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Quantitative geomorphological and environmental analysis requires the adoption of well–defined spatial
domains as basic mapping units. They provide local boundaries to aggregate environmental and morphometric
variables and to perform calculations, thus they identify the spatial scale of the analysis. Grid cells, typically
aligned with a digital elevation model, are the standard mapping unit choice. A wiser choice is represented by
slope units, irregular terrain partitions delimited by drainage and divide lines that maximise geomorphological
homogeneity within each unit and geomorphological heterogeneity between neighbouring units. Adoption of
slope units has the advantage of enforcing a strong relation with the underlying topography, absent in grid
cell–based analyses, but their objective delineation is still a challenge. A given study area admits different slope
unit maps differing in number and size of units. Here, we devise an objective optimisation procedure for slope
units, suitable for study areas of arbitrarily large size and with varying terrain heterogeneity. We applied the
new approach to the whole of Italy, resulting in a map containing about 330,000 slope unit polygons of different
sizes and shapes. The method is parameter–free due to objective optimisation using a morphometric segmenta-
tion function, and themap is readily available for general–purpose studies. A cluster analysis of slope units prop-
erties, comparedwith terrain elevation, slope, drainage density and lithology, confirmed that the terrain partition
is geomorphologically sound. We suggest the use of the slope unit map for different terrain zonations, including
landslide susceptibility modelling, hydrological and erosion modelling, geo–environmental, ecological, forestry,
agriculture and land use/land cover studies requiring the identification of homogeneous terrain domains facing
distinct directions.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

We investigate the automatic subdivision of a large and complex
landscape into slope units (SUs) i.e., terrain units delimited by drainage
and divide lines, using exclusively information obtained from a digital
elevation model (DEM). Slope units are a valid alternative to grid cells
as mapping units. They bear a strong relationship with topography, at
variance with grid cells, and are potentially of interest in wide range
of applications. They help dealing with heterogeneous data, solving
problems stemming from positional accuracy and aggregating distrib-
uted data in a meaningful way.

In the literature, SUs subdivisions are obtained considering
hydro–geomorphological properties of the landscape by selecting
areas delimited by drainage and divide lines (Carrara, 1988; Carrara
et al., 1991; Detti and Pasqui, 1995; Guzzetti et al., 2000; Xie et al.,
2004; Saito et al., 2011; Jia et al., 2015; Alvioli et al., 2016; Huang
et al., 2017; Ba et al., 2018; Cheng and Zhou, 2018), or analysing a digital
topography using image segmentation or machine learning algorithms
(Flanders et al., 2003; Espindola et al., 2006; Drăguţ et al., 2014; Zhu
ioli).

. This is an open access article under
et al., 2018). Both approaches fulfil the requirement of intra–units mor-
phological homogeneity and between–units heterogeneity, with advan-
tages and limitations.

In this work, to delineate SUs we adopt the first approach using
the r.slopeunits software, a GRASS GIS module introduced by
Alvioli et al. (2016) that adopts drainage and divide lines extracted
from a DEM. The software implements an algorithm that considers
landscape hydrology, the variability of terrain aspect, and geometric
constraints for SUs (Alvioli et al., 2016). In an iterative process, the
software defines SUs as “half–basins” using the hydrological model
implemented in the GRASS GIS r.watershed module (Metz et al.,
2011), which partitions a digital topography into drainage basins
using the upslope contributing area, T. Using different T values at dif-
ferent epochs of the iterative process, the software adapts to the local
morphology and produces SUs subdivisions with different spatial de-
tail in different parts of a complex landscape. The software does not
determine univocally the characteristic scale of the SUs partition.
Instead, the level of detail of the SUs subdivision in different areas
depends on a few software parameters, which need to be optimised
in an objective and geomorphologically sound way. Working in the
≈2000 km2, Upper Tiber River Basin, Central Italy, Alvioli et al.
(2016) optimised the parameters using objective functions. Here,
the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.geomorph.2020.107124&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.geomorph.2020.107124
mailto:massimiliano.alvioli@irpi.cnr.it
Journal logo
https://doi.org/10.1016/j.geomorph.2020.107124
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/geomorph


2 M. Alvioli et al. / Geomorphology 358 (2020) 107124
we show that optimisation can be achieved independently from the
geographical extent and the complexity of the study area.

The paper is organised as follows. After a brief summary of the back-
ground of the study (Section 2), we describe the methods used to pre-
pare the SUs subdivision for Italy (Section 3). This includes the local
optimisation procedure, and how the procedure is extended to areas
of arbitrarily large size. Next, we present the results of the application
of the method to the entire Italian territory (Section 4), and we discuss
the results obtained (Section 5). We conclude summarising the lessons
learnt (Section 6).

2. Background

Partitioning a complex landscape or a large territory into amosaic of
SUs is a form of terrain classification. A typical elementary unit for
terrain classification is a “landform” (Minár and Evans, 2008; Evans,
2012), and a number of studies have defined landforms and investi-
gated their topographic, geomorphological or thematic characteristics
(e.g., Guzzetti and Reichenbach (1994); Drăguţ and Blaschke (2006);
Drăguţ et al. (2011); Jasiewicz and Stepinski (2013); Dekavalla and
Argialas (2017); Iwahashi et al. (2018); Luo and Liu (2018)). Landform
classification is based typically on an a piori description of a – generally
limited – number of elementarymorphological shapes,most commonly
described in terms of discontinuities in terrain elevation, slope, aspect or
curvature (Evans, 2006, 2012). As an example, Jasiewicz and Stepinski
(2013) defined “geomorphons”, elementary morphological patterns
singled out from a large set of theoretical patterns describing landform
types of real natural landscapes.

A common problem in terrain classification is the selection of
the characteristic scale of the terrain subdivision (Evans, 2003; Saito
et al., 2011; Drăguţ et al., 2011; Drăguţ and Eisank, 2012; Ehsani and
Quiel, 2014; Alvioli et al., 2016; Dekavalla and Argialas, 2017; Schlögel
et al., 2018). Although examples exist of landforms that exhibit allome-
tric scaling (Evans, 2012), partitioning of a complex landscape into SUs
is not a scale invariant process, and it requires an appropriate, and not
uniform, basin size for the drainage and divide networks.

Identifying the correct scale of a particular spatial analysis is a way
out from what is known as modifiable areal unit problem (Openshaw
(1984); Manley (2014)). Any study associated with the use of data
aggregated within geographical areas is prone to the MAUP, and a ob-
jective link between mapping units and the underlying topography is
highly desirable.

One way of addressing the characteristic scale issue is to use adap-
tive algorithms. For the selection of their “geomorphons”, Jasiewicz
and Stepinski (2013) did not decide the size of their landforms a priori;
instead, they used a classification algorithm that adapts to the underly-
ing topography. A limitation of the approach was that the software that
implemented the algorithm relies on parameters that must be decided
through expert supervision, with a trial and error approach. Although
this is legitimate, the approach does not provide a clear definition for
the characteristic scale of the landscape classification, due to the inher-
ent subjectivity in the selection of the parameters.

Recently, Luo and Liu (2018) combined the “geographical detector
method” (Luo et al., 2016) to the geomorphons method (Jasiewicz and
Stepinski, 2013), and applied it to landslide susceptibility modelling
(Reichenbach et al., 2018). This is similar to the work of Alvioli et al.
(2016) who used the outcome of multiple statistically-based landslide
susceptibilitymodels prepared exploiting SU-based terrain subdivisions
with different spatial detail to decide an optimal scale for their terrain
subdivision.

An alternative approach to decide the characteristic scale of a terrain
classification relies on graph theory (Phillips, 2012; Phillips et al., 2015;
Heckmann et al., 2015). Phillips (2012) showed that graph theory is
able to describe scale hierarchies, explaining how geomorphic effects
are transmitted across scales, despite the lack of evident links between
geomorphological phenomena occurring at different scales. Heckmann
et al. (2015) suggested that graph theory can be used to explore geo-
morphic and hydrologic connectivity, landscape evolution models, and
various natural hazards.

In the literature, the geographical extent of terrain classifications
span a wide range. Examples exist of terrain classifications for areas of
a few square kilometres (Dekavalla and Argialas, 2017), of hundreds
(Drăguţ and Blaschke, 2006; Zhu et al., 2018), thousands (Schaetzl
et al., 2013; Melelli et al., 2017) hundreds of thousands (Guzzetti and
Reichenbach, 1994) of square kilometres, for the conterminous United
States of America (Luo et al., 2016), and even for the entire globe
(Iwahashi and Pike, 2007; Iwahashi et al., 2018; Drăguţ and Eisank,
2012). The difficulty in classifying large and complex landscapes using
consistent criteria does not stem from computational limitations.
Modern computers can handle regional and even global data sets with
spatial resolutions of a few tens of meters, and are able to execute com-
plex algorithms on such large data sets (Drăguţ et al., 2011; Drăguţ and
Eisank, 2012; Ehsani and Quiel, 2014; Marchesini et al., 2014; Alvioli
et al., 2016). Instead, the main obstacle hampering the classification of
complex landscapes or large territories is the selection of the parame-
ters that control the segmentation process i.e., the characteristic scale
– and the related level of detail – of the terrain classification. A related
issue is the spatial resolution of the data used for terrain classification
(e.g., Mashimbye et al. (2014), Kramm et al. (2017) and Schlögel et al.
(2018)).

3. Methods

Delineation of SUs in a complex landscape adopting the hydro-
geomorphological approach requires an a piori selection of the parame-
ters used to extract from a DEM the networks of drainage and divide
lines that bound the SUs, which determines the level of detail of the
final SUs mosaic. Selection of the parameters is typically heuristic,
hampering the implementation of automated procedures for SUs delin-
eation (Erener and Düzgün, 2012; Sharma andMehta, 2012; Zhao et al.,
2012; Mashimbye et al., 2014). In an attempt to solve the problem, we
propose to decide the characteristic scale of an SUs subdivision using
solely information obtained from a DEM, (i.e., terrain aspect homogene-
ity constraints) and a minimum size for the SUs.

Working in the Upper Tiber River basin, Central Italy, Alvioli et al.
(2016) tested the r.slopeunits software in association with an optimisa-
tion algorithm that considers the performances of (i) an SUs division
based on terrain aspect – using an objective function adapted from
Espindola et al. (2006), and of (ii) a statistically-based landslide suscep-
tibility zonation (Reichenbach et al., 2018) – using the area under the
receiver operating characteristic curve, AUC, as a performance metric.

In this work, we relax the performance criterion based on the land-
slide susceptibility assessment, and we keep the criterion that relies on
terrain aspect segmentation. Application of the original algorithm of
Alvioli et al. (2016) has conceptual limitations and computational con-
straints when applied over very large areas. We propose a new optimi-
sation algorithm to overcome the conceptual and the operational issues,
and to publish a national SU map. Optimisation criteria based only on
morphometric quantities will expand the potential uses of the final SU
map. Identification of SUs with terrain domains corresponding to a
correct segmentation of the aspectmapmatcheswith themanual delin-
eation of hillslopes, and using a hydrological subdivision at the correct
level of detail reflects the geomorphological processes that shape natu-
ral landscapes. These requirements are embedded in the use of the two
main parameters of the software, described in the following.

3.1. Main slope units delineation

The r.slopeunits software (Alvioli et al., 2016) implements an
algorithm that defines a mosaic of SUS bounded by drainage and divide
networks based on the output of the GRASS GIS r.watershed module
(Metz et al., 2011). The module extracts the boundaries of hydrological
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“half-basins” from terrain information available from a DEM. To single
out individual SUs from the half-basins, r.slopeunits assumes that ho-
mogeneity (heterogeneity) within (between) SUs is controlled by the
variability of terrain aspect in each SU. As a result, parts of a half-basin
with substantially different average terrain aspect are considered
pertaining to distinct SUs, and the half-basin is split accordingly.

The software implements an iterative procedure (Fig. 1) beginning
with the delineation of a set of a few large half-basins characterised by
a large upslope contributing area, T. The initial value of T should be
large enough so that the corresponding basins are much larger than
the final SUs, and the map does not keep memory of the value of T.
The actual value depends on the DEMand cannot be established a priori.
The half-basins that meet the internal homogeneity and size criteria
(based on a few parameters) are recognised as SUs, and flagged accord-
ingly. The remaining half-basins are sent to the next iteration, where a
new set of half-basins is generated using a smaller contributing area,
T. The new, and smaller, half-basins that meet the homogeneity and
size criteria are recognised as SUs, and flagged accordingly. The proce-
dure is repeated until no half-basins are left, and the entire study area
is covered by a mosaic of SUs, of different sizes.

Half-basins are recognised as legitimate SUs based on two input
parameters of the software, namely: (i) the SU minimum planimetric
area, a [m2], that represents the size belowwhich, at each new delinea-
tion of half-basins during in the iterative process, a half-basin is consid-
ered a legitimate SU, and (ii) the terrain aspect circular variance, c, that
represents the minimum terrain homogeneity for a half-basin to be
considered an SU. By definition, 0 ≤ c ≤ 1, and the smaller the c the
more uniform the half-basin, in terms of terrain aspect (Alvioli et al.,
2016). Since the size of the contributing area T is reduced at each itera-
tion, the size of SUs changes across the study area, adapting to the
variable landscape morphology.
Fig. 1. Logical framework for the procedure proposed by Alvioli et al. (2016) for the local
optimisation of the r.slopeunits (a, c) parameters for areas extending for ≲ a few
thousands km2.
Locally, r.slopeunits may produce a few unrealistically small poly-
gons. This is due to inconsistencies between the hydrographic network
obtained from any DEM and the real network, as far as small details are
concerned. The small areas just represent mistakes, and do not reveal
any real topographic property. We can see appearance of small areas
as random “noise” underlying the actual topographic “signal”. We re-
moved such areas adopting two strategies. A first strategy selects SUs
smaller than 50,000 m2, and merges them to the adjacent SUs that
share the longest boundary. This first strategy was used during the op-
timisation stage of the procedure. A second strategy selects SUs smaller
than 100,000m2, andmerges them to the adjacent SU that has themost
similar average terrain aspect, where the two SUs share a common
boundary longer than half of the perimeter of the SUs to be merged.
The second strategy is more accurate than the first one, and was used
for the final stage of SUs delineation, after optimisation of the parame-
ters was obtained. In both cases, we removed areas of slightly larger
size than theminimum necessary to get rid of mistakes. This is justified
by the need of producing useful SUs for practical applications. The num-
ber of removed polygons with respect to the total number of SUs is
negligible, as well as their total area.

3.2. Local optimisation

The iterative procedure described in Section 3.1 can be run for mul-
tiple combinations of the (a, c) parameters, and an optimal combination
can be selected bymaximising an objective function, with respect to (a,
c) (Fig. 1). Alvioli et al. (2016) adapted a metric used to measure the
quality of an image segmentation (Espindola et al., 2006) to the seg-
mentation of a terrain aspect map. The segmentation metric imposes
that individual slope units in the optimal SU set are asmuch as possible
homogeneous with respect to terrain aspect. Optimization, thus, results
in individual slope units to be facing a preferred direction, by selecting
the SU sets containing polygons with appropriate shapes and sizes as
to adapt to the topography.

The procedure considers circular variance of aspect, instead of ter-
rain aspect itself, to avoid the complexity of the periodicity of angular
measures. One obtains the aspect segmentation metric F(a, c) from
the local aspect variance V(a, c) and the auto-correlation index I(a, c),
as follows:

Va;c ¼ ∑n cnsn
∑n sn

; ð1Þ

Ia;c ¼ N
∑n;l ωn;l αn−αð Þ αl−αð Þ

∑n αn−αð Þ2
� �

∑n;lωnl

; ð2Þ

where n = 1, …, Nac labels the SUs obtained setting the (a, c) parame-
ters; cn is the circular variance of terrain aspect, and sn is the variance
of the SU planimetric area; αn is the average circular variance for the
n-th SU, and α is the average circular variance for the entire study
area; ωnl is an indicator of spatial proximity, equal to unity where the
(n, l) SUs are adjacent, zero otherwise.

The quantity V(a, c) in Eq. (1) is the internal terrain aspect variance
and I(a, c) in Eq. (2) is the external terrain aspect variance, withminima
for SU sets exhibiting well-defined boundaries between adjacent SUs
(Espindola et al., 2006). The overall optimisation function F(a, c) that
measures the quality of the terrain aspect segmentation is given by
the normalised sum:

F a; cð Þ ¼ Vmax−V a; cð Þ
Vmax−Vmin

þ Imax −I a; cð Þ
Imax−Imin

: ð3Þ

Optimisation of the SUs subdivision consists in maximising F(a, c) in
Eq. (3), as a function of (a, c). One can devise a different objective func-
tion, for a different purpose. Domènech et al. (2019) for example used
the difference between observed and modelled landslide size, where
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the latter was dependent on the parameters a and c, in their particular
model.

In previous works (Alvioli et al., 2016; Schlögel et al., 2018;
Bornaetxea et al., 2018), optimisation was performed with F(a, c) in
study areas of relatively small size – from ≈ 250 km2 to ≈ 2000 km2

– determined by the extent of the available landslide inventory map.
In this work, optimisation is attempted for a much larger area (i.e., the
entire Italian territory, N300,000 km2) encompassed by an administra-
tive boundary.

3.3. Optimisation in an arbitrarily large area

Extension of the local optimisation algorithm of Section 3.2 to the
entire Italian territory into a mosaic of SUs poses conceptual and
computational challenges. First, the study area is delimited by an ad-
ministrative boundary, and not by morphological or hydrological limits
shaped by physical processes. Hence, there is no reason to infer that a
Fig. 2. Optimisation of r.slopeunits parameters in arbitrarily large areas. The Figure shows the
polygon, which is coloured in white in the Figure – the only basin shown in “Step 1”. Aggre
domains. At each step, the local optimisations is run over the white area. The optimised values
single combination of the (a, c) parameters will be adequate for the en-
tire study area. Second, the geographical extent of the study area is very
large. Using the EU-DEM (https://www.eea.europa.eu) digital elevation
model, at 25 m × 25 m resolution, it consists of about 5.30 × 106 valid
grid cells, corresponding to ≈ 330,000 km2. Note that the area covered
by the selected EU-DEM grid cells is larger than the geographical area of
Italy, because hydrological calculations require cells outside the Italian
administrative boundary.

Due to the vector operations required to find neighbouring SUs, cal-
culation of Eq. (2) is very slow. A single run of r.slopeunits on one of the
439 basins require about half an hour, on average; evaluation of the F(a,
c) metric for a single SUmap requires up to one hour, in each basin. This
must be multiplied for 49 different combinations of the parameters a
and c, in first place. Secondly, we applied the optimization procedure
not only on individual basins, but on a large number of spatial domains
of increasing size (cf. Fig. 2). Slope unit sets, instead, were not computed
again, but simply aggregated as needed. The overall running time of the
local optimisation for one of the basins of Fig. 3, namely, the one highlighted with a blue
gation of hydrological basins of size ≲ a few thousands km2 act as basic optimisations
of the parameters are defined as in Eq. (4).

https://www.eea.europa.eu
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procedure amounted to about three months of non–exclusive use of a
machine equipped with 64 computing cores and 320 GB RAMmemory.
The vast majority of the required computer processes were executed
automatically, by shell scripts, within GRASS GIS.

To make the problem computationally manageable, maintaining it
geomorphologically meaningful, we devised the solution illustrated in
Fig. 2.Wefirst prepared a subdivision of Italy into 439main hydrological
basins (black polygons in Fig. 3), ranging in size between 50 km2 and
4300 km2 (mean = 741 km2, standard deviation = 570 km2), a size
comparable to the study area of Alvioli et al. (2016) (i.e., ≈2000 km2),
which we maintain is a rough threshold under which the optimisation
procedure becomes unreliable.We established this in a test that showed
that in much smaller areas the objective function F(a, c), Eq. (3), be-
comes erratic and does not necessarily have a single maximum.

To simplify the process, we removed the large plains, corresponding
to 1.17 × 106 grid cells, 73,125 km2, shown inwhite in Fig. 3.We further
excluded from the analysis all the islands, except for Sicily and Sardinia.
The many other small islands would each represent an isolated, main
Fig. 3.Map shows terrain elevation in Italy obtained from the EU-DEMat 25m×25m resolution
areas portrayed in Fig. 7, and the blue polygon shows the location the basin of Fig. 6. Plains are
hydrological basin for which separate parameter optimisation
would be required. Since the size of the individual islands is small
(b240 km2), their optimisation would offer little insight on the perfor-
mance of the method, or the results obtained.

Optimisation of the (a, c) parameters was performed separately in
domains of increasing size, keeping the hydrological basins shown in
Fig. 3 as themain analysis and optimisation domains. To obtain optimal
values for the parameters in the j-th basin, we first maximised F(a, c) in
the j-th hydrological basin itself. This is represented by the “Step 1”
panel in Fig. 2. Next, we searched the maximum of F(a, c) within the
areas represented by the geographic union of basins j and k, where k
is any of the basins adjacent to j, for every possible k (“Step 2” in
Fig. 2). Next,we considered all the possible triplets of adjacent basins in-
cluding j (“Step 3” in Fig. 2). We repeated the procedure for up to three
(K= 3) adjacent basins for all the 439 main hydrological basins shown
in Fig. 3. In addition, for a subset of 30 basins located in the Central
Apennines (and contained in a topographic unit, see Fig. 12), we ex-
tended the analysis to K = 5 adjacent basins, to check the effect of
; black lines showboundaries of 439main hydrological basins used in the study, stars show
shown in white. Map is in EPSG:4326, datum in EPSG:3035.
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truncation atK=3. Results revealed that extending the analysis beyond
K = 3 adjacent basins did not result in significant differences in the
optimised (a, c) parameters, and hence in the SUs terrain subdivision.

To consider that the level of detail of the SUs subdivision should vary
depending on the local geomorphological setting, and that the geomor-
phological setting may change significantly across topographical
boundaries, we further constrained the optimisation process within
the boundaries of main topographic units. For the purpose, we used
the topographic subdivision of Italy proposed by Guzzetti and
Reichenbach (1994) who defined eight topographic provinces and 29
sections (red lines in Fig. 4), combining an unsupervised classification
of morphometric variables with the visual interpretation of thematic
information. This restriction is justified by the fact that even if the
topographic provinces are large and contain several of the main hydro-
logical basins shown in Fig. 3, they were defined to encompass regions
with similar topographic, morphometric and geomorphological
characteristics.

We computed a weighted average optimisation of the optimal
parameters obtained at each step, using larger weights for the low
Fig. 4.Map show boundaries of 29 topographic sections in Italy, first defined by Guzzetti and Re
DEM used in this work. Topographic sections are further grouped in eight topographic sectio
EPSG:4326, datum in EPSG:3035.
iteration steps, and proportionally smaller weights for high iteration
steps, as follows:

c K; jð Þ
opt ¼

∑K
n¼1 K−nþ 1ð Þ c nð Þ

j

∑K
n¼1 n

; ð4Þ

where

c nð Þ
j ¼ ∑n

i¼1 ci si
∑n

i¼1 si
; ð5Þ

and K labels different steps, ci is the optimal c found in the i-th combina-
tion of n hydrological basins, and si is the corresponding total planimet-

ric area. For a given n, c nð Þ
j is the weighted average of all the optimal ci

values calculated in the spatial domain defined by the i-combination
of the j-th basin with the adjacent basins (combinations of two basins
for K = 2, three basins for K = 3,…, five basins for K = 5).
ichenbach (1994), with red lines, superimposed to a shaded relief calculated from the EU-
ns, as suggested by the names of the 29 sections; names are shown in Table 2. Map is in



Fig. 5. Results of the optimisation procedure executed using an increasing number of
neighbouring basins, from one to five (see Section 3). (a): minimum area, a; (b) circular
variance, c. The plots show the series obtained for the two quantities, defined in Eq. (4),
to obtain the asymptotic values defined in Eq. (11). Different colours show sample
results for hydrological basins in topographic zone 6.1, Central Apennines Zone (cfr.
Figs. 3, 12 and Table 2).
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Adopting this procedure for the j-th main hydrological basin, j = 1,
…, 439,we obtained a sequence (copt(1,j), copt(2,j),…, copt(5,j)) of values optimised
in domains of increasing size, centred in the j-th basin. The same proce-
dure was applied to the parameter a, that controls theminimum size of
an SU, to obtain the sequence (aopt(1,j), aopt(2,j),…, aopt(5,j)). From Eq. (4), we ob-
serve that thevalue of coptK, j for the j-th basin dependsmainly on thevalue

of c calculated for the basin j itself (c1; jopt ¼ cð1Þj ), and progressively less

from the values of coptK, j calculated for K = 2, K = 3,…, K = 5.
Next, we investigated whether the two sequences, shown in Fig. 5,

admitted asymptotes. Considering the circular variance sequence in
the j-th basin, we hypothesised that it admitted an asymptote, casy(j) .
We then calculated the positive differences between estimates of copt
at two subsequent steps of our sequence of optimal points in the j-th
basin. For a decreasing series:

di ¼ c i; jð Þ
opt − c iþ1; jð Þ

opt ; ð6Þ

while for an increasing series, to have positive differences we calculated
instead:

di ¼ c iþ1; jð Þ
opt − c i; jð Þ

opt ; ð7Þ

so that we can write:

c K; jð Þ
opt ¼ c 1; jð Þ

opt �
XK−1

i¼1

di; ð8Þ

where the plus (minus) sign is valid for a strictly decreasing (increas-
ing) series. Taking the limit of Eq. (8) for large K we have:

c jð Þ
asy ¼ c 1; jð Þ

opt � lim
K→∞

XK−1

i¼1

di ¼ c 1; jð Þ
opt �

X∞

i¼1

di ¼ c 1; jð Þ
opt � A

X∞

i¼1

xi : ð9Þ

In the last equality we have written di as Axi. Now, if ∣x ∣ b 1, we have
a geometric series whose sum is known analytically:

X∞

i¼0

xi ¼ 1
1−x

; →
X∞

i¼1

xi ¼ x
1−x

: ð10Þ

Thus, fitting the first differences (up to, at most, i=5 in our case) of
Eqs. (6), (7) to Axi as a function of i, we obtain the A and x parameters to
replace in the following equation for the asymptote,

c jð Þ
asy ¼ c 1; jð Þ

opt � A
x

1−x
; ð11Þ

where the plus (minus) sign holds for a strictly decreasing (increasing)
series. The procedure presented in Eqs. (6)–(11) can be applied to find
asymptotes for the circular variance of the aspect, c, and the minimum
SU planimetric area, a.

Existence of asymptotes for the two series, casy(j) and aasy
(j) , is not guar-

anteed for every hydrological basin considered in the analysis (Fig. 3), or
for both parameters a and c.

We accepted positive values for the asymptotes, providing the opti-
mal value aopt or copt for the corresponding main hydrological basin.
Where an asymptote was not found, the search procedure failed, and
we used the values of (aoptK=1,j, coptK=1,j) corresponding to the “local”mini-
mum, in the j-th basin, of the F(a, c) function given by Eq. (3). In our
experiment, this occurred for ~150 basins, ~ 34% of the 439main hydro-
logical basins shown in Fig. 3.
4. Results

4.1. A national slope units subdivision of Italy

The obtained terrain subdivision consists of 331,926 SUs in Italy,
ranging in size from 1874 m2 to 15,493,140 m2, mean = 229,655 m2,
standard deviation = 821,887 m2. Due to the complexity of the SUs
subdivision, we cannot show the entire map for Italy. For illustrative
purposes, in Fig. 6 (a)we show the SUs for the Nera River basin, Central
Italy, and in Fig. 6 (b) the local search for a maximum of F(a, c), as a
function of (a, c), for the same catchment, performed adopting two
strategies: (i) a pre–defined grid of (a, c) pairs (purple surface), and
(ii) amaximum-bracketing algorithm (blue line), adoptedwhen the se-
ries of parameter values did not show asymptotic convergence. The
purple and the blue dots show the maxima obtained by the two
strategies.

Fig. 7 shows examples of the SUs subdivision for four different and
characteristics geomorphological settings in Italy, including basins
(i) in the Northeastern Alps, near Bolzano, (ii) in central Italy, along
the Adriatic Sea near Ancona, (iii) in Southern Italy, close to the Ionian
Sea near Riace, and (iv) in Sicily, along the slopes of the Etna volcano.
Stars in Fig. 3 correspond to the locations of the basins in Italy. Panels
in the right column of Fig. 7 show the cumulative frequency-size distri-
butions of the corresponding SUs areas. Basins close to the Etna volcano
and the Bolzano basin are characterised by SUs larger than in the other
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basins, but lithology andmorphology are different. In the Bolzano basin,
the relief is high and lithology is represented mainly by schists and car-
bonate rocks. The Mount Etna basin is partly dominated by volcanic
morphology due to the presence of basalt and lava flows, and partly
bymountains where turbidites and chaotic rocks prevail. In the Ancona
Fig. 6. (a)Map shows SUs selected by the r.slopeunits software for theNera River basin, Central I
(mean= 664,424 m2, standard deviation = 844,675); map and datum in EPSG:3035. (b) 3D-p
mentation quality function of Eq. (3), for the basin shown in (a). In (b), the purple surface sh
bracketing search of the maximum.
basin, marls and overall turbidites outcrop in the mountains, where
slope units are larger in size. The hills located closer to the Adriatic sea
have smaller slope units characterised by unconsolidated sediments,
typically sand, silt, and clay. The hilly part of the Riace basin is domi-
nated by intrusive rocks, whereas, in the coastal part, consolidated
taly, highlighted in blue in Fig. 3. In the basin, SUs area ranges from50,000m2 9,533,125m2

lot shows example of optimisation of the (a, c) parameters with respect to the aspect seg-
ows maximization on a pre–defined grid of values, and the blue line shows a maximum-
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and unconsolidated sediments crop out with turbidites, schists and
chaotic rocks.

4.2. Performance of the slope units subdivision of Italy

Due to the complexity of the Italian landscape (Fig. 3), the large
number of SUs (331,926) and their size variability (Fig. 7), assessing
the c orrespondence of the SUs terrain subdivisionwith the geomorpho-
logical and hydrological reality i.e., the performance of the SUs subdivi-
sion, is not a trivial task. We attempt to perform the task in steps of
increasing complexity, as follows:
Fig. 7. Panels show examples of SUs terrain subdivisions for four typical geomoprhological settin
the non–exceedance cumulative probability for landslide sizes. Maps are in EPSG:4326, datum
• First, we study the relationship between SUs size, terrain elevation
and lithological types.

• Next, we examine the size of the SUs within the topographic provinces
and sections proposed by Guzzetti and Reichenbach (1994), andwithin
the topographic classes proposed by Drăguţ and Eisank (2012).

• Lastly, we compare this topographic subdivision of Italy with a
new terrain subdivision obtained by unsupervised clustering of SUs
morphometric variables.

The next three sections describe separately the results correspond-
ing to the points above.
gs in Italy. The location of the four areas in Italy is shown in Fig. 3. Boxes on the right show
in EPSG:3035.
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4.2.1. Slope units, drainage density and terrain elevation
The size distribution of the SUs is strictly related to drainage density,

a hydrological and geomorphological characteristic descriptive of many
landscapes (Carlston, 1963). Drainage density of a given basin is defined
as the sum of the lengths of all the streams in a basin, divided by the
total area of the basin.

Existing approaches for the calculation of drainage density from a
DEM rely on an arbitrary choice of a threshold value to initialise the
calculation of the stream network. In this study, to give an abjective
measure, we adopted the number of slope units per unit area (in the fol-
lowing, SU/km2) as a proxy for drainage density. We maintain that the
size of SUs produced by r.slopeunits changes across the study area,
Fig. 8. The values of SU/km2, a proxy for drainage density, within ten percentiles of elevation,
Drăguţ and Eisank (2012), in (b). The cartoons in the insets show the geographical location of
follows: 1, tablelands; 2, flat plains; 3, irregular plains; 4, smooth low hills; 5, rough low hills;
adapting to the local landscape morphology, and making SU/km2 a ro-
bust objective approximation of the actual drainage density in different
regions of the study area.

In practical terms, we used the geographical location of the centroids
of SU polygons to calculate the values of SU/km2, providing an average
drainage density for each area. The first assessment of drainage density
distributions consisted in the comparison of the values of SU/km2 in
different classes of terrain elevation, obtained from the EU-DEM, all
over Italy. The comparison revealed that the average drainage density
decreases linearly with increasing terrain elevation, Fig. 8 (a). Results
indicate that terrain elevation is linked to the average size of the SUs,
which are (generally speaking) larger in the mountains than at low
in (a), and within eight classes from the topographic classification based on elevation by
the different percentiles and of the classes, respectively. Topographic classes in (b) are as
6, high hills; 7, low mountains; 8, high mountains.
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elevations e.g., near the large plains. For a length scale L equivalent to the

average sizeASU of an SU, L=
ffiffiffiffiffiffiffiffi
ASU

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
299;655m2

p
≈ 696m, at lower

elevations relative relief is small, slopes are typically short and small,
and drainage density is higher than at higher elevations where relative
relief is high, slopes tend to be long and large, and drainage density is
typically low.

The global topographic map of Drăguţ and Eisank (2012) is an inde-
pendent classification which we can use to assess the performance of
the SU map. They used Shuttle Radar Topography Mission elevation
data – thus, different from EU-DEM of our analysis – and performed a
terrain classification using elevation itself, and standard deviation of el-
evation.We analysed the relevant portion of the global map in a similar
way as in the analysis of percentiles of elevation described in this
section. Fig. 8 (b) shows the corresponding results, along with the list
of topographic classes identified by Drăguţ and Eisank (2012); we
disreagarded other terrain attributes in the map, for simplicity. Results
are essentially consistent with the ones presented for percentiles of
elevation, Fig. 8 (a).
Fig. 9.Map showing 9 lithological complexes used in this work (Fongo, 2018; Bucci et al., 201
clastic rock, including landslide deposit, mass wasting deposit, morains and glacial drift; L3:
clay, marl and sandstone; thin-layered calcareous marl; massive and thick-layered sandstone
and lava; L8: Intrusive rock; L9: metamorphic rock, including foliated and non-foliated. The pe
Map is in EPSG:4326, datum in EPSG:3035.
4.2.2. Slope units and lithology
Drainage density is known to be controlled by lithology (Melton,

1957; Sangireddy et al., 2016). We calculated the values of SU/km2 in
different lithological domains. For the purpose, we used a lithological
domain map of Italy, in 9 classes, modified from Bucci et al. (2018)
and Fongo (2018) at 1:100,000 scale, shown in Fig. 9. The analysis re-
vealed that unconsolidated clastic rocks, even includingmoraine, glacial
drift and landslide deposits, exhibit the largest drainage density, corre-
sponding to a finer SUs granularity characterised by small and very
small SUs, (≈ 2/km2 Table 1), whereas foliated (e.g., schist, shale) and
non-foliated (granular, e.g., gneiss, quartzite, marble) metamorphic
rocks, have the lowest drainage density and a corresponding coarser
SUs granularity characterised by many large SUs, (≈1.16/km2 Table 1).

Low drainage densities, and correspondingly large SUs, (≈1.36/km2)
are also typical of turbidites – thin– to thick–layered clay, marl and
sandstone, thin-layered calcareousmarl,massive and thick–layered sand-
stone –, intrusive rocks, carbonatic rocks, evaporites, basalt and lava and
alluvial, lacustrine and swamp deposits (from 1.43 to 1.6 SU/km2). Me-
dium drainage density values (2–2.3 SU/km2) are observed where
8). Legend: L1: alluvial, lacustrine, swamp and recent marine deposit; L2: unconsolidated
consolidated clastic rock, chaotic rock and mélange; L4: Turbitide; thin- to thick-layered
; L5: carbonatic rock and evaporite; L6: pyroclastic rock, including ignimbrite; L7: Basalt
rcentage of area for each lithological type in the map is shown in lowest panel in Fig. 13.



Table 1
Characteristics of SUs in different rock types. A: Rock type; B: Extent [km2]; C: Percent; D: SU area [km2]; E: SU/km2, a proxy for drainage density. See Fig. 9 formap showing the geograph-
ical distribution of the listed rock types.

A B C D E

L1 Alluvial, lacustrine, swamp and recent marine deposit 75,363 25.0 20,626 1.600
L2 Unconsolidated clastic rock, including landslide and mass wasting deposit, moraines and glacial drift 55,377 18.3 12,570 5.996
L3 Consolidated clastic rock, chaotic rock and Mélange 18,274 6.0 9271 2.341
L4 Turbidite. Thin- to thick-layered clay, marl and sandstone. Thin-layered calcareous marl. Massive and thick-layered sandstone 50,647 16.8 50,432 1.360
L5 Carbonatic rock and evaporite 47,355 15.7 42,538 1.436
L6 Pyroclastic rock including ignimbrite 8765 2.9 7158 2.017
L7 Basalt and lava 6749 2.2 6249 1.588
L8 Intrusive rock 10,812 3.6 10,747 1.465
L9 Metamorphic rock, foliated and non-foliated 25,993 8.6 25,968 1.159
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Pyroclastic rocks (mainly located in the volcanic provinces of Tuscany and
Latium), consolidated clastic rocks (e.g. conglomerates) and chaotic rocks/
melange outcrop.

4.2.3. Slope units and topographic divisions
We checked whether the SUs partition, and particularly its spatial

variation, was able to capture geomorphological differences outlined
by the topographic subdivision proposed by Guzzetti and Reichenbach
(1994). Fig. 10 shows the distribution of the SUs size in the eight topo-
graphic provinces and the 29 sections of Guzzetti and Reichenbach
(1994), and Table 2 lists statistics for the SUs in the different areas.
Fig. 10. Box-plots show distribution of SUs area, [km2], for the eight topographic provinces and 2
shows number of SUs in each topographic province, (a), and in each section, (b). Names and p
Inspection of the figure and the table does not reveal large differences
in the average size, or the range of the SUs area among the different to-
pographic provinces and sections. This was expected, because a single
metric (i.e., drainage density) cannot capture entirely the topographic
and geomorphological complexity, and the geological variability, of
the Italian landscape.

However, minor differences exist in the topographic provinces and
sections, which are worth discussing. At the level of the eight topo-
graphic provinces of Guzzetti and Reichenbach (1994) (Fig. 10) we ob-
serve that Alpine-Apennines Transition Zone (3.), Adriatic Borderland
(6.), Sicily (7.) and Sardinia (8.) show very similar values of mean
9 topographic sections of Guzzetti andReichenbach (1994) (see Fig. 3). Top horizontal axis
roperties of the topographic provinces (a) and sections (b) are listed in Table 2.
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average SUs area and range. As expected, the drainage density (column
E in Table 2) is also similar among the four topographic provinces and
close to 1.6 SU/km2. Only the Alpine Mountain System (1.) and the
Apennine Mountain System (4.) have higher values of the mean and
the range of the SU sizes. The North Italian Plain (2.) and Tyrrhenian
Borderland (5.) are characterised by smaller slope units. In the Alps to-
pographic province (1.1, 1.2 and 1.3 in Fig. 10), SUs have the largestme-
dian area and the largest range in area, followed by the Apennines
topographic province (4. in Fig. 10), confirming a dependence of the
SUs size on terrain elevation and relative relief. Accordingly, drainage
density is low (column E in Table 2). This is justified by the morpholog-
ical and geological complexity, and the large extent of the two
topographic provinces (Table 2). Conversely, the North Italian Plain
(2., actually the hills close to the plains), the Tosco-Laziale section
(5.2), the Campidano Plain (8.3) and the Gargano Upland (6.3 in
Fig. 10) exhibit the smallest average SUs area and the smallest range
in area which measure the homogeneity of the hills and valleys in the
topographic subdivisions. We observe that, in the sections 2.x and 8.3,
slope units are only present along the boundaries of the sections. The
Western Alps section (1.1) has a higher average SUs area and a higher
range in SUs area than the Central-Eastern Alps & Carso section (1.2 &
1.3). This reflects the higher elevations and topographic variability of
the Western Alps (1.1) compared to the Eastern Alps (1.2 & 1.3)
(Fig. 10). In the Apennines range, the Aspromonte Apennines section
(4.7) has the lowest average and range of SUs area, indicating a strong
homogeneity of the terrain.
Table 2
Characteristics of SUs in the different topographic provinces and sections of Guzzetti and
Reichenbach (1994). A: Topographic province (rows in bold) or section; B: Extent
[km2]; C: Percent; D: SU area [km2]; E: SU/km2, a proxy for drainage density. See Fig. 3
for map of the geographical distribution of the topographic provinces and sections.

A B C D E

1.: Alpine Mountain System 52,010 17.4 51,739 1.05
1.1: Western Alps 16,274 5.4 16,547 0.89
1.2 & 1.3: Central-Eastern Alps & Carso 35,735 11.9 35,191 1.12
2.: North Italian Plain 46,531 15.54 4508 2.56
2.1: Po Plain 32,702 10.9 1694 2.65
2.2: Veneto Plain 9426 3.2 550 2.61
2.3a: North-Western Alpine Foothills 3103 1.0 1950 2.54
2.3b: South-Western Alpine Foothills 1298 0.4 359 2.10
3.: Alpine-Apennines Transition Zone 6313 2.1 6117 1.57
3.1: Monferrato Hills 2322 0.8 1918 2.10
3.2: Ligurian Upland 3991 1.3 4199 1.33

4.: Apennine Mountain System 80,947 27.0 82,179 1.29
4.1: Northern Apennines 22,393 7.5 23,886 1.20
4.2: Central Apennines 16,835 5.6 17,386 1.30
4.3: Molise Apennines 4920 1.6 5136 1.12
4.4: Molise-Lucanian Hills 8097 2.7 8345 1.15
4.5: Lucanian Apennines 12,890 4.3 12,651 1.23
4.6: Sila 6203 2.1 5638 1.50
4.7: Aspromonte 5337 1.8 4959 1.82
4.8: Sicilian Apennines 4262 1.4 4176 1.55
5.: Tyrrhenian Borderland 37,857 12.64 29,404 1.86
5.1: Central Italian Hills 25,346 8.5 20,022 1.72
5.2: Tosco-Laziale Section 6136 2.0 5181 2.33
5.3: Lazio-Campanian Section 6375 2.1 4201 1.92
6.: Adriatic Borderland 31,062 10.35 17,521 1.67
6.1: Central Apennine Slope 9023 3.0 8230 1.44
6.2: Murge-Apulia Lowland 20,236 6.8 7923 1.79
6.3: Gargano Upland 1731 0.6 1368 2.41
7.: Sicily 21,105 7.1 18,867 1.64
7.1 & 7.2: Marsala Lowland & Sicilian Hills 14,285 4.8 13,273 1.52
7.3: Iblei Plateau 5321 1.8 4178 1.93
7.4: Etna 1499 0.5 1416 1.92
8.: Sardinia 23,790 7.9 19,320 1.75
8.1: Sardinian Hills 16,404 5.5 14,548 1.77
8.2: Gennargentu Highland 2,58, 0.9 2209 1.40
8.3: Campidano Plain 1946 0.6 190 2.24
8.4: Iglesiente Hills 2844 0.9 2375 1.89
The largest average SUs area is found in theWestern Alps (1.1), that
contains the Mont Blanc range (4808 m a.s.l.), the tallest mountain in
the Alps, followed by the Molise (4.3) and the Molise-Lucanian Hills
(4.4) Apennines sections. The three sections also exhibit the largest
ranges in SUs area, a measure of the topographic heterogeneity of the
sections.

Of the other topographic provinces, theGennargentuHighland (8.2),
the Sicilian Hills (7.1 & 7.2), the Central Apennines Slope (6.1) and Ligu-
rian Upland (3.2) havemedium to high values of themean area and the
range of the SUs area (Fig. 10). In Sicily, the Etna volcano section (7.4),
with a low mean SUs area and a low range of variability of the SUs
area, has a distinct signature from the Sicilian Apennines section (4.8),
and the Sicilian Hills (7.1 & 7.2), with the former showing a smaller
mean SUs area and larger drainage density than the latter. In Sardinia,
the smallest average SUs are found along the foothills surrounding the
Campidano Plain (8.3), and the largest average SUs are found in the
Gennargentu Highland (8.2). The two topographic sections also exhibit
the lowest (8.3) and the largest (8.2) variability of the SUs area,
confirming that around large plains the SUs tend to be small and with
high drainage density.

4.2.4. Slope units and terrain zonations
To further evaluate the performance of the SUs subdivision, we per-

formed a final analysis comparing the topographic division of Italy pro-
posed by Guzzetti and Reichenbach (1994) (Fig. 3) with a new terrain
zonation of Italy prepared for this study throughmultivariate clustering
based only on quantities calculated from slope units.

We devised a clustering procedure as follows.We calculated for each
of the 439 basic hydrological basins (our starting point for nation-wide
SU delineation, cfr. Fig. 3) the distributions of (i) the average aspect (ac-
tually described by circular variance) over the cells within each slope
unit polygon contained in the basin, and (ii) the size distribution of
SUs in the basin. From both distributions, we calculated the 10th,
20th, …, 90th percentiles of the distribution, obtaining a list of 9 + 9
= 18 values, for each of the 439 basins. The resulting 439 × 18 matrix
was used as the only input for a clustering procedure. In order to let
the automatic classification to tell something about how good was the
SU delineation over the whole of Italy, we did not include as an input
any other information, neither morphological nor thematic.

The clustering results were compared with the following quantities:
(i) the frequency distribution of terrain elevation in the SUs, in five clas-
ses, corresponding to the 20th, 40th, 60th, 80th and 100th percentiles of
the distribution of the elevation, (ii) the frequency distribution of ter-
rain slope in the SUs, in five classes, corresponding to the 20th, 40th,
60th, 80th and 100th percentiles of the distribution of terrain slope,
and (iii) lithological information obtained from a lithological domains
map of Italy at 1:100,000 scale, in 9 classes, adapted from Bucci et al.
(2018) and Fongo (2018).

For the analysis, we adopted unsupervised K–means clustering
(Hartigan and Wong, 1979), and specifically its implementation in the
kmeans() package available for the R free software environment for sta-
tistical computing (http://www.r-project.org). A literature search re-
vealed that no unique or preferred method exists to determine the
number of clusters for K–means unsupervised clustering. Existing
methods include the “elbowmethod” (Thorndike, 1953), the Akaike in-
formation criterion, AIC (Akaike, 1974), and the Bayesian information
criterion, BIC (Schwarz, 1978; Ramsey et al., 2008), all of which evaluate
an objective function to establish the optimal number of clusters. We
experimented with different numbers of clusters, from 2 to 50, and
with different methods for establishing the optimal number of clusters,
obtaining the results shown in Fig. 11. Given that the threemetrics gave
three different results, we selected seven clusters, which is at the edge
of the minimum shown by the BIC method. We maintain this is a good
compromise between the complexity of the Italian landscape and the
need to have a reduced number of clusters. Preliminary calculations
with larger numbers of clusters showed that interpretation of the

http://www.r-project.org


Fig. 11. Different metrics, denoted generically by f(N), for the optimisation of the number
of clusters N, using the k–means algorithm. Red: within–cluster sum of squares, objective
function for the elbow method; pij and cij represent the data points and the cluster
centroids, respectively, while the i, j and k label the variables, the points in the cluster
and the cluster itself, respectively. Green: the Akaike information criterion. Blue: the
Bayesian information criterion.
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resultswould behardly understandable in simple, and useful, terms.We
show in the following that already using seven clusters it is difficult to
indentify striking differences between their characteristics. Here, we
further note that our optimal number of clusters (seven) is similar to
the number of topographic provinces (eight) in Italy proposed by
Guzzetti and Reichenbach (1994).

To size the differences between the seven clusters we compared the
generalised Euclidean distances between the cluster centroids, with
smaller (larger) differencesmeasuringmore similar (different) clusters.
Fig. 12. (a) Map shows landscape subdivision of Italy in seven classes (see text for explanation
based on the results of unsupervised k–means clustering of SUs terrain variables and lithologica
Reichenbach (1994). A few unclassified basins are shown inwhite alongwith large plains, exclu
k-means algorithm. (c) extension of the different clusters, expressed as a percentage of the tot
Results are summarised in the normalised distance matrix shown in
Fig. 12 (b). Inspection of thematrix reveals that themost similar cluster
pairs (smaller Euclidean distance, lighter colours) are 1 & 7 and 6 & 7,
whereas the most different pairs (larger Euclidean distance, darker col-
ours) are 1 & 2, 1 & 3, 2 & 4, 3 & 6 and 3 & 7.

Inspection of Figs. 12, 13, 14 and 15, and of Table 3 and Table 4 re-
veals differences and similarities among the seven clusters. Clusters 1
and 7 match topography close to tabular. They have a similar topo-
graphic setting – confirming their similarity, Fig. 12 (b) –with the pro-
portion of low elevation terrain, and of flat and gentle terrain,
significantly higher than the proportion of high and very high elevation
terrain, and of steep and very steep terrain. Unconsolidated clastic rocks
(L2) and (mostly massive) carbonate rocks (L5) are themain rock types
in the two clusters, with carbonate rocks, locally carved by karst pro-
cesses, particularly abundant in cluster 1 (Table 3). Cluster 1 is confined
to the hills bounding large plains and to areas with a tabular morphol-
ogy (e.g., in the Carso area, in the Apulia Lowland), and cluster 7 is prac-
tically absent inmountain areas. The lithological distribution of cluster 7
and of the entire Italian territory (last row in Fig. 12) is very similar,
apart from the alluvial deposits, which, as amatter of fact, are underrep-
resented in the area covered by SUs. This was in some way expected
since cluster 7 largely spreads all over the Italian territory. Clusters 2,
3 and 5 are typical of mountainous areas. They exhibit the opposite to-
pographic setting, with the proportion of high and very high elevation
terrain, and of steep and very steep terrain significantly higher than
the proportion of low and very low elevation terrain, and of gentle
and flat terrain. This is particularly evident in clusters 2 and 3 that
have the highest abundance of high elevation and steep terrain of all
the seven clusters. Metamorphic rocks (L9), followed by carbonate
rocks (L5), unconsolidated clastic rocks (L2), and turbidites (L4), are
themain rock types in clusters 2 and 3,whereas turbidites (L4) and sub-
ordinately, unconsolidated clastic rocks, metamorphic (L9) rocks and
carbonate (L5) predominate in cluster 5. Clusters 4 and 6 exhibit an
). In the map, the 439 main hydrological basins used in the study (see Fig. 3) are coloured
l information. Black lines show boundaries of eight topographic provinces of Guzzetti and
ded from the cluster analysis. (b) normalised distancematrix selected automatically by the
al area. Map is in EPSG:4326, datum in EPSG:3035.
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intermediate topographic setting, with terrain (almost) equally abun-
dant in all the considered elevation and slope classes, close to the per-
centile distribution of slope and elevation of the whole Italian
territory. Sedimentary rocks are the most common rock type in the
two clusters; mostly unconsolidated clastic rocks (L2) in cluster 4, and
turbidites (L4) in cluster 6.

We further note that several of the hydrological basins draining the
northeastern and eastern slopes of the Apennines range into the
Adriatic Sea (Fig. 12) were classified alternatively as pertaining to clus-
ters 3, 4, 5 or 6, despite the fact that the morphology of the catchments
appears similar (Fig. 3). This is because these catchments – which are
typically elongated in shape – span across two topographic provinces
Fig. 13.Histograms of elevation, slope and lithology classes in the seven clusters singled out by u
five terrain slope and elevation classes, respectively, both in order of increasing values; colour
number of basins and the extent of the area covered by the basins.
e.g., the Apennine Mountain System (4) and the Adriatic Borderland
(6), and locally across two or more topographic sections characterised
by different topographic settings (Fig. 7). As a result, the unsupervised
clustering algorithm consistently attributed the single catchments to a
cluster depending on the prevalent proportion of the clusters, and the
corresponding topographic and lithological characteristics, in each
catchment. This resulted in an apparently odd classification of the hy-
drological basins.

A few topographic sections contain significant proportions of only
two or three clusters (excluding the large plains) indicating the overall
topographic homogeneity of the sections. Sections with significant pro-
portions (N5%) of two clusters include (i) the Gargano Upland (6.3) that
nsupervised k–means clustering (Fig. 12). See text for explanation. Blue and red bars show
-filled bars show lithology classes, L1-L9, shown in Fig. 9. For each cluster, we specify the



Fig. 15. Distributions of SUs areas, (a), and of SUs per km2 (a proxy for drainage density), (b), within the clusters singled out by the k–means algorithm (cfr. Fig. 12). Labels on the top axis
correspond to the number of SUs in each cluster, in (a), and to the average SU/km2, in (b), in each cluster. The total number of SUs shown in this Fig. (394,305) is larger than the total
number of SUs quoted throughout the paper (331,926), due to clusters extending outside the Italian administrative borders (cfr. Figs. 3 and 12).

Fig. 14. Stackedhistogram shows, for eachof the 29 topographic sections of Guzzetti andReichenbach (1994), the percentage of terrain assigned to eachof the seven clusters singled out by
k–means unsupervised clustering (Fig. 12). Code names used for the topographic sections are listed in Table 2. The “Plains” class (white) corresponds to plain areas in Figs. 3, 12, which
were excluded from SUs delineation. See text for explanation.
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Table 3
Quantitative characteristics of SUs in the different clusters singled out by k–means cluster-
ing, shown in Fig. 12. See Table 3 for additional properties. A: cluster number; B: Extent
[km2]; C: Percent; D: SU area [km2]; E: SU/km2, a proxy for drainage density.

A B C D E

1 36,219 11.1 15,797 2.55
2 15,452 4.8 15,312 1.08
3 29,409 9.0 24,538 0.79
4 30,081 9.2 23,833 1.21
5 59,329 18.2 53,759 1.16
6 53,513 16.5 43,936 1.93
7 90,874 27.9 75,004 1.89

17M. Alvioli et al. / Geomorphology 358 (2020) 107124
contains a large proportion of cluster 1, and some cluster 4, (ii) the Etna
section (7.4) with a large coverage of cluster 6, and some cluster 4, (iii)
the SardinianHills (8.1) dominated by cluster 7with some cluster 6, (iv)
the foothills surrounding the Campidano Plain (8.3) that have equal
parts of clusters 6 and 7. Sections with significant proportions (N5%) of
thee clusters include (i) the Ligurian Upland (3.2), (ii) the Aspromonte
(4.7), and (iii) the Iglesiente Hills (8.4). A few sections contain signifi-
cant proportions (N5%) of six or seven different clusters (excluding the
large plains) revealing the topographic complexity and variability of
the sections. The Central-Eastern Alps section (1.2) contains all seven
clusters, a result of the large extent and complexity of the province,
whereas sections with significant proportions (N5%) of six clusters in-
clude (i) the Western Alps (1.1), (ii) parts of the Alpine foothills
(2.3a), (iii) the Molise Apennines (4.3), (iv) the Lucanian Apennines
(4.6), and (v) the Central Italian Hills (5.1).

5. Discussion

5.1. General results

The purpose of our work was to devise and test a parameter-free
procedure for the automatic subdivision of a large and complex land-
scape into a mosaic of SUs using solely terrain information obtained
from a DEM. In previous works, for the optimisation of the parameters
that control the automatic partitioning of a territory using the r.
slopeunits software, Alvioli et al. (2016), Bornaetxea et al. (2018) and
Schlögel et al. (2018) adopted an approach that optimised the parame-
ters maximising jointly a terrain segmentation metric (Espindola et al.,
2006) that considered the homogeneity of terrain aspect inside the
SUs, and a measure of landslide susceptibility performance (AUC,
Fawcett (2006)). Albeit successful, the approach had operational and
conceptual limitations. The operational limitation was that it required
the availability of landslide and thematic information used to prepare
a sufficiently large set of landslide susceptibility models using different
SUs terrain subdivisions. The conceptual limitation was that it provided
an SUs subdivision optimised for landslide susceptibility assessment.
However, the terrain subdivision may not have been adequate for
other applications. Even for landslide susceptibility assessment, the
SUs subdivision was optimised for a specific landslide type e.g., small
Table 4
Descriptive characteristics of SUs in the different clusters singled out by k–means clustering, sh
tions; Fig. 9 for lithological classes. A: cluster number; B: main topographics section content
lithology.

A B C D

1 1.3, 6.2, 6.3 2.3, 7.3 Low
2 1.2 1.1, 5.3, 8.2 Hig
3 1.1, 1.2, 4.3 4.2, 4.3, 4.5, 4.6, 4.8, 6.1 Hig
4 All except 1.x, 8.x All
5 All, mainly 1.2, 1.3, 3.2 4.3, 4.4 Hig
6 All, mainly 4.1, 4.2, 4.7 4.8, 7.4 All,
7 All, mainly 8.1, 8.4, 7.1 & 7.2 Low
shallow soil slides, deep-seated slides, very large deep seated slides,
andmultiple SU delineationswould be necessary to account for all land-
slide types in an area.

The approach proposed and tested in this work proved capable of
overcoming the operational and conceptual limitations. The procedure
exploited solely terrain information extracted from the DEM, without
any additional thematic information or expert judgement. The approach
proved to perform well in different topographic and geomorphological
settings, adapting to the local terrain conditions (Figs. 6, 7). We main-
tain this is a significant advantage over previous works (Alvioli et al.,
2016; Bornaetxea et al., 2018; Luo and Liu, 2018; Schlögel et al., 2018).

We stress that the ability of the procedure to adapt to the local ter-
rain conditions, and to produce a single terrain subdivision of Italy
into a single set of SUs, has significant advantages for geo–
environmental modelling. Use of a single terrain subdivision facilitates
the comparison and the exportability of the modelling results for a sin-
gle hazard (e.g., for landslide susceptibility modelling), and for multi-
hazards and multi-risk assessments (Gill and Malamud, 2014).

5.2. Specific results for Italy

Literature analysis reveals that the classification of the Italian
landscape in terms of geomorphological and topographic characteristics
is still poorly investigated. After Guzzetti and Reichenbach (1994),
recently Smiraglia et al. (2013) published a “Land units map of Italy”
with a subdivision of Italy in 149 land facets based on macro-
bioclimatic, lithological and geomorphological variables. To our knowl-
edge, a detailed slope units subdivision of the entire Italian territory
(more than 300,000 km2) was not available before our work. Moreover,
the delineation of 439 main hydrological basins and their classification
in terms of topography is novel. The SUs subdivision is well correlated
with terrain elevation (Fig. 8). This demonstrates that the adaptive algo-
rithm used for the slope units delineation was able to capture the local
terrainmorphology (sec. 4.2.1). SUs tend to be larger when terrain eleva-
tion is high, and this obeys the general expectation that amountain slope
should be larger in size than a hill slope. Analysis of an independent
terrain classification, available globally and performed with an object–
oriented technique, confirmed the same tendency for the correlation of
slope unit sizes with terrain types at different elevation.

SUs were also compared with a lithological classification of Italy.
Overall, we observe that more hardened, foliated or fractured rocks
are characterised by lower drainage densities (measured here by SU/
km2) and larger SUs, whereas soft and poorly hardened rocks, including
e.g., clayish and sandy, scarcely consolidated sediments, coarsely bed-
ded and granular rocks, exhibit higher drainage density and smaller
SUs (sec. 4.2.2). The findings suggest that the lithological characteristics
affect topography, which in turn influence SUs delineation.

The 439 basins delineated in Italy were classified using 7 clusters
defined from the SUs subdivisions (section 4.2.4). Clusters were also de-
scribed in terms of the distribution of elevation and terrain slope, and
based on the presence of different rock types. At least three different re-
gions (mountainous, hilly, and nearly flat) can be singled out based on
own in Fig. 12. See Table 3 for additional properties; Table 2 and Fig. 4 for topographic sec-
; C: secondary topographics section content; D: elevation; E: relief; F: Terrain, slope; G:

E F G

Low, medium Gentle slopes L5, L2, L1
h, very high Medium, high Rough, steep L9, L2, L5
h, very high Rough, steep L2, L9, L4
values Hilly, all slopes L2, L4, L5
h Medium Hilly, all slopes L4, L2, L5, L9
except high Hilly, all slopes All, L4, L2, L5

Medium, low Gentle slopes All, L2, L5, L4
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elevation and terrain slope in the different clusters. These regions can be
further distinguished based on the presence of different rock types in
the clusters (Fig. 13). The map in Fig. 12 shows that the classification
of the 439 basins exhibits a pattern where some of the morphological
and lithological characteristics of Italy emerge. For example, the Alpine
and Apennines mountain ranges, the carbonatic areas (e.g., Apulia and
GarganoUpland, Iblei Plateau), the volcanic structures (Etnamountain),
thehilly areas (Sicilian and SardinianHills) are classified as distinct clus-
ters. This is further evidence of the effectiveness of the SUs subdivision,
independent on any data beyond elevation. The subdivision is able not
only to capture differentmorphology at the local scale (down to a single
hillslope, i.e., a slope unit), but also at basin scale and intra–basin scale,
as demonstrated by the clustering results.

5.3. Potential applications

Weexpect the obtained terrain subdivision of Italy in a densemosaic
of SUs to have several potential applications. For landslide studies, the
primary application will be the production of statistically–based land-
slide susceptibility modelling (Reichenbach et al., 2018), and related
terrain zonations (Alvioli et al., 2016; Ba et al., 2018; Bornaetxea et al.,
2018; Luo and Liu, 2018), at different geographical scales, from the
local (catchment) to the synoptic (national) scales. Adoption of the
same terrain subdivision in different areas will facilitate model compar-
ison and the exportability of the model results. Additional applications
for landslide studies include (i) improvement of the quality and com-
pleteness of event landslide inventory maps using satellite imagery
(Alvioli et al., 2018), (ii) aggregation of pixel–based results of
physically–based landslide simulations (Alvioli et al., 2014; Domènech
et al., 2019), (iii) enhanced evaluation of the quality and completeness
of landslide maps and of the quality of landslide susceptibility models
(Galli et al., 2008), (iv) extraction of bedding and structural information
from stereoscopic aerial or satellite images, and (v) assessment of the
influence of morpho–structural settings on landslide types, abundance
andpattern (Marchesini et al., 2015; Santangelo et al., 2015) and (vi) as-
sessment andmodelling of earthquake induced landslides (Tanyaş et al.,
2019a, 2019b) where directivity of slope dynamics response to seismic
shaking is important (Del Gaudio and Wasowski, 2007).

The terrain subdivision of Italy into SUs can also be used e.g., for hy-
drological and erosion modelling, and for geo–environmental, ecologi-
cal, forestry, agriculture and land use/land cover studies that require
the identification of homogeneous terrain domains – or mapping units
– facing distinct directions (Smiraglia et al., 2013; Belyanin, 2017; Liu
et al., 2018; Tracz et al., 2019; Hu et al., 2018). We further expect the
subdivision to be useful for terrain visibility and illumination studies
(Minelli et al., 2014; Notti et al., 2014). Of particular interest is the po-
tential use of the SUs subdivision for enhanced landscape classification
(Evans, 2003; Minár and Evans, 2008; Evans, 2012), combining the
morphometric information captured by the hydrologically–based ter-
rain subdivision with additional and complementary morphological,
lithological and geological information, including e.g., the topographic
subdivision of Italy proposed by Guzzetti and Reichenbach (1994).

6. Conclusions

We developed amethod for the automatic delineation of slope units
(SUs), geomorphological terrain units delimited by drainage and divide
lines. Themethod relies on the r.slopeunits software, a GRASS GIS mod-
ule introduced by Alvioli et al. (2016) to extract drainage and divide
lines from a DEM in an adaptive fashion, and is capable of handling
study areas of arbitrarily large sizes.

We applied the approach on the whole of Italy, covering more that
300,000 km2. Themethod is parameter–free, since the input parameters
of the underlying software r.slopeunits used for local SU delineation can
be optimised in an objective way. The method was designed to either
reach for convergence towards optimal parameter values, in
optimisation domains of increasing size, or to apply a local optimisation
algorithm, wherever convergence did not emerge. We eventually pro-
duced an SUmap for thewhole of Italy, whichwe distribute in 20 (over-
lapping) vector layers, corresponding to the 20 Italian administrative
boundaries. A sample of the results is shown in Figs. 6 and 7 for a single
basin, for illustration purposes.

To investigate the robustness of the optimal SUmap, and the perfor-
mance of our parameter–free SU delineation algorithm, we have inves-
tigated the relation between seemingly unrelated quantities: the
distributions of the SU sizes and the average aspect within them, on
one side, and the slope, elevation and lithological distributions all over
Italy, on the other side. We used a k–means clustering algorithm to per-
form such a comparison. Given that the variables used for classification
(percentiles of distributions of SU sizes and aspect variability), were to-
tally unrelated to the variables considered to validate the clustering re-
sults, we believe that classification returned an interesting output. It
shows that SU have size, shape and aspect variability which is different
in inherently different geographic areas of Italy. In our opinion, this is an
additional indication that SU as delineated by the r.slopeunits software
and whose input parameters were optimised with the algorithm pre-
sented in this work, provide a meaningful description of the terrain
and have relevant information content.
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Appendix A. Obtaining the software andmap of the terrain subdivi-
sion for Italy

Interested readers can download the SUs subdivision of Italy from the
following URL: http://geomorphology.irpi.cnr.it/tools/slope-units. The ter-
rain subdivision is provided in vector format for the whole of Italy
(331,935 SUs covering 231,762 km2) split in the 20 Italian administrative
Regions. Note that SU polygons crossing the border of two Regions were
included in both the corresponding vector layers, and the same goes for
SU polygons falling partially outside the Italian national borders. Research
scientists and practitioners interested in testing the proposed method in
other geographical areas can obtain the software from the same URL as
above, or can email the corresponding Author. The terrain subdivision
and the r.slopeunits software are provided “as is”, without warranty of
any kind, either expressed or implied. Use of the software and/or the ter-
rain subdivision does not imply the endorsement of the authors or their
Institution, the Italian Consiglio Nazionale delle Ricerche.

A.1. List of acronyms and variables used in the text
Acronym
 Explanation
IC
 Akaike information criterion (Akaike, 1974)

UC
 Area under the receiver operating characteristic Curve (Fawcett, 2006)

IC
 Bayesian information criterion (Schwarz, 1978)

EM
 Digital elevation model

U-DEM
 European digital elevation model

IS
 Geographical information system

RASS
 Geographic resources analysis support system
Slope unit

RL
 Uniform research locator of a webpage

ariable Explanation
U
V

Slope unit minimum planimetric area [m2]

Terrain aspect circular variance [−]
a, c)
 Optimisation function, as a function of (a, c)

Slope unit external terrain aspect variance [−]

Maximum iteration number for optimization [−]

Number of clusters [−]
ac
 Number of SUs for given optimization domain and (a, c) [−]

Hydrologic contributing area [m2]

Slope unit internal terrain aspect variance [−]
V

http://geomorphology.irpi.cnr.it/tools/slope-units


19M. Alvioli et al. / Geomorphology 358 (2020) 107124
References

Akaike, H., 1974. A new look at the statistical model identification. IEEE Trans. Autom.
Control 19, 716–723. https://doi.org/10.1109/TAC.1974.1100705.

Alvioli, M., Guzzetti, F., Rossi, M., 2014. Scaling properties of rainfall induced landslides
predicted by a physically based model. Geomorphology 213, 38–47. https://doi.org/
10.1016/j.geomorph.2013.12.039.

Alvioli, M., Marchesini, I., Reichenbach, P., Rossi, M., Ardizzone, F., Fiorucci, F., Guzzetti, F.,
2016. Automatic delineation of geomorphological slope units with r.slopeunits v1.0
and their optimization for land-slide susceptibility modeling. Geoscientific Model De-
velopment 812 (9), 3975–3991. https://doi.org/10.5194/gmd-9-3975-2016.

Alvioli, M., Mondini, A.C., Fiorucci, F., Cardinali, M., Marchesini, I., 2018. Topography-
driven satellite imagery analysis for land slide mapping. Geomatics, Natural Hazards
and Risk 9, 544–567. https://doi.org/10.1080/19475705.2018.1458050.

Ba, Q., Chen, Y., Deng, S., Yang, J., Li, H., 2018. A comparison of slope units and grid cells as
mapping units for landslide susceptibility assessment. Earth Sci. Inf. 11, 373–388.
https://doi.org/10.1007/s12145-018-0335-9.

Belyanin, P.S., 2017. Structure of volcanic landscape in the equatorial belt (a case study of
the kerinci volcano, sumatra island). Geogr. Nat. Resour. 38, 196–203. https://doi.org/
10.1134/S1875372817020111.

Bornaetxea, T., Rossi, M., Marchesini, I., Alvioli, M., 2018. Effective surveyed area and its
role in statistical landslide susceptibility assessments. Nat. Hazards Earth Syst. Sci.
18, 2455–2469. https://doi.org/10.5194/nhess-18-2455-2018.

Bucci, F., Santangelo, M., Cardinali, M., Fongo, L., Alvioli, M., Marchesini, I., Melelli, L., 2018.
A New Lithological Map of Italy, Scale 1:100,000. Unpublished.

Carlston, C.W., 1963. Drainage density and streamflow. U.S. Geological survey profes-
sional paper. U.S. Geological Survey. 422C, C1–C8. https://doi.org/10.3133/pp422C.

Carrara, A., 1988. Drainage and divide networks derived from high-fidelity digital terrain
models, in: Chung, C., A.G., F., Sinding-Larsen, R. (Eds.), Quantitative Analysis of Min-
eral and Energy Resources. D. Reidel Publishing Company. volume 223 of Mathemat-
ical and Physical Sciences, pp. 581–597.

Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., Reichenbach, P., 1991. Gis tech-
niques and statistical models in evaluating landslide hazard. Earth Surf. Process.
Landf. 16, 427–445. https://doi.org/10.1002/esp.3290160505.

Cheng, L., Zhou, B., 2018. A new slope unit extraction method based on improved marked
watershed. MATEC Web Conf. 232, 04070. https://doi.org/10.1051/matecconf/
201823204070.

Dekavalla, M., Argialas, D., 2017. Evaluation of a spatially adaptive approach for land sur-
face classification from digital elevation models. Int. J. Geogr. Inf. Sci. 31, 1978–2000.
https://doi.org/10.1080/13658816.2017.1344984.

Del Gaudio, V., Wasowski, J., 2007. Directivity of slope dynamic response to seismic shak-
ing. Geophys. Res. Lett. 34, L12301.

Detti, R., Pasqui, V., 1995. Vector and raster structures in generating drainage-divide net-
works from digital terrain models, in: Carrara, A., Guzzetti, F. (Eds.), Geographical In-
formation Systems in Assessing Natural Hazards. Kluwer Academic Publishers.
volume 5 of Advances in Natural and Technological Hazards Research, pp. 35–55.

Domènech, G., Alvioli, M., Corominas, J., 2019. Preparing first-time slope failures hazard
maps: from pixel-based to slope unit-based. Landslides 18, 1–17. https://doi.org/
10.1007/s10346-019-01279-4.

Drăguţ, L., Blaschke, T., 2006. Automated classification of landform elements using object-
based image analysis. Geomorphology 81, 330–344. https://doi.org/10.1016/j.
geomorph.2006.04.013.

Drăguţ, L., Eisank, C., 2012. Automated object-based classification of topography from
SRTM data. Geomorphology 141–142, 21–33. https://doi.org/10.1016/j.
geomorph.2011.12.001.

Drăguţ, L., Eisank, C., Strasser, T., 2011. Local variance for multiscale analysis in
geomorphometry. Geomorphology 130, 162–172. https://doi.org/10.1016/j.
geomorph.2011.03.011.

Drăguţ, L., Csillik, O., Eisank, C., Tiede, D., 2014. Automated parameterisation for multi-
scale image segmentation on multiple layers. ISPRS J. Photogramm. Remote Sens.
88, 119–127. https://doi.org/10.1016/j.isprsjprs.2013.11.018.

Ehsani, A., Quiel, F., 2014. Self-organizing maps for multi-scale morphometric feature
identification using shuttle radar topography mission data. Geocarto Int. 24,
335–355. https://doi.org/10.1080/10106040802642577.

Erener, A., Düzgün, S., 2012. Landslide susceptibility assessment: what are the effects of
mapping unis and mapping method? Environ. Earth Sci. 66, 859–877. https://doi.
org/10.1007/s12665-011-1297-0.

Espindola, G., Camara, G., Reis, I., Bins, L., Monteiro, A., 2006. Parameter selection for
region-growing image segmentation algorithms using spatial autocorrelation. Int.
J. Remote Sens. 14, 3035–3040. https://doi.org/10.1080/01431160600617194.

Evans, I.S., 2003. Scale-specific landforms and aspects of the land surface. In: Evans, I.S.,
Dikau, R., Tokunaga, E., Ohmori, H., Hirano, M. (Eds.), Concepts and Modelling in Geo-
morphology: International Perspectives. Terrapub. volume 1, pp. 61–84.

Evans, I.S., 2006. Allometric development of glacial cirque form: Geological, relief and re-
gional effects on the cirques of wales. Geomorphology 80, 245–266. https://doi.org/
10.1016/j.geomorph.2006.02.013.

Evans, I., 2012. Geomorphometry and landform mapping: what is a land form? Geomor-
phology 137, 94–106. https://doi.org/10.1016/j.geomorph.2010.09.029.

Fawcett, T., 2006. An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874.
https://doi.org/10.1016/j.patrec.2005.10.010.

Flanders, D., Hall-Beyer, M., Pereverzoff, J., 2003. Preliminary evaluation of ecognition ob-
ject-oriented software for cut block delineation and feature extraction. Can.
J. Remote. Sens. 29, 441–452. https://doi.org/10.5589/m03-006.

Fongo, L., 2018. Verso una nuova carta litologica d'Italia in scala 1:100,000. (in Italian)
Master Thesis, University of Perugia. Galli, M., Ardizzone, F., Cardinali, M., Guzzetti,
F., Reichenbach, P., 2008. Comparing landslide inventory maps. Geomorphology 94,
268–289. https://doi.org/10.1016/j.geomorph.2006.09.023. 00259.

Galli, M., Ardizzone, F., Cardinali, M., Guzzetti, F., Reichenbach, P., 2008. Comparing land-
slide inventory maps. Geomorphology 94, 268–289. https://doi.org/10.1016/j.
geomorph.2006.09.023.

Gill, J.C., Malamud, B.D., 2014. Reviewing and visualizing the interactions of natural haz-
ards. Rev. Geophys. 52, 680–722. https://doi.org/10.1002/(ISSN)1944-9208.

Guzzetti, F., Reichenbach, P., 1994. Towards a definition of topographic divisions for Italy.
Geomorphology 11, 57–74. https://doi.org/10.1016/0169-555X(94)90042-6.

Guzzetti, F., Cardinali, M., Reichenbach, P., Carrara, A., 2000. Comparing landslide maps: a
case study in the Upper Tiber River basin, Central Italy. Environ. Manag. 25, 247–263.
https://doi.org/10.1007/s002679910020.

Hartigan, J.A., Wong, M.A., 1979. Algorithm as 136: a k-means clustering algorithm. J. R.
Stat. Soc.: Ser. C: Appl. Stat. 28, 100–108. https://doi.org/10.2307/2346830.

Heckmann, T., Schwanghart, W., Phillips, J.D., 2015. Graph theory|recent developments of
its application in geomorphology. Geomorphology 243, 130–146. https://doi.org/
10.1016/j.geomorph.2014.12.024.

Hu, S., Ma, J., Shugart, H.H., Yan, X., 2018. Evaluating the impacts of slope aspect on forest
dynamic succession in Northwest China based on FAREAST model. Environ. Res. Lett.
13, 034027. https://doi.org/10.1088/1748-9326/aaa7bd.

Huang, J., Xie, M., Farooq, A., Williams, E.J., 2017. DInSAR technique for slow-moving land-
slide monitoring based on slope units. Surv. Rev. 0, 1–8. https://doi.org/10.1080/
00396265.2017.1380947.

Iwahashi, J., Pike, R.J., 2007. Automated classifications of topography from dems by an un-
supervised nested-means algorithm and a three-part geometric signature. Geomor-
phology 86, 409–440. https://doi.org/10.1016/j.geomorph.2006.09.012.

Iwahashi, J., Kamiya, I., Matsuoka, M., Yamazaki, D., 2018. Global terrain classification
using 280 m DEMs: segmentation, clustering, and reclassification. Progress in Earth
and Planetary Science 5, 1. https://doi.org/10.1186/s40645-017-0157-2.

Jasiewicz, J., Stepinski, T., 2013. Geomorphons - a pattern recognition approach to classi-
fication and mapping of landforms. Geomorphology 182, 147–156. https://doi.org/
10.1016/j.geomorph.2012.11.005.

Jia, N., Mitani, Y., Xie, M., Tong, J., Yang, Z., 2015. GIS deterministic model-based 3D large-
scale artificial slope stability analysis along a highway using a new slope unit division
method. Nat. Hazards 76, 873–890. https://doi.org/10.1007/s11069-014-1524-6.

Kramm, T., Hoffmeister, D., Curdt, C., Maleki, S., Khormali, F., Kehl, M., 2017. Accuracy as-
sessment of landform classification approaches on different spatial scales for the Ira-
nian loess plateau. ISPRS Int. J. Geo Inf. 6. https://doi.org/10.3390/ijgi6110366.

Liu, Y.H., Li, D.H., Chen,W., Lin, B.S., Seeboonruang, U., Tsai, F., 2018. Soil erosion modeling
and comparison using slope units and grid cells in shihmen reservoir watershed in
northern Taiwan. Water, 10 https://doi.org/10.3390/w10101387.

Luo, W., Liu, C.C., 2018. Innovative landslide susceptibility mapping supported by
geomorphon and geographical detector methods. Landslides 15, 465–474. https://
doi.org/10.1007/s10346-017-0893-9.

Luo, W., Jasiewicz, J., Stepinski, T., Wang, J., Xu, C., Cang, X., 2016. Spatial association between
dissection density and environmental factors over the entire conterminous United States.
Geophys. Res. Lett. 43, 692–700. https://doi.org/10.1002/2015GL066941. 2015GL066941.

Manley, D., 2014. Scale, aggregation, and the modifiable areal unit problem. In: Fischer,
M.M., Nijkamp, P.E. (Eds.), Handbook of Regional Science. Springer, Berlin Heidelberg,
pp. 1157–1171. https://doi.org/10.1007/978-3-642-23430-9 69.

Marchesini, I., Ardizzone, F., Alvioli, M., Rossi, M., Guzzetti, F., 2014. Nonsusceptible land-
slide areas in Italy and in the Mediterranean region. Nat. Hazards Earth Syst. Sci. 14,
2215–2231. https://doi.org/10.5194/nhess-14-2215-2014.

Marchesini, I., Santangelo, M., Guzzetti, F., Cardinali, M., Bucci, F., 2015. Assessing the in-
fluence of morpho-structural setting on landslide abundance. Georisk: Assessment
and Management of Risk for Engineered Systems and Geohazards 9, 261–271.
https://doi.org/10.1080/17499518.2015.1058956.00004.

Mashimbye, Z., de Clerq, W., Van Niekerk, A., 2014. An evaluation of digital elevation
models (DEMs) for delineating land components. Geoderma 213, 312–319. https://
doi.org/10.1016/j.geoderma.2013.08.023.

Melelli, L., Vergari, F., Liucci, L., Monte, M.D., 2017. Geomorpho-diversity index: Quantify-
ing the diversity of landforms and physical landscape. Sci. Total Environ. 584–585,
701–714. https://doi.org/10.1016/j.scitotenv.2017.01.101.

Melton, M.A., 1957. An Analysis of the Relations among Elements of Climate, Surface
Properties, and Geomorphology. Office of Naval Research, Department of Geology,
Columbia University, Technical report.

Metz, M., Mitasova, H., Harmon, R.S., 2011. Efficient extraction of drainage networks from
massive, radar-based elevation models with least cost path search. Hydrolo. Earth
Syst. Sci. 15, 667–678. https://doi.org/10.5194/hess-15-667-2011.

Minár, J., Evans, I., 2008. Elementary forms for land surface segmentation: the theoretical
basis of terrain analysis and geomorphological mapping. Geomorphology 95,
236–259. https://doi.org/10.1016/j.geomorph.2007.06.003.

Minelli, A., Marchesini, I., Taylor, F.E., Roa, P.D., Casagrande, L., Cenci, M., 2014. An open
source gis tool to quantify the visual impact of wind turbines and photovoltaic panels.
Environ. Impact Assess. Rev. 49, 70–78. https://doi.org/10.1016/j.eiar.2014.07.002.

Notti, D., Herrera, G., Bianchini, S., Meisina, C., García-Davalillo, J.C., Zucca, F., 2014. A
methodology for improving landslide psi data analysis. Int. J. Remote Sens. 35,
2186–2214. https://doi.org/10.1080/01431161.2014.889864.

Openshaw, S., 1984. Themodifiable areal unit problem. Concepts and Techniques inMod-
ern Geography N. 38, Geo Books – Norwick.

Phillips, J.D., 2012. Synchronization and scale in geomorphic systems. Geomorphology
137, 150–158. https://doi.org/10.1016/j.geomorph.2010.09.028 Geospatial Technolo-
gies and Geomorphological Mapping Proceedings of the 41st Annual Binghamton
Geomorphology Symposium.

Phillips, J.D., Schwanghart, W., Heckmann, T., 2015. Graph theory in the geosciences.
Earth Sci. Rev. 143, 147–160. https://doi.org/10.1016/j.earscirev.2015.02.002.

https://doi.org/10.1109/TAC.1974.1100705
mailto:massimiliano.alvioli@irpi.cnr.it
mailto:massimiliano.alvioli@irpi.cnr.it
https://doi.org/10.5194/gmd-9-3975-2016
https://doi.org/10.1080/19475705.2018.1458050
https://doi.org/10.1007/s12145-018-0335-9
https://doi.org/10.1134/S1875372817020111
https://doi.org/10.1134/S1875372817020111
https://doi.org/10.5194/nhess-18-2455-2018
http://refhub.elsevier.com/S0169-555X(20)30096-9/rf0035
https://doi.org/10.3133/pp422C
https://doi.org/10.1002/esp.3290160505
https://doi.org/10.1051/matecconf/201823204070
https://doi.org/10.1051/matecconf/201823204070
https://doi.org/10.1080/13658816.2017.1344984
http://refhub.elsevier.com/S0169-555X(20)30096-9/rf0060
http://refhub.elsevier.com/S0169-555X(20)30096-9/rf0060
https://doi.org/10.1007/s10346-019-01279-4
https://doi.org/10.1007/s10346-019-01279-4
https://doi.org/10.1016/j.geomorph.2006.04.013
https://doi.org/10.1016/j.geomorph.2006.04.013
https://doi.org/10.1016/j.geomorph.2011.12.001
https://doi.org/10.1016/j.geomorph.2011.12.001
https://doi.org/10.1016/j.geomorph.2011.03.011
https://doi.org/10.1016/j.geomorph.2011.03.011
https://doi.org/10.1016/j.isprsjprs.2013.11.018
https://doi.org/10.1080/10106040802642577
https://doi.org/10.1007/s12665-011-1297-0
https://doi.org/10.1007/s12665-011-1297-0
https://doi.org/10.1080/01431160600617194
http://refhub.elsevier.com/S0169-555X(20)30096-9/rf0105
http://refhub.elsevier.com/S0169-555X(20)30096-9/rf0105
http://refhub.elsevier.com/S0169-555X(20)30096-9/rf0105
https://doi.org/10.1016/j.geomorph.2006.02.013
https://doi.org/10.1016/j.geomorph.2006.02.013
https://doi.org/10.1016/j.geomorph.2010.09.029
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.5589/m03-006
https://doi.org/10.1016/j.geomorph.2006.09.023. 00259
https://doi.org/10.1016/j.geomorph.2006.09.023
https://doi.org/10.1016/j.geomorph.2006.09.023
https://doi.org/10.1002/(ISSN)1944-9208
https://doi.org/10.1016/0169-555X(94)90042-6
https://doi.org/10.1007/s002679910020
https://doi.org/10.2307/2346830
https://doi.org/10.1016/j.geomorph.2014.12.024
https://doi.org/10.1016/j.geomorph.2014.12.024
https://doi.org/10.1088/1748-9326/aaa7bd
https://doi.org/10.1080/00396265.2017.1380947
https://doi.org/10.1080/00396265.2017.1380947
https://doi.org/10.1016/j.geomorph.2006.09.012
https://doi.org/10.1186/s40645-017-0157-2
https://doi.org/10.1016/j.geomorph.2012.11.005
https://doi.org/10.1016/j.geomorph.2012.11.005
https://doi.org/10.1007/s11069-014-1524-6
https://doi.org/10.3390/ijgi6110366
https://doi.org/10.3390/w10101387
https://doi.org/10.1007/s10346-017-0893-9
https://doi.org/10.1007/s10346-017-0893-9
https://doi.org/10.1002/2015GL066941. 2015GL066941
https://doi.org/10.1007/978-3-642-23430-9 69
https://doi.org/10.5194/nhess-14-2215-2014
https://doi.org/10.1080/17499518.2015.1058956.00004
https://doi.org/10.1016/j.geoderma.2013.08.023
https://doi.org/10.1016/j.geoderma.2013.08.023
https://doi.org/10.1016/j.scitotenv.2017.01.101
http://refhub.elsevier.com/S0169-555X(20)30096-9/rf0225
http://refhub.elsevier.com/S0169-555X(20)30096-9/rf0225
http://refhub.elsevier.com/S0169-555X(20)30096-9/rf0225
https://doi.org/10.5194/hess-15-667-2011
https://doi.org/10.1016/j.geomorph.2007.06.003
https://doi.org/10.1016/j.eiar.2014.07.002
https://doi.org/10.1080/01431161.2014.889864
https://doi.org/10.1016/j.geomorph.2010.09.028
https://doi.org/10.1016/j.earscirev.2015.02.002


20 M. Alvioli et al. / Geomorphology 358 (2020) 107124
Ramsey, S., Klemm, S., Zak, D., Kennedy, K., Thorsson, V., Li, B., et al., 2008. Uncovering a
macrophage transcriptional program by integrating evidence from motif scanning
and expression dynamics. PLoS Comput. Biol. 4, e1000021. https://doi.org/10.1371/
journal.pcbi.1000021.

Reichenbach, P., Rossi, M., Malamud, B.D., Mihir, M., Guzzetti, F., 2018. A review of statis-
tically-based landslide susceptibility models. Earth Sci. Rev. 180, 60–91. https://doi.
org/10.1016/j.earscirev.2018.03.001.

Saito, H., Nakayama, D., Matsuyama, H., 2011. Preliminary study on mountain slope
partitioning addressing the hierarchy of slope unit using DEMs with different spatial
resolution. Geomorphometry 2011, Redlands, USA , pp. 143–146. http://
geomorphometry.org/system/files/Saito2011geomorphometry.pdf.

Sangireddy, H., Carothers, R., Stark, C.P., Passalacqua, P., 2016. Controls of climate, topog-
raphy, vegetation, and lithology on drainage density extracted from high resolution
topography data. J. Hydrol. 537, 271–282.

Santangelo, M., Marchesini, I., Cardinali, M., Fiorucci, F., Rossi, M., Bucci, F., Guzzetti, F., 2015.
A method for the assessment of the influence of bedding on landslide abundance and
types. Landslides 12, 295–309. https://doi.org/10.1007/s10346-014-0485-x. 00019.

Schaetzl, R., Enander, E., Luehmann, M., Lusch, D., Fish, C., Bigsby, M., Steigmeyer, M.,
Guasco, J., Forgacs, C., Pollyea, A., 2013. Mapping the physiography of Michigan
with GIS. Phys. Geogr. 34, 2–39. https://doi.org/10.1080/02723646.2013.778531.

Schlögel, R., Marchesini, I., Alvioli, M., Reichenbach, P., Rossi, M., Malet, J.P., 2018. Optimiz-
ing landslide susceptibility zonation: effects of DEM spatial resolution and slope unit
delineation on logistic regression models. Geomorphology 301, 10–20. https://doi.
org/10.1016/j.geomorph.2017.10.018.

Schwarz, G., 1978. Estimating the dimension of a model. Ann. Stat. 6, 461–464. https://
doi.org/10.1214/aos/1176344136.
Sharma, R., Mehta, B., 2012. Macro-zonation of landslide susceptibility in Garamaura-
Swarghat-Gambhar section of national highway 21, Bi1 laspur District, Himachal
Pradesh (India). Nat. Hazards 60, 671–688. https://doi.org/10.1007/s.11069-011-
0041-0.

Smiraglia, D., Capotorti, G., Guida, D., Mollo, B., Siervo, V., Blasi, C., 2013. Land units map of
Italy. Journal of Maps 9, 239–244. https://doi.org/10.1080/17445647.2013.771290.

Tanyaş, H., Rossi, M., Alvioli, M., vanWesten, C.J., Marchesini, I., 2019a. A global slope unit-
based method for the near real-time prediction of earthquake-induced landslides.
Geomorphology 327, 126–146. https://doi.org/10.1016/j.geomorph.2018.10.022.

Tanyaş, H., van Westen, C.J., Persello, C., Alvioli, M., 2019b. Rapid prediction of the magni-
tude scale of landslide events triggered by an earthquake. Landslides 16, 661–676.
https://doi.org/10.1007/s10346-019-01136-4.

Thorndike, R.L., 1953. Who belongs in the family? Psychometrika 18, 267–276. https://
doi.org/10.1007/BF02289263.

Tracz, W., Ciurzycki, W., Zaniewski, P., Kwanśy, L., Marciszewska, K., Mozgawa, J., 2019.
Identification of zones with high potential for biological diversity on dormant for-
ested landslides. Eur. J. For. Res. 138, 363–373. https://doi.org/10.1007/s10342-019-
01170-w.

Xie, M., Esaki, T., Zhou, G., 2004. Gis-based probabilisticmapping of landslide hazard using
a three-dimensional deterministic model. Nat. Hazards 33, 265–282. https://doi.org/
10.1023/B:NHAZ.0000037036.01850.0d.

Zhao, M., Li, F., Tang, G., 2012. Optimal scale selection for DEM based slope segmentation
in the loess plateau. Int. J. Geosci. 3, 37–43. https://doi.org/10.4236/ijg.2012.31005.

Zhu, H., Huang,W., Liu, H., 2018. Loess terrain segmentation from digital elevationmodels
based on the region growth method. Phys. Geogr. 39, 51–66. https://doi.org/10.1080/
02723646.2017.1342215.

https://doi.org/10.1371/journal.pcbi.1000021
https://doi.org/10.1371/journal.pcbi.1000021
https://doi.org/10.1016/j.earscirev.2018.03.001
https://doi.org/10.1016/j.earscirev.2018.03.001
http://geomorphometry.org/system/files/Saito2011geomorphometry.pdf
http://geomorphometry.org/system/files/Saito2011geomorphometry.pdf
http://refhub.elsevier.com/S0169-555X(20)30096-9/rf0270
http://refhub.elsevier.com/S0169-555X(20)30096-9/rf0270
http://refhub.elsevier.com/S0169-555X(20)30096-9/rf0270
https://doi.org/10.1007/s10346-014-0485-x. 00019
https://doi.org/10.1080/02723646.2013.778531
https://doi.org/10.1016/j.geomorph.2017.10.018
https://doi.org/10.1016/j.geomorph.2017.10.018
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1007/s.11069-011-0041-0
https://doi.org/10.1007/s.11069-011-0041-0
https://doi.org/10.1080/17445647.2013.771290
https://doi.org/10.1016/j.geomorph.2018.10.022
https://doi.org/10.1007/s10346-019-01136-4
https://doi.org/10.1007/BF02289263
https://doi.org/10.1007/BF02289263
https://doi.org/10.1007/s10342-019-01170-w
https://doi.org/10.1007/s10342-019-01170-w
https://doi.org/10.1023/B:NHAZ.0000037036.01850.0d
https://doi.org/10.1023/B:NHAZ.0000037036.01850.0d
https://doi.org/10.4236/ijg.2012.31005
https://doi.org/10.1080/02723646.2017.1342215
https://doi.org/10.1080/02723646.2017.1342215

	Parameter-�free delineation of slope units and terrain subdivision of Italy
	1. Introduction
	2. Background
	3. Methods
	3.1. Main slope units delineation
	3.2. Local optimisation
	3.3. Optimisation in an arbitrarily large area

	4. Results
	4.1. A national slope units subdivision of Italy
	4.2. Performance of the slope units subdivision of Italy
	4.2.1. Slope units, drainage density and terrain elevation
	4.2.2. Slope units and lithology
	4.2.3. Slope units and topographic divisions
	4.2.4. Slope units and terrain zonations


	5. Discussion
	5.1. General results
	5.2. Specific results for Italy
	5.3. Potential applications

	6. Conclusions
	Acknowledgments
	Appendix A. Obtaining the software and map of the terrain subdivision for Italy
	A.1. List of acronyms and variables used in the text

	References




