is
lowest in the Alps–Apennines transition zone (3) followed by the
Apennines mountain system (4), and it is highest in Sardinia (8) fol-
lowed by the Tyrrhenian borderland (5). For large magnitude landslides
(f≥25), the PMF is largest in the Apennines mountain system (4) and
lowest in the Tyrrhenian borderland (5) followed by the Alps mountain
system (1) (Table 2). Inspection of Fig. 3d reveals that for very small
magnitude landslides (f=1) the FMF is largest in the Alps (1) followed
by the Apennines (4), and lowest in the Adriatic borderland (6) fol-
lowed by Sicily (7) and Sardinia (8), whereas for large magnitude
landslides (f≥25) the FMF is largest in the Apennines (4), followed by
the Alps (1), and is lowest in the Alps–Apennines transition zone (3)
and in the Tyrrhenian borderland (5). The range of the PMF and the
FMF Zipf models is largest in the Alps (F=1917, due to the Vajont
rockslide) and it is smallest in Sicily (F=5, E=21) and in Sardinia
(F=8, E=19) (Table 2).

Considering instead the administrative subdivisions, Fig. 3e shows
that for very low magnitude landslides (f=1) the PMF is largest in
Trentino–Alto Adige (4) followed by Sicily (19), and is lowest in Emi-
lia–Romagna (8) followed by Piemonte (2); whereas for large (f≥25)
and very large (f≥50) magnitude landslides the PMF is largest in
Emilia–Romagna (8) followed by Lombardy (3) and Calabria (18), and
is lowest in Trentino–Alto Adige (4) with intermediate values in Cam-
pania (15) and Veneto (6) (Table 2). Examining the FMFs for the 20
Italian regions (Fig. 3f), one finds that for very low magnitude land-
slides the frequency of fatal landslides is largest in Campania (15) fol-
lowed by Trentino–Alto Adige (4), and is smallest in Puglia (17),
whereas for very large magnitude landslides the FMF is largest in
Campania (15) followed by Lombardy (3), and is smallest in Trenti-
no–Alto Adige (4). The magnitude range of the PMF and the FMF Zipf
models is largest in Veneto (6, F=1917, due to the Vajont rockslide)
and is smallest in Puglia (17, F=5, E=5) (Table 2).

In all the plots shown in Fig. 3, the position and range of the Zipf
curves reveal differences in the societal landslide risk levels in the
different geographical subdivisions (Guzzetti et al., 2005b; Salvati
et al., 2016, 2010), complicating the evaluation of societal landslide
risk. This is exemplified in Fig. 4 that shows the PMF (a) and the FMF
(b) of two Zipf models of societal landslide risk for two hypothetical
geographical areas i.e., the “red”, R and the “blue”, B areas. In the
figure, the curve for the red area R covers a larger range than the curve
for the blue area (FR > FB), has a larger number of fatal landslides
(ER > EB), and it is less steep than the blue curve (sB > sR). It is dif-
ficult to decide which area has the largest societal risk. The larger
fatality range in the red area (FR > FB) suggests that in the red area one
expects landslides of a larger magnitude than in the blue area. The
larger number of fatal landslides in the red area, and the corresponding

smaller number of fatal landslides in the blue area (ER > EB), indicate
that fatal landslides are more frequent in the red than in the blue area.
Considering the scaling exponent of the Zipf models (sB > sR) one ex-
pects a larger relative proportion of large magnitude fatal landslides in
the red area than in the blue area. These observations suggest that so-
cietal landslide risk is larger in the red than in the blue area. However,
considering the PMFs (Fig. 4a), we note that for small-magnitude
landslides (f≤ fint with fint = 5) the probability of experiencing a fatal
event is larger in the blue than in the red area, and that for larger
magnitude landslides (f > fint) the probability of fatal events is larger
in the red than in the blue area.

We emphasize that the position and the range of the Zipf models in
Fig. 3 depend on three factors, namely, (i) the magnitude range of the
fatal events, defined by the size of the event with the largest number of
fatalities i.e., the largest magnitude landslide, F in the record, (ii) the
number of fatal landslides, E in the record, in each geographical

Fig. 3. Societal landslide risk models for the 155-year, t0 period 1861–2015, (a, b) in Italy, (c, d) in seven physiographical provinces of Italy (Guzzetti and
Reichenbach, 1994), and (e, f) in the 20 Italian administrative Regions. Plots to the left show Probability Mass Function (PMF) Zipf distribution models. Plots to the
right show Frequency Mass Function (FMF) Zipf distribution models, with the annual FMF (yFMF, outside right y-axes) for a period T=155-year, and the corre-
sponding estimated return period (τ, inside right y-axes). In plots c and e, columns of coloured dots show the order of PMF Zipf distribution models, from highest to
lowest, for f=1.
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ferred to the web version of this article.)

M. Rossi, et al. Earth-Science Reviews 196 (2019) 102849

6



subdivision, and (iii) the steepness of the curves, controlled by the
model scaling parameter s. In the next section, we use these three
variables {F, E, s} to construct a model to describe the spatial and the
temporal distribution of societal landslide risk in Italy, based on the
available historical record of fatal landslides (Figs. 1a and 2a).

5. A model of societal landslide risk in Italy

We assume that the largest magnitude fatal landslides F, the number
of fatal landslides E, and the scaling parameter of the Zipf distribution
model s, together represent a good measure of societal landslide risk in
Italy.

5.1. Model construction

Based on this assumption, we first partitioned the entire Italian
territory (301,340 km2) in a regular square grid of size g, in km. Second,
for each grid cell (g× g in size, in km2), we selected from the record of
historical fatal landslides (Figs. 1a and 2a) all the events within a cir-
cular kernel of radius r, in km. Third, we used the same MLE approach
used in Section 4 to determine the sk parameter that controls the Zipf
model, and its variability σsk, for the given geographical sub-set of
historical fatal landslides in the range from 1 to Fk, the largest number
of fatalities caused by a landslide in the selected geographical sub-set.
Lastly, we attributed to each grid cell the three model variables {Fk, Ek,
sk}, where Ek measures the number of fatal landslides in the selected
sub-set, and the subscript “k” indicates values computed for the geo-
graphical sub-set of the historical record inside the kernel of size r.

To test the sensitivity of the geographical analysis to the size of the
sampling grid cell and of the radius of the circular kernel, we repeated
the operation for sampling grids of three sizes i.e., g=10, 25 and 50 km
(corresponding to grid cells of g× g=100, 625 and 2500 km2), and for
circular kernels of seven sizes i.e., r=10, 25, 40, 55, 70, 85 and
100 km.

Inspection of Fig. 5, which summarizes the results, reveals that the
2-sided Kolmogorov-Smirnov D statistics decreases with increasing
kernel size, and it is not affected significantly by the size of the sam-
pling grid (Fig. 5f), with the associated p-values constantly> 0.95
(Fig. 5e). We take these statistical evidences as an indication that the

Zipf distribution is well suited to model the empirical landslide fatality
data in Italy (Guzzetti et al., 2005b). We further note that the p-values
increase with the size of the kernel (Fig. 5e), and we attribute the result
to the increasing number of empirical data found in larger kernels.

Further inspection of Fig. 5 shows that increasing the size of the
kernel, the average number of fatal landslides in each grid cell increases
nearly independently of the size of the sampling grid (Fig. 5a). This was
expected, as a larger kernel covers a larger area where more fatal
landslides are found, independently of the size of the sampling grid.
Increasing the size of the kernel also increases the average scaling ex-
ponent of the Zipf distribution model (Fig. 5b), indicating that over
large (small) areas the proportion of fatal landslides with a large (small)
number of fatalities is smaller (larger) than in small (large) areas. This
also was expected, as large and very-large magnitude events are rare in
the t0 portion of the record (10 landslides ≥50 fatalities (1.0%) and five
landslides ≥100 fatalities (0.5%)). We further note that above a
minimum kernel size (r > 25 km), the variability of the scaling para-
meter s, measured by its standard deviation σs, decreases with in-
creasing kernel size, indicating a less uncertain estimation of the Zipf
distribution models (Fig. 5c). This is confirmed by the mean value of
significance of s parameter (referred as s, p-value in the figure which is
obtained by a Z test to verify the parameter difference from zero) with
increasing kernel size up to r=40 km, and it decreases less rapidly for
kernel sizes r≥55 km (Fig. 5d). We attribute the result to the larger
number of empirical data found in larger kernels and used to estimate
the Zipf distribution models.

In conclusion, we chose g=10 km and r=55 km as the “optimal”
parameters used to construct our spatially distributed predictive model
of societal landslide risk in Italy. The selection provides a high spatial
resolution of the prediction (grid cells of 100 km2) without losing model
performance. Further, using a sampling kernel area of about 9503 km2

(r=55 km), in each grid cell the single predictive models were de-
termined with an average of 30 fatal landslides. This guarantees that
the scaling exponent of the Zipf distribution model is robust, and its
variability remains limited (on average σs < 0.5).

5.2. Model outcomes

The results of our modelling effort are illustrated in Fig. 6 where we
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show the geographical distributions of (a) the maximum number of
landslide fatalities, Fk (i.e., the largest magnitude landslide), (b) the
number of fatal landslides, Ek and (c) the Zipf distribution model scaling
exponent, sk that controls the relative proportion of low (few fatalities)
vs. large (many fatalities) magnitude landslides. Where the modelled sk
parameter is small (large) the model predicts a relatively larger
(smaller) number of large magnitude fatal landslides with many fatal-
ities compared to the small magnitude events with only a few fatalities.

In the three maps, white areas are large plains (17.4%) where
landslides are not expected, and landslide fatality data were not listed
in the catalogue (Fig. 2). The dark grey colour shows grid cells for
which no fatal landslides were found in the model kernel (4.0%), and
the light grey colour (in map c) shows grid cells for which the scarcity
of fatality data in the model kernel did not allow the MLE procedure to
calculate the scaling exponent of the Zipf distribution model (17.6%).
Overall, the model was computed for 235.900 km2, 78.4% of the Italian
territory (Table 1). The part of the Italian territory where the model was
not computed (22.6%) matches reasonably well the percentage of ter-
ritory considered as “plain” (23.2%) by the Italian National Institute of
Statistics (2014) that for its classification used criteria based chiefly on
elevation. We attribute the minor difference to the model interpolation
procedure, which depends on the model grid size (g=10 km) and the
size of the kernel (r=55 km), and to the fact that some fatal landslides
(e.g., some of the high mobility “Sarno” debris flows) caused fatalities
in areas classified as “plains” by the Istituto Nazionale di Statistica
(2014).

In the historical record, very large magnitude landslides (Fk≥ 50)
were recorded in the NE Alps (Fk= 1917 for the Vajont rockslide, and
Fk= 288 for the Stava mudflow), and in Campania, southern Italy
(Fk= 200 for the Cetera debris flow of 24 October 1910, Fk= 117 for
the Vietri and Fk= 108 for the Salerno debris flows of 25 October
1954). Large magnitude landslides (25≥ Fk≥ 50) were reported in the
Emilia–Romagna (Fk= 48, the Murazze di Vado landslide of 15 April

1978), Calabria (Fk= 40, the Cardinale landslide of 22 November
1935) and Lombardy (Fk= 35, the Lemma (Faggeto Lario) landslide of
17 October 1863) regions (Fig. 6a).

The geographical distribution of the number of fatal landslides, Ek
reveals a different picture (Fig. 6b). Very large numbers of fatal land-
slides are found in Campania (Emax= 210, Eavr= 89.5) and in most of
the Alps (126, 58.0). Large numbers of fatal events (30≥ Ek≥ 100) are
also reported in the Alps–Apennines transition zone (41, 29.9) (Fig. 6b),
in the Rome metropolitan area and its rural surroundings (45, 38.1), in
the Apuane Alps (36, 24.8), in the southern part of Calabria and in the
Peloritani range, NE Sicily (47, 30.4). Conversely, low numbers of fatal
landslides (Ek≤ 10) are found along the Tyrrhenian cost of Tuscany
(10, 2.9), in parts of the Adriatic borderland, and in most of the Puglia
(7, 2.5), Sicily (10, 5.6) and Sardinia (10, 5.2) regions.

A yet different picture of societal landslide risk in Italy is given by
Fig. 6c, in which the darker (lighter) shades of blue show larger (smaller)
estimated scaling exponents of the Zipf distribution models. Where the blue
colour is lighter, the model curves are steeper (sk≥1.8) and the corre-
sponding area is characterized by a larger proportion of small magnitude
landslides with only a few fatalities, and a proportionally smaller number
of large magnitude landslides with many fatalities. Conversely, where the
blue colour is darker, the model curves are less steep (gentler, sk≤1.2),
and the area is characterized by a larger proportion of large magnitude
landslides with many fatalities and a smaller proportion of small magnitude
landslides with only few fatalities. Fig. 6c shows that the model curves are
very steep (sk≥2.0) in the eastern and the central Alps, inside and around
Rome, and around Palermo, in Sicily. The Zipf model curves are gentler
(sk≤1.3) in the western Alps, and particularly in Piedmont, in large sec-
tors of the northern, central and southern Apennines, and in Sicily and
Sardinia. Regardless of the number of the fatal landslides in the historical
record, where the model curves are gentler (steeper), the model predicts a
larger (smaller) proportion of large magnitude landslides compared to the
areas where the model curves are steeper (gentler).
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Fig. 6. Spatially distributed model of societal landslide risk in Italy. Maps show the geographical distribution of (a) the largest magnitude landslide i.e., the landslide
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Fig. 7 shows the ensemble of 2320 Zipfs distribution models of soci-
etal landslide risk computed for all the grid cells in the Italian territory,
with a grid spacing g=10 km and a circular kernel of radius r=55 km.
The two plots show the ranges of (a) the Probability Mass Function (PMF)
and (b) the Frequency Mass Function (FMF, left-y-axis) together with the
yearly Frequency Mass Function (yFMF, outside right y-axes) and the
return period (τ, inside right y-axes) of fatal landslides of different mag-
nitudes. In the two plots, darker and lighter colours show larger and
smaller numbers of model curves defined by similar model values {Fk, Ek,
sk}, and they provide a visual estimate of the most and least common
modelling conditions that control societal landslide risk in Italy.

The three maps in Fig. 6 provide different, largely independent and
complementary pictures of societal landslide risk in Italy. To combine the
information shown in the three maps, we prepared Fig. 8 that shows a
three-band, RGB (red, green, blue) false colour composite obtained as-
signing the Fk values (Fig. 6a) to the red band, the Ek values (Fig. 6b) to the
green band, and the sk values (Fig. 6c) to the blue band. The resulting map
shows a linear combination of the {Fk, Ek, sk} variables that control soci-
etal landslide risk in Italy. We note that the appearance of the map de-
pends on the histogram stretching used for displaying the three variables
and on the software used to prepare the map (QGIS version 3.2.2, https://
www.qgis.org/). Use of a different histogram stretching scheme, and of a
different software may result in a somewhat different visual result.

Inspection of Fig. 8 reveals that societal landslide risk is high (light
blue colours) or very high (pink colours) in the NE Alps, in the central
Alps and in parts of the western Alps, and in Campania. In the Alps,
high and very-high risk is due to the very large landslide magnitude
(Fig. 6a), the large number of fatal landslides, and the larger relative
proportion of medium-to-low magnitude landslides, measured by high-
to-medium exponents of the Zipf models. Similarly, in Campania, high
risk is due to the very large number and the large magnitude (Fig. 6a) of
the fatal landslides, with intermediate values of the model exponent.
Societal risk is intermediate (violet to light violet) in the NW Alps, in
Liguria and in parts of the Alps–Apennines transition zone, in parts of
the Apennines and of the Tyrrhenian borderland, and in Calabria and
NE Sicily. In the western Alps, the medium risk is due to the large
number of fatal landslides and the large proportion of medium to large
magnitude landslides. In Rome and its rural surroundings, and in parts
of the Tyrrhenian borderland, societal risk depends on the large number
of fatal landslides, the steep Zipf model curves, and the small maximum
landslide magnitude. In Calabria and NE Sicily, societal risk depends on
the medium-large number of fatal landslides, the average steepness of

the Zipf model, and an intermediate value of the maximum landslide
magnitude. Finally, societal landslide risk is low in central Tuscany, in
Basilicata and Puglia, and in large parts of Sicily and Sardinia. In these
areas, the low risk level depends on the low number of fatal landslides
and small maximum landslide magnitude, and a larger proportion of
low magnitude compared to medium and large magnitude landslides,
measured by the low values of the Zipf model exponent.

5.3. Landside risk scenarios

The model outcomes shown in Figs. 6 and 8 allow for designing sce-
narios of societal landslide risk in Italy. In Fig. 9, we show a set of 24 maps
giving different and complementary information on the modelled societal
landslide risk, for landslides of four magnitudes i.e., f=1, 5, 10 and 25
fatalities. From left to right, in each row the maps show the geographical
distribution of the PMF (Eqs. (1) and (B1)), the corresponding FMF (Eq.
(B3)), the Complementary Cumulative Distribution Function (CCDF, Eq.
(B2)), the Complementary Cumulative Frequency Distribution Function
(CCFDF, Eq. (B4)), the yearly Complementary Cumulative Distribution
Function (yCCFDF, Eq. (B5)) calculated considering a period
T=155years, and the expected return period for the fatal landslides,
τCCFDF=1/yCCFDF (Eq. (B6)). As for the maps shown in Figs. 6 and 8,
white areas show plains where landslides are not expected; in the dark grey
areas landslide fatality data were not available; and in the light grey areas
fatality data were too scarce to calculate the Zipf distribution models.

Visual examination of the maps (Fig. 9) allows for the following
considerations. The PMF and the FMF of the fatal landslides are largest
for the very low magnitude landslides (f=1) and they reduce rapidly
with the increase of the landslide magnitude. This was expected, as in
the historical record the proportion of large magnitude landslides with
many or very many fatalities is significantly smaller than the proportion
of low magnitude landslides with one or a few fatalities. For very low
magnitude landslides the PMF≥0.30 in most of Italy, and PMF≥0.50
in most of NE Italy, in large parts of the Apennines range and the
Tyrrhenian borderland, and in NW Sicily.

The FMF is very large (FMF > 80) in the coastal area of Campania,
in southern Italy, and subordinately (FMF > 50) in the NE Italian Alps.
Most of the Alps, large parts of the Alps–Apennines transition zone,
limited parts of the NW Apennines, the area encompassing Rome and its
surroundings, the southern part of Calabria and an area in NE Sicily
have FMF > 8. We take these as evidences of the fact that single
landslide fatalities can be expected in most of the mountain areas and in
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large parts of the hills of Italy. For medium landslide magnitudes
(f=10), the picture is somewhat different with most of Italy exhibiting
PMF≤0.03, and FMF≤1. The pattern is even more evident for the
large magnitude landslides (f=25), for which all of Italy has
PMF≤0.01 and FMF≤1.0. This is evidence that very large magnitude
fatal landslides are rare in Italy, but they can be expected in significant
parts of the mountains and the hills of Italy.

The maps showing the geographical distribution of the
Complementary Cumulative Distribution Function (CCDF), also known
as the “survival” or “risk” function, provide a more diverse picture of
societal landslide risk in Italy. For very low magnitude landslides, most
of the Italian territory, and particularly the hills and the mountains,
have CCDF ≥0.30, indicating that the probability of experiencing f≥1
landslide fatalities is large almost everywhere in Italy. For large
(f≥10) and very large (f≥25) magnitude landslides, the probability is
large (CCDF ≥0.1) or very large (CCDF ≥0.2) in SE Emilia–Romagna,
and in places in Campania, Basilicata and southern Calabria (Fig. 9).

The yCCFDF was obtained dividing the CCFDF by the length of the

observation period, T=155 years (t0 in Table 1), and therefore it shows a
scaled version of the CCFDF. For very lowmagnitude landslides the annual
frequency is large (yCCFDF ≥0.3) in Campania, and is yCCFDF ≥0.02 in
small parts of the Alps. For medium magnitude landslides (f=10), the
annual frequency is large (yCCFDF ≥0.08) in Campania, and is yCCFDF
≥0.25 in large parts of the Alps, in parts of the Emilia–Romagna region,
and in southern Calabria. For large magnitude landslides (f=25) the
annual frequency is large (yCCDFF ≥0.04) in Campania, and is yCCFDF
≥0.02 in limited parts of the NE Alps and of the Emilia–Romagna region.
Similarly, the return period – the reciprocal of yCCFDF i.e., τyCCFDF=1/
yCCFDF – also shows a scaled version of the CCDF and the yCCFDF. For
the lowest magnitude landslides (f=1) the return period is short
(τ < 30 years) in most of the Alps, in the Alps–Apennines transition zone,
in large parts of the Apennines range, of the Tyrrhenian and the Adriatic
borderlands, and in NE Sicily. For large magnitude landslides (f≥25),
most of the hills and mountains of Italy exhibit a very large return period
(τyCCFDF>1000 years, light blue colour), whereas parts of the central and
the eastern Alps, of the Emilia–Romagna, Campania and Calabria regions

Fig. 9. Societal landslide risk scenarios for Italy. From left to right, maps show the Probability Mass Function (PMF, Eq. (B1)), the Frequency Mass Function (FMF, Eq.
(B3)), the Complementary Cumulative Distribution Function (CCDF, Eq. (B2)), the Complementary Cumulative Frequency Distribution Function (CCFDF, Eq. (B4)),
the yearly Complementary Cumulative Distribution Function (yCCFDF, Eq. (B5)), and the projected return period (τyCCFDF, Eq. (B6)). See text for explanation. White
areas are plains; dark grey shows areas for which landslide fatality data were not available; light grey shows areas where the model scaling exponent s was not
calculated due to the lack of sufficient fatality data. See caption of Fig. 6 for source of plains geographical information. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of the article.)
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have τyCCFDF ≥150 years. In these areas societal landslide risk should be
considered high or very high.

5.4. Validation of the landside risk scenarios

We validated the societal landslide risk scenarios shown in Fig. 9
using information on 130 fatal landslides in the magnitude range
1≤ f≤1300 occurred at 119 sites (Fig. 2a) in the 861 years, t4 period

1000–1860 (Fig. 1b, Table 1). With this independent information, we
checked the anticipated (modelled) return period, τyCCFDF for fatal
landslides of magnitude f≥1, f≥5, f≥10 and f≥25 expected
fatalities (Fig. 9). Fig. 10 shows four maps that portray the geographical
distribution of the expected return periods for the four considered
landslide magnitude scenarios, together with the location of the fatal
landslides (blue dots) with f≥1 (E=137 fatal landslides), f≥5
(E=74), f≥10 (E=58) and f≥25 (E=37) fatalities occurred in the
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t4 validation period 1000–1860.
Visual analysis of Fig. 10a reveals that, regardless of their magni-

tude (i.e., for f≥1), the majority of the fatal landslides have occurred
where the return period was anticipated to be small, τyCCFDF ≤30 years.
This is confirmed by the empirical Cumulative Density Function (eCDF)
for f≥1 (Fig. 10e) that increases very rapidly with the return period,
reaching the maximum value for τyCCFDF= 78 years. The CDF shows
that 50% of the landslides with f≥1 have occurred in areas where
τyCCFDF ≤6 years, and 90% of the landslides with f≥1 have occurred
where τyCCFDF ≤14 years. Similarly, 50% (90%) of the landslides with
f≥5 have occurred where τyCCFDF ≤21 (87) years. The figures indicate
that in the t4 validation period the 67 (48.9%) reported very small and
small magnitude landslides (f≤5) have occurred at a lower occurrence
frequency i.e., with a higher return period than what was anticipated by
the scenario (Fig. 9). We explain this result with the known in-
completeness of the landslide record, particularly for the old and very
old periods and for landslides with one or a few fatalities (Guzzetti
et al., 2005b). For the large and very large magnitude landslides
(f≥25), examination of Fig. 10d reveals that 25 landslides (67.8%)
occurred where τyCCFDF ≤600 years, and 12 landslides where τyCCFDF
≥1000 years i.e., where the return period was anticipated to be very
low. The evidence is confirmed by the plot of the empirical CDF for
f≥25 (Fig. 10e) that increases slowly until about 60%, and reaches
90% for τyCCFDF> 1000 years. We take the evidence as an indication of
the inherent difficulty of predicting accurately the temporal recurrence
of very large magnitude fatal landslides in Italy.

We performed a second independent validation of the expected re-
turn period of fatal landslides in Italy (Fig. 9) using eleven fatal land-
slides occurred in the 2.7-year period from January 2016 to August
2018 (Fig. 2c, t5 in Table 1). These recent landslides are in the mag-
nitude range 1≤ f≤2 and have all occurred where the anticipated
return period for f≥1 (Fig. 9) was τyCCFDF=≤ 27 years i.e., in the
areas where fatal landslides were expected with a low return period,
and a correspondingly large temporal frequency of the fatal events. We
acknowledge that the very recent sample is small (E=11), it covers a
short period (2.7 years) and a limited range of landslide magnitudes
(1≤ f≤2), but we consider the result an additional evidence of the
ability of the model to predict societal landslide risk in Italy.

5.5. Temporal variation of societal landslide risk

To assess the temporal variation of societal landslide risk in Italy,
we segmented the 150-year period 1866–2015 in three 50-year sub-
periods i.e., t1, 1966–2015, t2, 1916–1965 and t3, 1866–1915 (Table 1),
which collectively cover a very large part (96.8%) of the t0 period
1861–2015. For each sub-period, we repeated the analysis performed
before on the t0 period – described in Section 5.1 – using the same
“optimal” pair of geometric model parameters (g=10 km and
r=55 km), and we then compared the geographical distributions of the
model variables {Fk, Ek, sk} obtained for the three sub-periods. In-
spection of the results, summarized in Fig. 11, reveals a general simi-
larity of the societal landslide risk models obtained for the recent, t1
(1966–2015) and the intermediate, t2 (1916–1965) sub-periods, which
both differ notably from the model obtained for the old, t3 (1866–1915)
sub-period. We maintain that the differences depend chiefly on the
different completeness of the landside record for the three sub-periods
(Guzzetti et al., 2005b), which also affected the proportion of the Italian
territory for which the risk models could be prepared (Table 1).

In the old, t3 (1866–1915) sub-period the historical record lists
E=126 fatal landslides that have caused Ftot = 882 fatalities. In the
50-year sub-period, this corresponds to a yearly average of Eya= 2.5
fatal landslides and Fya= 17.6 landslide fatalities. These average values
are lower than the corresponding figures for the intermediate, t2
(1916–1965, Eya= 9.7, Fya= 70.8) and the recent, t1 (1966–2015,
Eya= 8.0, Fya= 25.7) sub-periods. The incompleteness of the catalogue
for the old part of the record is also reflected in the smaller area covered

by the model for the t3 sub-period, which covers only 28% of the Italian
territory, compared to 60% of the model for the intermediate t2 sub-
period, and 55% of the model for the t1 sub-period (Table 1). In the
areas where model comparisons were possible, an analysis of the geo-
graphical distribution of the models of societal landslide risk for the old
sub-period, t3 reveals (i) a smaller number of fatal landslides
(Ek= 126), (ii) a smaller largest number of fatalities caused by a single
landslide (Fk= 200), and (iii) a lower scaling exponent sk of the Zipf
distribution models, indicating a larger relative proportion of large and
very large magnitude landslides (Fig. 11). We consider the later a fur-
ther evidence of the incompleteness of the old part of the record, t3 for
the small and very small magnitude fatal events (Guzzetti et al., 2005b).

An analysis of the changes between the geographical distributions of
the {Fk, Ek, sk} variables for the models prepared for the intermediate, t2
and the recent, t1 sub-periods (Fig. 11) revealed that the differences be-
tween the largest number of fatalities caused by a single landslide in the
two sub-periods were negligible (−5 < Fk≤5, 48.9%) or minor
(−15 < Fk≤−5 and 5 < Fk≤15, 30.4%), with local exceptions in NE
Italy due to the Vajont landslide (October 1963, in the t2 sub-period) and
the Stava mudflow (July 1985, in the t1 period), in Campania, due to the
Vietri and Salerno debris flows (October 1954, in the t2 period) and the
“Sarno” debris flows event (May 1998, in the t1 period), in Emilia–R-
omagna, due to the Murazze di Vado landslide (April 1978, in the t1
period), and in Calabria, due to the Cardinale landslide (November 1935, in
the t2 period) (Fig. 6a). We note that the geographical extent of the dif-
ferences is controlled by the size of the model kernel, r=55km (Fig. 11).

The differences between the total number of fatal landslides in the
two periods were mostly negligible (−5 < Ek≤ 5, 59.4%), with minor
exceptions in Campania, Veneto and Trentino–Alto Adige (NE Italy),
and in Rome and its surroundings (Fig. 11). We note that the dis-
tribution of the differences of Ek is skewered towards positive values,
indicating a larger number of fatal landslides in the intermediate, t2
sub-period, compared to the recent, t1 sub-period. Exceptions are pre-
sent in NE Piedmont and in NE Trentino–Alto Adige, in western Liguria
and in NE Tuscany. In these areas, the fatal landslides were more nu-
merous in the recent, t1 sub-period.

The analysis of the differences in the geographical distribution of
the Zipf model scaling exponent provides a more diversified picture,
with a significant part of the territory characterized by negligible
(−0.25 < sk≤ 0.25, 35.9%) or minor (−0.75 < sk≤−0.25 and
0.25 < sk≤ 0.75, 41.0%) variations of the modelled scaling exponents
(Fig. 11). We note that the distribution of the differences between the sk
in the two sub-periods is skewered towards negative values, particularly
for the larger differences found in SW Piedmont and western Liguria, in
NE Trentino–Alto Adige, and in parts of the northern and central
Apennines range. This is the result of a relatively fewer number of large
magnitude landslides compared to the small magnitude landslides in
the recent t1 sub-period, in these areas; and an indication of a reduction
of the landslide risk to the population in these areas.

6. Discussion

6.1. Model assumptions and limitations

To construct our model of societal landslide risk in Italy (Figs. 6 and
8) from the historical record of fatal landslides (Figs. 1 and 2) we made
a number of assumptions that may affect our risk assessment.

First, we assumed that the largest magnitude fatal landslides, the
number of fatal landslides, and the scaling exponent of the Zipf dis-
tribution model, together are a good measure of landslide risk to the
population, and that their geographical and temporal variations iden-
tify and measure changes in societal landslide risk in Italy. We maintain
that both assumptions are reasonable. The three maps in Fig. 6 show
different and complementary information on the spatial distribution of
societal landslide risk in Italy; however, none of the three individual
variables tells the full story, and only their combination provides a
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realistic evaluation of societal landslide risk. Similarly, our temporal
analysis (Fig. 11) revealed variations in the geographical distribution of
landslide risk. Some of the variations depend on the incompleteness of
the old part of the record, but other variations outline real changes in
landslide risk to the Italian population in the considered period. Based
on the results of the temporal analysis, one could argue that the esti-
mation of societal landside risk in Italy would be better pursued using
the fatality data in the recent, t1 and the intermediate, t2 sub-periods,
which are the most complete. However, the selection of a shorter period
(1916–2015) would have resulted in fewer fatal landslides (E=887)
and, consequently, a set of more uncertain Zipf models (i.e., models
with larger σs) and a smaller area covered by the models (Table 1). We
therefore consider the selection of the t0 period 1866–2015 appropriate.

Second, we assumed that the Zipf distribution (Clauset et al., 2009;
Guzzetti et al., 2005b; Newman, 2005; Zipf, 1949) was adequate to
represents the frequency and the probability of different magnitude
fatal landslides in Italy. Inspection of the Zipf distribution models ob-
tained for the whole of Italy, and for the physiographical and the ad-
ministrative subdivisions (Fig. 3), confirms that the Zipf distribution is
an adequate model for the magnitude of the fatal landslides in Italy. The
reduced uncertainty associated to the model estimates (σs, Table 2),
which depends on the number of the fatal landslides, and the fact that
the scaling exponent s does not change significantly if the size of the
modelling kernel and the grid size are changed within reasonable
ranges (Fig. 5), further confirms that the Zipf distribution is a robust
descriptor of the magnitude of the fatal landslides in Italy.

Third, we assumed that the physical conditions that control landslide
hazard – and hence societal risk – have not changed in the examined
period. We note that the geological conditions (e.g., lithology, structure,
seismicity) have not changed significantly in the 155-year period.
Morphological modifications have occurred locally, but widespread
changes have not occurred. Meteorological and climate conditions have
changed, with a general reduction in the number of wet days balanced by
an increase in the intensity of the rainfall events (Brunetti et al., 2006,
2004, 2001); however, the changes were probably not large enough to
influence significantly landslide risk and its geographical and temporal
distributions (Gariano and Guzzetti, 2016). Land use and land cover, which
also contribute to controlling landslide hazard (Sidle, 2006), have changed
in about half of the Italian territory, with the changes accelerated in the last
decades (Falcucci et al., 2006); however, we do not have indications that
these changes have influenced widely the geographical or the temporal
distribution of societal landslide risk in the considered period.

Lastly, we assumed that the anthropic factors that condition societal
landslide risk (e.g., the population distribution and density) have not
changed in Italy in the 155-year considered period. This is a strong
assumption; because the population of Italy has almost tripled from
1861 (22.2millions) to 2015 (60.7millions) (http://demo.istat.it/
pop2015/index.html). However, we note that the growth of the popu-
lation was largest in the plains, where landslides do not occur and our
model is not applicable (Figs. 6 and 8). From the 1920s, and progres-
sively more in the second half of the 20th century, there was a gen-
eralized migration from the mountain areas – that locally suffered a net
loss of inhabitants – and partly from the rural areas to the urban areas,
which are located chiefly in the plains (Guzzetti et al., 2005b; fig. 14.5
in Salvati et al., 2016), where we did not experience fatal landslides in
the past according to our record (Fig. 2), and in the lowland hills
(Guzzetti et al., 2005b; Salvati et al., 2016). We also note that the in-
crease in the size of the population is matched by a significant increase
in the extent of the built-up areas and the length of the road and railway
networks along which many fatal landslides have occurred. Lastly, we
note that in many mountain and hilly areas, tourism changes the size of
the population (i.e., the number of vulnerable elements) seasonally,
weekly, and even daily. We conclude that it is difficult to determine the
contrasting effects of the uneven spatial and temporal variations of the
population on landslide risk in Italy. We further conclude that de-
termining societal landslide risk based on the statistical analysis of past

fatal landslides remains difficult.

6.2. Modelling a sparse dataset

The record of historical fatal landslides used in this study has tem-
poral and geographical dimensions, with both dimensions characterized
by sparse point measures; in time for the day of the fatal landslides
(Fig. 1) and in space for the point location of the fatal events (Fig. 2). In
the 56,612-day period (155 years) between 1 January 1861 and 31
December 2015 (t0, Table 1), for the vast majority of the days in the
record (55,741, 98.5%) no fatal landslides were reported, and only
871 days (1.5%) have one or more landslides listed in the record. This
corresponds to 1 day with one or more fatal landslides every 65 days; a
very sparse record. Similarly, considering the 3009, 10 km×10 km
grid cells used for modelling, only 509 cells (16.9%) have one or more
fatal landslides reported in the cell, and the remaining 2500 cells
(83.1%) have no fatal landslides reported. This corresponds to one cell
with fatal landslides every six cells; a rather sparse spatial information.

Working with sparse point datasets is problematic (Chao, 1989;
Shepperd and Cartwright, 2001; Witt and Malamud, 2013), and even
more so if the datasets are sparse in multiple dimensions and they cover
large areas and long periods, like our record (Figs. 1 and 2). Our rela-
tively simple modelling approach proved effective in handling the multi-
variate (Fk, Ek, sk), multi-dimensional (space, time), sparse catalogue of
fatal landslides in Italy. We expect that the same approach can be used
to model similar catalogues of fatal landslides in other geographical
areas (Badoux et al., 2016; Dowling and Santi, 2013; Grahn and Jaldell,
2017; Li et al., 2016; Lin and Wang, 2018; Pereira et al., 2015; Petley,
2012), or even globally (Froude and Petley, 2018; Petley, 2012). We also
expect the approach to be able to model the fatal point consequences of
other hazards (Salvati et al., 2018), including floods and flash floods
(Guzzetti et al., 2005b; Pereira et al., 2015; Salvati et al., 2012, 2010;
Špitalar et al., 2014), snow avalanches (Boyd et al., 2009), meteor-
ological hazards (Badoux et al., 2016; Borden and Cutter, 2008; Myung
and Jang, 2011; Rappaport, 2000) and earthquakes (Albini et al., 2014;
Allen et al., 2010; Doocy et al., 2013; Li et al., 2014; Spence et al., 2011;
Stucchi et al., 2013). When modelling the consequences of hazards
different from landslides, investigators should check that the Zipf dis-
tribution is an adequate descriptor of the fatal consequences of the
studied hazard. They should also consider if the three variables used in
this study, {Fk, Ek, sk} are adequate to evaluate the risk posed to the
population by the investigated hazard. We stress that the modelling
approach is not limited to the type and number of variables used in this
study, nor to the Zipf distribution. The model variables and the Zipf
distribution can be changed, to tailor the modelling to the specific ha-
zard conditions. We further recommend that investigators perform a
thorough analysis of the sensitivity of their models to the geometric
characteristics of the data and the model, testing different grid spacing
and kernel sizes. This is because the “optimal” model spacing and grid
size may vary depending on the type of hazard, the completeness and
sparseness of the record, and the extent of the study area.

6.3. Considerations on societal landslide risk in Italy

Societal landslide risk in Italy cannot be described by a single metric
(Fig. 6). We expect the same to be the case in other geographical areas,
and globally (Froude and Petley, 2018; Petley, 2012). Our analysis
showed that landslide risk in Italy varies geographically and temporally.
Geographically, landslide risk to the population is very high in the NE
Alps and in the coastal area of Campania, southern Italy, and is high in
large parts of the central Alps, in Liguria, in parts of the northern
Apennines range, and in southern Calabria and NE Sicily (Fig. 8). Con-
versely, landslide risk to the population is low in parts of central Italy, in
Sicily and in Sardinia. The analysis has further revealed that the prob-
ability of experiencing fatal landslides is significant almost everywhere in
Italy, and that large magnitude fatal events, albeit rare, can occur in large
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parts of the mountains and the hills of Italy. The result is a consequence
of the high propensity of the Italian territory to landslide risk to the
population. Societal landslide risk depends on landslide hazard and on
the vulnerability, distribution and abundance of the population
(Australian Geomechanics Society, Sub-Committee on Landslide Risk
Management, 2000; Fell and Harford, 1997; Glade et al., 2004; Varnes
and International Association of Engineering Geology, 1984). However,
the degree of the weightings of the two components vary, locally. In the
NE Alps landslide risk is very high primarily because the hazard is high,
and in Campania because the population density is high. Similarly, in
Rome risk is high because of the large population density.

Our analysis outlined temporal variations in societal landslide risk, with
a generalized higher risk (i.e., more fatal events, more destructive events)
in the t2, sub-period 1916–1965 than in the t1, sub-period 1966–2015 for
most of the country, with local exceptions in Campania, Veneto,
Trentino–Alto Adige and Lazio where higher risk levels were experienced
in the more recent t1, sub-period (Fig. 11). The observed temporal varia-
tions may depend on changes in landslide hazards, in the distribution and
abundance of the vulnerable elements, or both. Examination of the tem-
poral trend of the fatal landslides (Fig. 1) reveals that the frequency of very
low magnitude landslides (with one or two fatalities) has remained un-
changed between 1861 and 2015, whereas the magnitude of the most
catastrophic landslides has decreased. Gariano and Guzzetti (2016) have
argued that this is the result of a combination of natural (hazard) and so-
cietal (vulnerability) causes, and that the reduced trend in the magnitude of
the most destructive landslides is due largely to improved monitoring and
warning systems, and due to the increased availability of information on
landslides and their consequences. However, in an examination of the
perception of the Italian population to landslide (and flood) risk, Salvati
et al. (2014) have concluded that in most of the country the perception of
the threat posed by landslides (and floods) does not match the long-term
risk posed by hydrological and geological hazards.

In Fig. 9 we show scenarios of societal landslide risk in Italy, for
landslides of four different magnitudes. We note here that calculation of
other scenarios for landslides of different magnitudes is possible, and
may provide additional information for a more refined zonation of
landslide risk to the population of Italy. The validation of the proposed
scenarios performed using fatal landslides in the old (t4, 1000–1860)
and the very recent (t5, 2016–2018) periods measured the consistency of
our model (Fig. 11). In particular, the eleven recent landslides with fatal
consequences in the t5 period confirmed the ability of the model to
predict the expected average return period of fatal landslides in Italy.
This opens to the possibility of using the model scenarios to predict the
future consequences of fatal landslides in Italy. The rationale behind the
projections will be that “the past is a proxy for the future” i.e., that the
physical conditions that control landslide hazard and the societal factors
that control the size and distribution of the population and their vul-
nerability to landslides, will not change significantly in the period of the
projection. Examinations of the sign and magnitude of the changes is
beyond the scope of this work. Here, we only note that Gariano and
Guzzetti (2016) have argued that, due to global warming, the frequency
and intensity of severe rainfall events, a primary trigger of rapid-moving
landslides that cause many fatalities in Italy (Guzzetti et al., 2005b), is
expected to increase. Hence, the landslide risk posed by rainfall-induced
landslides to the population of Italy is expected to increase.

We note that in NE Italy the model is conditioned by the two largest
magnitude landslides in the historical record i.e., the Vajont rockslide that
killed 1917, and the Stava mudflow that killed 268 (Fig. 6a). These two
highly catastrophic landslides were clearly related to the influence of human
interventions and engineering works in close proximity; the presence of an
artificial dam and reservoir (Vajont) and of poorly constructed mining-
waste embankments (Stava). This has conditioned the model of societal
landslide risk in NE Italy (Figs. 6 and 8). However, we argue that several
other cases exist in the catalogue of landslides conditioned by human in-
tervention and engineering works. One could argue that with the present
state-of-the-art knowledge on landslides, modern monitoring technologies

and improved engineering techniques and methods should now anticipate
or prevent similar catastrophic landslides could be anticipated or prevented,
and the direct consequences to the population averted or reduced sig-
nificantly. We argue that this is difficult to quantify, and to consider in a
predictive model of societal landslide risk. We further argue that “black
swans” (Makridakis and Taleb, 2009; Taleb, 2007) i.e., landslides that
cannot be anticipated with the present understanding of landslide phe-
nomena, are possible and should not be ignored when ascertaining landslide
risk to the population. Our model does not consider the “physics of the
phenomena” (e.g., the geological conditions that may be more (or less)
prone to the initiation of landslides, or the meteorological or seismic triggers
of the landslides). This may prove an advantage when attempting to predict
rare and unexpected fatal events based on the historical record. We stress
that the exact position and magnitude of a fatal landslide depend on local
conditions and the dynamics of the event (Salvati et al., 2018), which are
not considered by our model. We therefore caution that the model outcomes
(Figs. 6 and 8) cannot be used to determine landslide risk to individuals at
any specific location. For the purpose, more detailed investigations and
analyses are necessary (Reichenbach et al., 2004).

Lastly, we acknowledge that our model does not consider all the
possible uncertainties that may affect societal landslide risk in Italy.
With this respect, a counterfactual analysis (Balke and Pearl, 1994;
Pearl, 2000) may provide supplementary information for uncertainty
assessment and risk management (Woo, 2018).

7. Conclusions

We proposed an original approach to evaluate the spatial and the
temporal distribution of societal landslide risk from historical, sparse,
point information on fatal landslides and their consequences. We tested
the approach in Italy, a country for which a long and accurate record of
historical landslides with fatal consequences is available (Guzzetti
et al., 2005b; Salvati et al., 2016, 2013, 2010, 2003). To model societal
landslide risk in Italy, we used the portion of the record covering the
155-year period from 1861 to 2015 (Fig. 1), considering only the
landslides for which the location of the fatalities was known (Fig. 2). To
validate the societal risk model with independent information, we used
the portions of the record from 1000 to 1860, and from January 2016 to
August 2018 (Fig. 2, Table 1). Despite some known incompleteness in
the old part of the record (1000–1860), and the short length of the
recent period 2016–2018, the validation confirmed the ability of the
approach, and of the resulting societal risk model to anticipate the
frequency of fatal landslides of varying magnitudes in Italy.

To model societal landslide risk, for the whole of Italy and for seven
physiographic (Guzzetti and Reichenbach, 1994) and 20 administrative
subdivisions of Italy, we adopted the Zipf distribution, broadly used in
different fields of the natural and the social sciences (Clauset et al.,
2009; Newman, 2005; Zipf, 1949). Results confirmed that the Zipf
distribution is an adequate and robust descriptor of the magnitude of
the fatal landslides in Italy (Fig. 3). We anticipate the distribution to be
an adequate model of landslide fatalities elsewhere, and we encourage
investigators to adopt it to describe the frequency and the probability of
fatal landslides. We foresee that this will facilitate the comparison of
societal landslide risk levels in different areas.

The ensemble of the Zipf model curves obtained for Italy and for the
subdivisions of Italy (Fig. 3) revealed differences in the geographical
distribution of landslide risk. We found that in any given area the dif-
ferences depended on (i) the number of fatalities caused by the most
catastrophic landslide i.e., the largest magnitude landslide, (ii) the total
number of fatal landslides, regardless of their magnitude, and (iii) the
proportion of low, medium and large magnitude landslides, controlled
by the exponent of the Zipf distribution. Maps of the three variables
were locally different (Fig. 6) revealing the complexity of landslide risk
in Italy. We conclude that societal landslide risk in Italy – and most
probably elsewhere in the world – cannot be described by a single
metric; and that only a combination of the variables can provide a
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reliable representation of societal landslide risk levels (Fig. 8).
We found landslide risk to be particularly high in the NE Alps and in

the coastal area of Campania, southern Italy, and high in large parts of
the central Alps, in Liguria, in parts of the northern Apennines, and in
southern Calabria and NE Sicily (Fig. 8). Instead, we found risk to be
low or very low in large parts of central Italy, in most of Puglia, Sicily
and Sardinia. Our analysis revealed generalized higher risk levels be-
tween 1916 and 1965 than in the more recent period 1966–2015. We
conclude that, despite the significant increase in the size of the popu-
lation, societal landslide risk has decreased in Italy in the recent period.
Exceptions exist in Campania, Veneto, Trentino–Alto Adige and Lazio
that have experienced higher risk levels in the recent period 1966–2015
(Fig. 11). We further conclude that in these areas landslide risk to the
population has increased over the years.

To the best of our knowledge, this is the first work that attempts to
anticipate the return period of fatal landslides, in Italy and elsewhere.
Our analysis revealed that for very low magnitude landslides (with one
or two fatalities), the return period is short (< 30 years) in most of the
Alps, in the Alps–Apennines transition zone, in large parts of the
Apennines range, of the Tyrrhenian and the Adriatic borderlands, and
in NE Sicily. We therefore determine that landslide risk is high in these
areas. For large magnitude landslides (with ≥25 fatalities), the return
period is very long (> 1000 years) in most of the hills and the moun-
tains, with significant exceptions in the central and the eastern Alps, in
Campania and in Calabria, that exhibit return periods ≥150 years. We
suggest that in these areas the risk of experiencing a catastrophic
landslide should be considered high (Fig. 9).

Speculations on the causes of the geographical and the temporal
variations of landslide risk to the population of Italy are beyond the
scope of this work. However, we note that the frequency of the very low
magnitude landslides (with one or two fatalities) has remained un-
changed almost everywhere, whereas the magnitude of the most cata-
strophic landslides has decreased over time (Fig. 1). This may be the

result of a combination of natural and societal causes (Gariano and
Guzzetti, 2016). The later includes the production of landslide risk
zoning and the enforcement of landslide mitigation strategies, the
availability of monitoring and warning systems, and better information
on landslides and their consequences.

Comparison of our quantitative societal landslide risk assessments
(Figs. 3 and 7) against risk acceptability criteria is beyond the scope of
this work. However, we stress that public authorities (e.g., civil pro-
tection) and private businesses (e.g., insurance and re-insurance com-
panies) involved or interested in risk assessment and management may
use the results of this study to enhance their risk management and
mitigation strategies.

We conclude stressing that our approach to model societal risk is
general, and it can be used to ascertain the societal risk posed by other
single location point hazards, provided sufficient information on the
time and place of occurrence of the fatal consequences is available. We
anticipate that the application of the approach to model other hazards
will allow the comparison of societal risk levels posed by different ha-
zards, will contribute to ascertain risk levels where multiple hazards
coexist, will facilitate the evaluation of societal risk levels against risk
acceptance criteria, and it will contribute to risk management.
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Appendix A. Variables and acronyms used in the text

Variable Explanation

f Number of fatalities caused by a landslide [#]
g Size of model square grid cell [km]
r Radius of model circular kernel [km]
s Zipf distribution parameter (scaling exponent) [−]
sk Zipf distribution parameter (scaling exponent) in the model kernel [−]
D 2-sided Kolmogorov-Smirnov statistics
E Number of fatal landslides in the historical record [#]
Ek Number of fatal landslides inside the modelling kernel [#]
Eavr Average number of fatal landslides in the model kernel [#]
Emax Maximum number of fatal landslides in the model kernel [#]
Eya Yearly average of fatal landslides in a period [#]
F Largest number of fatalities caused by a landslide in the record [#]
Fk Largest number of fatalities caused by a landslide in the model kernel [#]
Ftot Total number of fatalities in a period [#]
Fya Yearly average number of fatalities in a period [#]
T, t Length of the historical record, period, or sub-period [yr]
σs Variability of the Zipf distribution parameter, s [−]
τ Return period of fatal landslide [yr]

Acronym Explanation

CCDF Complementary Cumulative Distribution Function
CCFDF Complementary Cumulative Frequency Distribution Function
CDF Cumulative Distribution Function
FMF Frequency Mass Function
MLE Maximum Likelihood Estimation
PMF Probability Mass Function
yCCFDF Yearly Complementary Cumulative Frequency Distribution Function
yFDF Yearly Frequency Mass Function
τyCCFDF Return period, for Complementary Cumulative Frequency Distribution Function
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Appendix B. Equations used in the work

The Probability Mass Function (PMF) of the Zipf distribution model adopted to evaluate societal landslide risk in Italy is

=
=f

PMF 1

f
F

f
s

1
1
s (B1)

where, f∈ {1,2, … ,F} is the number of the landslide fatalities that measures the magnitude of the fatal landslide, F is the largest number of fatalities
caused by a single fatal landslide in the record, and s∈ ℝ+ is the scaling exponent that controls the steepness of the Zipf distribution. The PMF gives
information on the expected probability of observing a fatal landslide of a given magnitude, f.

The Complementary Cumulative Distribution Function (CCDF), also known as the “survival” function or the “risk curve”, is

=CCDF 1 CDF (B2)

where CDF is the Cumulative Distribution Function i.e., the integral of the PMF, CDF= ∫ 0
1PMF. A monotonically decreasing function, the CCDF

gives the exceedance probability of observing more than a given number of fatalities, z > f.
The Frequency Mass Function (FMF) is

= × = ×
=

E
f

EFMF PMF 1 ,
f
F

f
0

1

s
1

1
s (B3)

where E is the total number of fatal landslides in the record. For a given landslide magnitude f, the FMF gives the expected number (frequency) of
fatal landslides of the same magnitude.

The Complementary Cumulative Frequency Distribution Function (CCFDF) is

=CCFDF 1 CFDF, (B4)

where CFDF is the Cumulative Frequency Distribution Function, the integral of the FMF, CCFDF= ∫ 0
1FMF. A monotonically decreasing function, for

a given landslide magnitude f, the CCFDF gives the exceedance probability of observing more than a given number of landslide fatalities, z≥ f
information on the frequency of fatal landslides of equal or larger magnitude, z≥ f.

The yearly Complementary Cumulative Frequency Distribution Function (yCCFDF) is

=
T

yCCFDF CCFDF , (B5)

where T is the length of the historical record, in years. A monotonically decreasing function, the yCCFDF gives the annual frequency of fatal
landslides of magnitude f≥ h.

The return period of a fatal landslide is

= 1
yCCFDF

,yCCFDF (B6)

that gives the average recurrence interval between fatal landslides of a given magnitude, f.
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