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Abstract
Landslides and surface erosion are major processes controlling the progressive recession of many rocky cliffs along the Italian 
coastline. Nevertheless, many coastal settlements were built along cliffed sectors prone to rapid collapses. This represents 
a serious risk for tourists and living people, as well as for buildings, roads and railway networks. The densely urbanized 
coastline of the Campi Flegrei active volcanic district is one of the rocky coastal areas of South Italy mostly exposed to the 
recession. Here, coastal cliffs are made by volcaniclastic deposits and include remnants of ancient volcanic edifices formed in 
the last 15 ka. Due to petrographic, geotechnical and geostructural properties of volcaniclastic deposits, these cliffs have been 
affected by rapid recession since their origin. This research focuses on a cliff of the Campi Flegrei coastaline (Torrefumo, 
Monte di Procida) which, although currently protected from the sea waves by a seawall, is still retreating. We assessed the 
ongoing recession using a change detection analysis, based on accurate topographic data acquired with two terrestrial laser 
scanning surveys executed in 2013 and 2016. The quantitative comparison of 3D point clouds datasets allowed detecting 
191 cliff failures. We verified that the frequency-magnitude distribution of the detached blocks followed an inverse power 
law, and most of the involved volumes were between 0.01 and 1  m3. Retreat rates of different cliff sectors varied from 0.001 
to 0.025 m/year. Our analysis also allowed us to recognize slope failure mechanisms and distinguish rock falls from grain-
by-grain surficial erosion.

Keywords Terrestrial laser scanning · Change detection · Coastal cliff · Rock fall · Erosion · Frequency-volume distribution

1 Introduction

Terrestrial laser scanning (TLS) is one of the most used tech-
niques to perform geomorphic analysis in coastal environ-
ments. TLS-based studies of sea cliffs, for example, range 
from the geostructural analysis (Martino and Mazzanti 2014; 
Matano et al. 2015, 2016; Somma et al. 2015) to the evalu-
ation of erosion processes and hazard assessment (Rosser 
et al. 2005; Collins and Sitar 2008; Lim et al. 2011; Katz and 
Mushkin 2013; Kuhn and Prüfer 2014; Dewez et al. 2013). 
Often, the occurrence of limited space at the cliff toe or 
sea waves breaking directly on the cliff face may hamper 
ground-based topographic surveying, or limit their appli-
cability. Particularly, rocky cliffs characterized by steep 
and rough morphologies are likely to subject to possible 
shadowing and/or occlusion effects, eventually resulting in 
an incomplete sampling of the surface (Passalacqua et al. 
2015). Terrestrial laser scanners can be also used as per-
manent monitoring systems for detecting cliff topographic 
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changes in near real-time (Rosser et al. 2017; Williams et al. 
2018).

Many catalogues of cliff failures worldwide were com-
piled on the basis of multitemporal TLS surveys (e.g., 
Rohmer and Dewez 2015; Katz and Mushkin 2013; Collins 
and Sitar 2008). TLS allows detecting very small levels of 
signals even in a noisy dataset (Kromer et al. 2017). This 
is particularly important for identifying small-scale failures 
occurring along coastal cliffs that, in some cases, can be 
precursors of major collapses (Rosser et al. 2007). Inven-
tory data are generally employed to evaluate frequency-
magnitude (volume or area) distributions (e.g., Dong and 
Guzzetti 2005; Marques 2008; Young et al. 2011) and spa-
tial–temporal relationships of cliff instability (Rosser et al. 
2007). Understanding the spatial distribution of cliff failures 
may be of great interest in obtaining information on external 
processes and environmental conditions that predispose or 
initiate sea-cliff instability (Rohmer and Dewez 2015).

As recognized in several geological settings, the cumula-
tive frequency of mass wasting areas or volumes is approxi-
mated by a power law scaling (Pelletier et al. 1997; Hungr 
et al. 1999; Santana et al. 2012). Specifically, the empiri-
cal distributions of landslide volumes described in the lit-
erature obey almost invariably a negative power law that 
may vary according to landslide types, local morphology 
and lithological conditions, as well as on the methods of 
data acquisition and the different approaches to estimate the 
failures distribution (Brunetti et al. 2009). The high level of 
detail characterizing the TLS systems prevents an under-
sampling of failures in the smaller volume ranges that, in 
frequency-magnitude distributions obtained with traditional 
techniques, is often responsible of a rollover effect (Tebbens 
2020 and references therein). The predictive effectiveness 
of power law-based models depends on the identification of 
constraints controlling the scaling exponents, as well as on 
the spatial and temporal resolution, quality and complete-
ness of the used datasets (Stark and Guzzetti 2009; Brunetti 
et al. 2009). According to Gilham et al (2018), the frequency 
of failure events along coastal cliffs is generally much higher 
than that of terrestrial cliffs, which makes the former ideal 
for magnitude-frequency analysis. This type of statistics rep-
resents a fundamental tool for the prediction of future cliff 
instabilities and retreat scenarios, and for a quantitative risk 
assessment (Barlow et al. 2012; Gilham et al. 2018).

Even if advanced geomatic techniques have greatly 
improved accurate measurements of cliff erosion, the under-
standing of the mechanisms of coastal cliff retreat and rela-
tionships with environmental conditions remains difficult. 
According to Letortu et al. (2015), retreat occurs in “jerks”, 
generated by the interaction of both internal factors (e.g., 
rock strength and structure) and external factors (e.g., rain-
fall, temperature variations, and wave action), so that an 
effective monitoring of retreat processes requires long-term 

topographic measurements on a high spatial and temporal 
resolution. TLS datasets provide therefore a significant con-
tribution to the debate on the dominance of marine versus 
subaerial forcing in controlling the cliff erosion dynamics.

This work discusses the results of a TLS-based analysis of 
a coastal cliff located in the densely urbanized volcanic area 
of Campi Flegrei, in southern Italy. The cliff toe is actually 
not in direct contact with the seawater because of a sea-
wall realized in the 80′s to contrast the wave erosive action. 
We have selected this type of cliff to analyze the erosional 
dynamics in case of a limited influence of marine processes. 
Consequently, we performed two repeated TLS surveys (in 
2013 and 2016) and compared the acquired 3D point clouds 
using a "multiscale model to model cloud comparison" 
(M3C2) technique (Lague et al. 2013). This change detec-
tion method has been successfully applied by many Authors 
in different landscapes, including coastal settings (Barnhart 
and Crosby 2013; Dewez et al. 2016; Esposito et al. 2017a, 
b; Westoby et al. 2016; Caputo et al. 2018; Darmawan et al. 
2018). Results of the change detection were used to develop 
an inventory of slope failures, and characterize both the fre-
quency-volume distribution and mechanisms controlling the 
cliff recession. In general, this study gives a contribution to 
the scientific literature dealing with the TLS-based analysis 
of cliff erosion, highlighting the high potential of TLS in 
developing accurate frequency-magnitude distributions of 
failures, and provides new insights about geomorphic pro-
cesses controlling the recession of cliffs made of pyroclas-
tic deposits. In addition, volume measurements may inform 
modeling parameters aimed at quantitative risk assessment, 
and validation of model outputs.

2  Geological setting

The research was conducted on the Torrefumo cliff, located 
in the municipality of Monte di Procida, along the coastline 
of the Campi Flegrei volcanic area, Italy (Fig. 1). The cliff is 
ca. 1320 m long and has an elevation between 25 and 110 m 
above sea level (a.s.l.). The slope angles reach up to 90° 
towards the top of the cliff. The base of the cliff is protected 
by a continuous seawall (Fig. 1) characterized by an average 
height of 4 m a.s.l., that impedes a permanent inundation. 
The space between the seawall and the cliff toe is occupied 
by marine sand, anthropogenic deposits and a talus of debris 
derived from the cliff erosion, as well as by a small, wave-
pond lake (Fig. 1).

According to Perrotta et al. (2011), the oldest rocks of 
the Campi Flegrei caldera (i.e. > 74 ka BP) crop out along 
the coastal cliffs that board the Monte di Procida promon-
tory. These volcaniclastic deposits derive from the activ-
ity of three different monogenic volcanoes, San Mar-
tino, Vitafumo, and Miliscola, and belong to the Vivara 
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Formation (Fig. 2). The products of the Vitafumo and Milis-
cola tuff cones form part of the Torrefumo cliff face. The 
lower part of the Vitafumo succession consists of layered 
yellow tuffs, whereas the upper is represented by reddish 
coarse pyroclastic rocks laterally passing to coarse surge 
beds with reddish pumices (Rosi and Sbrana 1987). The 
Miliscola succession is made up by valley-ponding, poorly 
sorted deposits formed by the alternation of ash and pumice 
layers, passing upwards to plane-parallel pumice lapilli and 
minor cross-stratified ash beds. These deposits mantle the 
underlying edifice of the Vitafumo tuff cone and become 
thicker towards its eastern flank (Perrotta et al. 2011). The 
Miliscola succession is in turn overlain by pumice and ash 
beds of the Serra Formation (> 39 ka BP) (Fig. 2), which is 
represented by fall deposits and pyroclastic flows originat-
ing from a series of consecutive eruptions. The Campanian 
Ignimbrite deposits (ca. 39 ka BP) separate the products of 
pre-caldera and post-caldera activity. In the Monte di Pro-
cida area, theses deposits are mostly represented by coarse, 
lithic-breccia with welded horizons that are included in the 
Breccia Museo Formation (Rosi and Sbrana 1987; Rosi 
et al. 1996; Orsi et al. 1996; Perrotta et al. 2006). The old-
est unit of the post-caldera succession is represented by the 
Solchiaro Formation (Fig. 2) which is formed, from bottom 
to top by (i) dark gray scoria with intercalated gray ashes, 
ascribable to the Torregaveta volcano whose remnants were 
recognized in the northwestern side of Monte di Procida hill, 
and (ii) partially lithified to non-lithified grey tuffs, origi-
nated from the Solchiaro Tuff Ring, the youngest vent of 
Procida Island (Perrotta et al. 2011). Up in the sequence fol-
low coarse and fine layers, and lenses of yellow pyroclastic 
deposits of the Neapolitan Yellow Tuff Formation (Fig. 2) 

(Scarpati et al. 1993). The succession terminates with the 
Torre Cappella tephra that consists of a stratified succession 
of incoherent ash and pumice lapilli beds, and two ash layers 
(< 5 ka BP) separated by paleosols.

As pointed out by Esposito et al. (2018), quantitative 
studies on the erodibility of these cliff-forming lithologies 
are lacking. However, as general behavior, the erosional 
response seems to progressively increase from welded tuff 
or ignimbrite to partly consolidated or loose pumiceous and 
ash deposits, according to textural, mineralogical and weld-
bonding properties.

3  Methods

3.1  Terrestrial laser scanning

In this study, a Riegl™ VZ-1000 terrestrial laser scanner 
was employed. This scanner is based on the time-of-flight 
technology and is classified as a long-range instrument due 
to a reflectorless maximum range of 1,400 m. The effective 
measurement rate can reach 122,000 pts/s at a frequency 
of 300 kHz. Measurement precision is nearly 5 mm at one 
sigma (68%), at 100 m range under Riegl test conditions, 
with a laser spot size of 7 mm.

TLS data related to the 700 m long analyzed sector of the 
Torrefumo cliff were acquired during May 2013 and Janu-
ary 2016 from 5 scan stations positioned along the cliff toe 
(Fig. 1). For each survey, 5 partially overlapped 3D point 
clouds were collected at a distance of 30÷100 m from the 
cliff face, with an average point spacing of 0.03 m.

Fig. 1  Aerial image of the Torrefumo study site modified from Esposito et al. (2018). The inset map shows the location of the Campi Flegrei 
volcanic district, and the rectangles highlight location of the analyzed cliff. The triangles indicate the position of scan stations
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Generally, by georeferencing the point clouds or combin-
ing them from multiple scans into a single point cloud, reg-
istration errors are introduced. In change detection analyses, 
these inevitably increase the uncertainty and unreliability of 
derived changes. Taking into account this issue, the acquired 
data were not georeferenced by means of topographic tar-
gets, benchmarks, reflectors or other types of ground control 
points (GCPs), so that the corresponding 3D point clouds 
of different epochs could be compared independently, with-
out combining them into single point clouds. This was also 
constrained by the steep morphology of the cliff site and 

its inaccessibility for the positioning of GCPs. Before the 
comparison stage (i.e. change detection), the raw point 
clouds were manually filtered to exclude erroneous points 
(i.e. vegetation and/or points outside the area of interest) 
by using the CloudCompare software (www.cloud compa 
re.org). Afterwards, the corresponding multitemporal point 
clouds were aligned in pairs, using the iterative closest point 
(ICP) best-fit algorithm (Besl and McKay 1992) imple-
mented in the Trimble™ RealWorks software (Fig. 3). The 
ICP best-fit alignment is a fast and reliable approach that 
avoids the time-consuming installation of targets over wide, 

Fig. 2  Cliff geological profile 
modified from Esposito et al. 
(2018). The rectangle highlights 
the cliff section shown in the 
photograph. Note the numerous 
buildings located at the cliff top

http://www.cloudcompare.org
http://www.cloudcompare.org
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morphologically articulated or steep slopes, and reduces the 
uncertainty due to the identification of the exact location of 
targets on point clouds characterized by variable densities 
(Fey and Wichmann 2017). In the ICP algorithm, a point 
cloud, referred as reference cloud, is kept fixed whereas the 
other one (moving point cloud) is moved to best match the 
reference. The algorithm iteratively revises the transforma-
tion (combination of translation and rotation) needed to min-
imize the distance from the moving to the reference point 
cloud. It is worth noting that, as pointed out by Kromer et al. 
(2015), an accurate alignment requires high and consistent 
point density (low point spacing).

3.2  Change detection analysis

The change detection analysis we present here aims at 
deriving geomorphic changes corresponding to 3D topo-
graphic distances between the acquired multitemporal point 
clouds, calculated along slope-dependent normal vectors. 

To calculate such distances, we used the M3C2 plug-in of 
CloudCompare, implemented by Lague et al. (2013). As 
M3C2 parameters, extensively described in Esposito et al. 
(2017a, b), we adopted those estimated automatically by 
the plug-in, except the co-registration errors between the 
comparing point clouds (i.e. level of detection—LOD). To 
evaluate these errors, we followed the empirical approach 
developed by Collins et  al. (2012). According to these 
authors, from each of the five pairs of aligned point clouds, 
we extracted 7 or 8 patches of points corresponding to 
rock outcrops of 3 × 3 m considered as “stable” during the 
investigated time interval (e.g., Fig. 4). Evaluation of the 
stability of the patched cliff portions was based on: (i) a 
visual inspection of the outcrops in the field, (ii) detailed 
photographs acquired during the surveys, (iii) statistics of 
distances between the corresponding patch-related points 
of the two epochs computed by using the Cloud-to-Cloud 
tool (C2C) of CloudCompare. This tool was chosen because 
it allows calculating the nearest neighbor distance between 

Fig. 3  Visual example of a successful alignment performed between two multitemporal 3D point clouds referred to the same area

Fig. 4  a The circles highlight the location of point cloud patches related to “stable” zones of the cliff. b Example of normal distribution of dis-
tances calculated between two multitemporal patch-related clouds
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two “reference” and “compared” cloud datasets in a bi-
dimensional space, and it does not require any preliminary 
specification of the error. The stability of the selected rock 
outcrops was thus confirmed if the calculated patch-related 
distances were normally distributed like in Fig. 4, with val-
ues of the mean (μ) and standard deviation (σ) in the order 
of few centimeters or millimeters. As a final step, for each 
of the five change detection analyses, the average of the 7/8 
patch-related distances, determined at two standard devia-
tions (μ + 2σ), was calculated and adopted as co-registration 
error. In this way, the calculated empirical errors were com-
pared with those given by RealWorks software after the ICP-
based point clouds alignment, to evaluate their accordance 
and obtain an indirect validation of the applied procedure.

3.3  Calculation of failures magnitude and statistical 
analysis

By means of the M3C2 plug-in of CloudCompare, cliff 
zones characterized by significant changes (i.e. distances 
greater than the level of uncertainty estimated by the plug-
in), were identified. Since these zones corresponded to those 
affected by cliff failures in the 2013–2016 considered time 
span, both the related scar areas and volumes were calcu-
lated in CloudCompare with the following stepwise process. 
After the identification phase, both the compared clouds 
were manually clipped accordingly. The clipped cloud 
patches were then merged, obtaining the 3D point clouds of 
the detached rock blocks (Fig. 5). The latter were meshed 
using the Poisson Surface Reconstruction plug-in (Kazhdan 
et al. 2006) included in CloudCompare. After the meshing 

operation, the suitable fitting of meshes with the original 
point clouds was verified visually, in a way to avoid overes-
timation or underestimation of volumes. Finally, the mesh 
volume and 2D area of the scar were calculated for each 
collapsed rock block.

The relationship between the cumulative frequency and 
volume of all failures detected along the entire analyzed cliff 
sector was approximated with a simple power law function, 
using a log binning procedure to define the volume classes. 
To take into account the issue that small magnitude failures 
may determine in power law fitting (i.e. “rollover” effect 
described by Malamud et al. 2004), a further frequency-
volume curve, fitting only volumes greater than 0.03  m3, was 
estimated. The two curves were then compared, evaluating 
the related goodness-of-fit by means of R2. The statistical 
relationships between scar area, thickness and volume of the 
identified detached blocks were also evaluated.

To characterize the spatial distribution of detected failures 
along the surveyed cliff, also with respect to geological for-
mations highlighted in Fig. 2, point clouds of both the cliff 
(2013) and failures were loaded in ESRI™ ArcGis software, 
according to an YZ projection plane (i.e. frontal view of the 
cliff face). Here, the cliff-related point clouds were interpolated 
with the “Las to raster” tool using a cell size of 20 cm. Tak-
ing as reference 16 rectangles characterized by a short side of 
50 m (Fig. 6), the obtained model was then subdivided into 16 
individual raster layers, corresponding to likewise cliff sectors. 
Each raster was analyzed in ArcGis to calculate the related 2D- 
and 3D-area. In addition, the total volume of detached blocks, 
the total area of scars, and the potentially unstable volume 
were calculated for each sector. The total areas and volumes 

Fig. 5  Example of a unified 3D point cloud representing a collapsed rock block. The scale bar is in meters
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were derived from the figures obtained with the previously 
described point-based procedure; the potentially unstable vol-
ume was calculated by multiplying the 3D-area of the sector 
for the maximum failure thickness estimated along the ana-
lyzed cliff, equal to 2.8 m. The assumption of multiplying by 
2.8 m, rather than by the maximum sector-related failure thick-
ness, was taken to make the statistical analysis homogeneous.

At this stage, to provide an overall characterization of reces-
sion that affected the 16 cliff sectors in the considered time 
span, the following indexes were computed, together with the 
average retreat rates. The area and the volume ratio indexes 
were expressed as percentage and computed as follows:

The average cliff retreat rates were calculated for sectors 
that experienced significant collapses in terms of displaced 
volumes (> 10  m3), by using a modified version of the formula 
proposed by Young and Ashford (2006):

where R is the retreat rate expressed in m/year, and 3 is the 
approximate number of years considered in this study.

Area ratio index =
Sum of the 2D scar areas of the sector

2D area of the sector
,

Volume ratio index =
Sum of the volumes lost in the sector

(Unstable) Volume of the sector
.

R =
Volume of rocks collapsed in the sector

(3D area of the sector) × 3
,

The amount of detached blocks occurred in each geologi-
cal formation was calculated by overlapping the two datasets 
in ArcGis, on the YZ projection plane.

4  Results

4.1  Change detection results and statistical data

The co-registration errors calculated for each couple of 
compared point clouds are summarized in Table 1. Errors 
obtained with the empirical approach and used for the M3C2 
analyses (fifth column in Table 1) are comparable with those 
estimated automatically by the RealWorks software after the 
alignment procedure (sixth column). This confirms the suit-
ability of the used empirical procedure, and the negligible 
impact of the occurred failures on the ICP alignment results.

The change detection analysis allowed identifying a total 
of 191 cliff failures (Fig. 6). Among them, 32 failures were 
identified also with the visual inspection of two sets of pho-
tos taken during the 2013 and 2016 field surveys. One exam-
ple is represented in Fig. 7 where, among the significant 
changes, both a collapsed rock block of 11  m3 and vegeta-
tion changes are highlighted. In this case, vegetation was not 
removed intentionally to evidence both accuracy of the used 
technique and the importance of vegetation filtering before 
performing change detection analyses like this. Moreover, 
it is worth noting that redundant changes, due to the partial 

Fig. 6  Inventory of detected failures. Rectangles and letters identify the cliff sectors

Table 1  Results of the empirical 
error analysis corresponding 
to each pair of compared point 
clouds

The fifth column shows the co-registration errors used for the change detection analysis. The sixth column 
shows the ICP alignment errors calculated by RealWorks software

Compared point clouds Number of 
patches

Mean dis-
tances, μ (m)

Mean standard 
deviation, σ (m)

Error thresh-
old, μ + 2σ (m)

Alignment error 
in RealWorks (m)

C1, 2013–C1, 2016 7 0.011 0.005 0.021 0.027
C2, 2013–C2, 2016 8 0.022 0.009 0.039 0.040
C3, 2013–C3, 2016 8 0.021 0.009 0.039 0.033
C4, 2013–C4, 2016 7 0.032 0.012 0.056 0.030
C5, 2013–C5, 2016 7 0.027 0.012 0.052 0.032
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overlapping of point clouds acquired during the same survey, 
were manually selected and discarded.

The detached rock blocks resulted distributed along the 
entire Torrefumo cliff face with an apparent concentration 
toward the cliff edge, and in correspondence of the steepest 
and erodible slopes. The results of the overlap between the 
blocks and geological formations are shown in Table 2. It is 
quite evident that most of the detected failures are concen-
trated in the Serra, Solchiaro and Neapolitan Yellow Tuff 
formations (71.6%) with respect to the ones affecting the 
Vivara oldest unit (28.4%).

The detached blocks ranged between 0.01 and 1 m as 
mean thickness, 0.001 and 150  m3 in volume, while 2D scar 
areas varied between 0.1 and 330  m2. The absolute frequency 
distribution of volumes was organized into 6 logarithmic 
bins. Failures between 0.01 and 1  m3 revealed to be the 
most frequent, whereas only one block resulted larger than 
100  m3. The two magnitude-frequency distributions shown 

in Fig. 8, and expressed in terms of displaced volume in a 
log–log chart, follow inverse power laws, with exponents of 
0.479 and 0.6. The curve with exponent 0.479 approximates 
the volumes of all the detected failures, whereas the curve 
with exponent 0.6 refers to volumes larger than 0.03  m3. By 
comparing the two different R2, volumes greater than 0.03 
 m3 are those well fitted by power law, with R2 of 0.981, high-
lighting a possible rollover effect due to the limited amount 
of small-scale failures (< 0.03  m3). In general, the order of 
magnitude of the two exponents is quite lower with respect 
to those of power laws describing volumetric data in other 
cliff settings (e.g., Gilham et al. 2018; Williams et al. 2018; 
Marques 2008). The 90th percentile of the entire volumetric 
distribution is equal to 2.35  m3.

Both scatters correlating the mean thickness with the scar 
area, and the scar area with the volume were also examined. 
The mean thickness-area data are characterized by high 
scatter (Fig. 9), indicating a considerable heterogeneity of 
blocks geometry, whereas the volume increases proportion-
ally with the growth of the scar area, following a positive 
power law trend as shown by the exponent of 1.4 (Fig. 10). 
However, dots remain below the dashed line representing 
a mean failure thickness of 1 m, and the scatter around the 
central tendency line is limited, highlighting a homogenous 
volume-area growth. Similar area-volume relationships 
related to coastal cliff failures were found by Caputo et al. 
(2018) for a tuffaceous cliff near the study area, Benjamin 
et al. (2016) in UK, as well as by other authors for different 
types of landslides in various geological settings worldwide 
(Guzzetti et al. 2009 and references therein). 

Fig. 7  Example of a collapsed rock block and related photographic comparison

Table 2  Amount of detached rock blocks detected in each cliff-form-
ing geological formation

Geological formation Amount of detached 
blocks (%)

Neapolitan Yellow Tuff 28
Solchiaro 10
Campanian Ignimbrite 0.1
Serra 33.5
Vivara 28.4
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Figure 11 shows statistics on the spatial distribution of 
detected failures, as well as on the area and volume ratios, 
with respect to the cliff sectors represented in Fig. 6. The 
most relevant findings can be summarized as follows: (i) 
sectors A and C have the highest area and volume ratios 
but a low frequency of detached blocks; (ii) sectors F, I 
and M have a significant area ratio and a high frequency of 
detached blocks but a moderate volume ratio; (iii) sector L 
has a very high frequency of detached blocks and a low area 
ratio, whereas the volume ratio is negligible. Statistics of the 
remaining sectors do not show particular behaviors.

The average retreat rates are reported in Table 3. These 
range from a minimum of 0.001 to 0.025 m/year and refer 
only to sectors displaying a significant volume loss; other 

sectors are characterized by negligible detached volumes 
with null consequent rates. The average retreat rate of the 
entire analyzed cliff segment is about 0.003 m/year. It is 
worth noting that this rate is based on only two epochs 
covering a time span of about three years, and refers to a 
specific interval of a broader cliff recession cycle. In addi-
tion, it is important to underline that long-term cliff retreat 
rates (greater than 10–100 years) may be lower than short-
term (e.g., monthly or annual) rates, which are often influ-
enced by large-magnitude and episodic erosion events. 
In the light of this, Williams et al. (2018) demonstrated 
that the analysis of cliff recession is a kind of trade-off in 

Fig. 8  On the left, histogram showing the absolute frequency of fail-
ure volumes obtained using logarithmic bins; the 90th percentile is 
equal to 2.35  m3. On the right, cumulative frequency distribution 

of failure volumes in a log–log chart; the dashed line represents the 
power law approximating all data, while the solid line is the power 
law related to volumes greater than 0.03  m3

Fig. 9  Mean thickness versus scar area in a log–log scatter plot. The 
power law regression line is highlighted Fig. 10  Scar area versus volume in a log–log scatter plot. The power 

law regression line is highlighted; the dashed line represents a mean 
failure thickness equal to 1 m
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spatial and temporal resolution of monitoring, underlining 
the relevant potential of high-frequency measurements for 
the accurate evaluation of magnitude–frequency deriva-
tives, such as hazard return intervals and erosion rates.

4.2  Field evidences of different cliff retreat 
mechanisms

The cross section of Fig. 12 was drawn based on a point 
cloud acquired during the 2016 TLS survey. The pro-
file intersects a succession of tuff layers and ash deposits 

Fig. 11  Statistics calculated for each cliff sector

Table 3  Average annual retreat rate of cliff sectors characterized by a volume loss greater than 10  m3

Sector A C F H I M O

Rsector (m/year) 0.025 0.010 0.001 0.001 0.008 0.004 0.001



Rendiconti Lincei. Scienze Fisiche e Naturali 

1 3

characterized by variable thicknesses and compactness. A 
series of convexities and concavities are localized respec-
tively in correspondence of the welded tuff and loose ash 
layers, indicating an evident topographic signature of the 
different response to erosion (i.e. selective erosion). Locally 
within the cliff, in correspondence of such lithological 
variations, scars related to rock falls have been recognized 
(Fig. 13).

In addition to ash-tuff successions, poorly welded 
pumices outcrop locally within the Torrefumo cliff. In 

correspondence of these deposits, a relatively slow and dif-
fused (i.e. “grain-by-grain”) erosional process (e.g., Dong 
and Guzzetti 2005) has been detected during the TLS sur-
veys. Figure 13 shows, for example, excavation-shape mor-
phologies ostensibly produced by this mechanism, which 
are linked at the cliff toe to a debris cone likely formed by 
pumices eroded from the overlying deposits. The described 
change detection procedure allowed quantifying the volume 
gained to the cone between the two TLS surveys in about 
25  m3.

5  Discussion

The results of our analysis suggest that, despite the protec-
tive action of the seawall at the cliff toe, the retreat of the 
Torrefumo cliff is still active and it occurs by means of dif-
ferent mechanisms of slope instability. The used techniques 
allowed identifying 191 failures that resulted distributed 
along the entire analyzed cliff face (Fig. 6). An overall inter-
pretation of histograms in Fig. 11 suggests that the west-
ern and central sectors (from A to M) experienced the most 
significant instability processes in terms of involved areas, 
volumes and frequency of failures. Conversely, the eastern 
sectors of the cliff (from N to R) resulted more stable. This 
trend was also confirmed by different retreat rates (Table 3) 
and was ostensibly controlled by geological factors, as the 
presence of more resistant rocks in the eastern cliff side 
(e.g., well-welded tuff included within the Vivara Forma-
tion), compared to the weakly welded layers of pumice and 
ash, very prone to instability processes, outcropping in the 

Fig. 12  High-resolution cross-section highlighting topographic vari-
ations in correspondence of the outcropping lithological units. Spe-
cifically, concavities (circles) are in correspondence of fine-ash layers 
whereas convexities are in correspondence of tuffaceous layers

Fig. 13  Multitemporal images of cliff portions affected by different types of failures
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western side (e.g., deposits belonging to the Serra and Sol-
chiaro Formations). This was also highlighted by the data 
shown in Table 2.

Among statistics represented in Fig. 11, the area and vol-
ume ratio indexes indicate that sectors A and C were affected 
by a limited number of failures (i.e. 6 and 3, respectively) 
that however displaced significant rock volumes, namely 
of 86.9  m3 and 86.7  m3. These data indicate that, in these 
sectors, episodic high-magnitude cliff failures induced sud-
den and localized cliff recessions, as also highlighted by 
relatively high retreat rates of 0.025 and 0.010 m/years 
(Table 3).

Sectors F, I and M are characterized instead by relevant 
area ratio indexes and frequency of block failures, but mod-
erate volume ratios. This can be explained by the occur-
rence of frequent small-scale failures (between  10–2 and 1 
 m3), probably affecting incoherent deposits of ash, pumice 
and scoria. A similar behavior results for the sector L, even 
though the negligible volume ratio index, in this case, indi-
cates that failures were more superficial. In this sector, in 
fact, tuffaceous units are characterized by enlarging tafoni 
that are degrading the rock surface. The occurrence of tafoni 
supports the hypothesis that wind action and salt weather-
ing may cause their progressive enlargement by means of 
the spalling of small-scale rock fragments (Doehne 2002).

The frequency-volume distributions shown in Fig. 8 
follow inverse power laws, as resulted for many cliff sites 
throughout the world. Similar distributions, for instance, 
were found by Rosser et al. (2005), Lim et al. (2010) and 
Dewez et al. (2013). Most of the detached rock volumes 
are smaller than 1  m3, whereas the largest one is ca. 150 
 m3. It is worth noting that rock volumes < 0.03  m3 are 
scarcely fitted by the general power law, as highlighted by 
an R2 = 0.935. This value is, in fact, lower than R2 = 0.981 
associated with the power law fitting volumes larger than 
0.03  m3. This indicates a possible rollover effect, as recog-
nized in many landslide frequency-magnitude distributions 
(Tebbens 2020 and references therein). A similar behavior 
was also found by Van Veen et al. (2017) in analyzing a 
rock fall dataset with different sampling intervals (duration 
between scans). Generally, the rollover effect is the result of 
the undersampling of smaller failures and therefore to the 
inventory resolution (Stark and Hovius 2001; Guzzetti et al. 
2002). In this study, given the relevant accuracy of the TLS-
based method that allowed detecting failures up to  10–3  m3, 
no censoring effects seem to cause it. A possible reason may 
be the coalescence of multiple small scars to form larger fail-
ures, that is more likely in the case of excessively long time 
intervals between the acquired scans (Barlow et al. 2012; 
Tonini and Abellán 2014; Carrea et al. 2015; van Veen et al. 
2017). Williams et al. (2018), for example, noted that while 
a rollover occurred applying a frequency of TLS surveys 
of 30 days, this was not apparent at a frequency lower than 

1 h, suggesting that the observed rollover occurred due to 
superimposition and coalescence of small-scale events as 
consequence of longer return periods between surveys. In 
such cases, small-scale failures that could not be mapped at 
their correct size bins are transferred into larger bins, caus-
ing a divergence from the power law (Tanyaş et al. 2019). In 
fact, as highlighted by Tebbens (2020), the lower the scaling 
exponent (or less steep the power function) is, the greater 
the contribution of large events relative to small events will 
be. In the light of this, and besides the probable coalescence 
conditions, larger displacements like those represented in 
Fig. 13 and described in the Sect. 4.2 were effectively docu-
mented, contributing to reduce the slope of power laws and 
hence the scaling exponents.

The estimated volume range of failures was also con-
trolled by the geological setting of the cliff. The different 
types of volcaniclastic deposits in fact respond in different 
ways to surface erosion processes (Fig. 12), and our find-
ings indicate that the grain-by-grain mechanism affects 
the most erodible deposits, mobilizing limited amounts of 
material, which is also suggested by the grown of the debris 
cone in Fig. 13, evaluated in 25  m3 in about three years. 
Locally, instead, erosion may trigger high-magnitude fail-
ures (Figs. 7, 13) that occur as rock fall or slide and displace 
large blocks also larger than a hundred of cubic meters, even 
if with a limited thickness. These outcomes are in accord-
ance with the area/volume relationship (Fig. 10), indicating, 
in fact, a general superficial character of all the detected 
failures that show a mean thickness lower than 1 m. The 
relatively shallow behavior of these failures could be related 
to the surface erosion involving the most erodible deposits 
(Fig. 13), as well as to the collapses of the most degraded 
rock outcrops, or unstable blocks isolated by selective ero-
sion (Figs. 7, 13).

Investigation of the structural control on the Torrefumo 
cliff failures was out of the aims of this study. However, field 
evidences and the results presented in the previous para-
graphs suggest that the structural pattern has a negligible 
effect on the instability processes of the Torrefumo cliff, 
compared to geotechnical properties of rocks. This is in 
accordance with the findings reported by Bird (2008), who 
stated that coastal cliff profiles and retreat rates are mostly 
controlled by rock resistance and exposure to weathering 
and erosion.

It is important to highlight two factors that limit the 
effectiveness of multitemporal TLS in the analysis of sea 
cliffs. The main constrain consists of the temporal scale of 
measurements. According to Earlie (2015), measurements 
performed at time intervals in the order of a few years pro-
vide only an indication of the occurred changes but do not 
include adequate spatial and temporal resolution that are 
necessary for a detailed analysis. In fact, only more fre-
quent measurements may be effective in: (i) discriminating 
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between continuous and sporadic changes; (ii) relate forc-
ing mechanisms to failure, as coastal cliffs may experience 
massive changes during storm events or respond to other 
drivers with a seasonal behavior. On the other hand, it is 
commonly difficult to identify an adequate or ideal survey 
frequency or duration that may provide a complete recon-
struction of rates and patterns of coastal cliff erosion (Rosser 
et al. 2017). In the case of the Torrefumo cliff, Esposito et al. 
(2018) had quantified mean annual retreat rates of 1.2 m/year 
and 0.17 m/year for the periods 1956–1974 and 1974–2008, 
respectively. These values are quite different from the aver-
age rate of 0.003 m/year (2013–2016) estimated in the pre-
sent work, ostensibly because of the different temporal scales 
and of the geomorphic conditions that changed through time. 
We infer that the retreat rates we obtained for the different 
cliff sectors may be related to a specific interval of a broad 
cliff recession cycle that requires more measurements to be 
fully addressed. Nevertheless, the average retreat rate is defi-
nitely comparable with rates documented for similar time 
intervals, and various geological settings, by Wangensteen 
et al. (2007) in Svalbard, Marques (2006) in Portugal, Green-
wood and Orford (2007) in Ireland.

Further measurements to be carried out in the study area, 
using innovative techniques like the structure-from-motion 
photogrammetry based on UAV and other mobile platforms 
(Esposito et al. 2017a; Dewez et al. 2016), may be helpful to 
overcome the lack of data from some portion of the cliff that 
could not be scanned so far (e.g., Fig. 3) because of scanner 
positioning issues.

6  Conclusions

In this study, repeated TLS surveys were performed in the 
years 2013 and 2016 along the Torrefumo coastal cliff, with-
out the use of targets and GCPs. An ICP algorithm was used 
to align multitemporal 3D point clouds in pairs, achieving a 
centimetric accuracy. Comparison of 2013 and 2016 point 
clouds allowed for the acquisition of a cliff failures inven-
tory consisting of 191 events. Statistical analysis showed 
that: (1) the magnitude-frequency distribution of detected 
failures followed an inverse power law; (2) failure events 
larger than 100  m3 occurred rarely in the considered time 
span; (3) events between 0.01 and 1  m3 were the most fre-
quent, and the 90th percentile was equal to 2.35  m3; (4) 
the types of instability processes varied over the cliff face 
and consisted mainly in rock falls and grain-by-grain ero-
sion. Both field survey and analysis of the 3D point clouds 
showed that a selective erosion is effectively contributing 
to the cliff retreat, creating conditions for the triggering of 
block failures.

The TLS approach adopted in this work proved to be 
an accurate method to develop a catalogue of cliff failures. 

Resolution and accuracy of data allowed for a full range 
of failures to be recognized and measured. This improved 
the frequency-volume analysis, providing preliminary data 
for quantitative risk assessments. The detected failures con-
firmed that the cliff is still retreating, although the action of 
the seawall is limiting the sea wave erosion. In the future, 
TLS monitoring of the Torrefumo coastal cliff at higher 
temporal resolution may provide a valid support to local 
authorities for the coastal zone management, and planning of 
suitable countermeasures aimed at reducing risk conditions 
affecting several buildings realized close to the retreating 
cliff edge.
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