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A B S T R A C T

The design, implementation, management, and verification of landslide early warning systems (LEWSs) are
gaining increasing attention in the literature and among government officials, decision makers, and the public.
Based on a critical analysis of nine main assumptions that form the rationale for landslide forecasting and early
warning, we examine 26 regional, national, and global LEWSs worldwide from 1977 to August 2019. We find
that currently only five nations, 13 regions, and four metropolitan areas benefit from LEWSs, while many areas
with numerous fatal landslides, where landslide risk to the population is high, lack LEWSs. Operational LEWSs
use information from rain gauge networks, meteorological models, weather radars, and satellite estimates; and
most systems use two sources of rainfall information. LEWSs use one or more types of landslide forecast models,
including rainfall thresholds, distributed slope stability models, and soil water balance models; and most systems
use landslide susceptibility zonations. Most LEWSs have undergone some form of verification, but there is no
accepted standard to check the performance and forecasting skills of a LEWS. Based on our review, and our
experience in the design, implementation, management, and verification of geographical LEWSs in Italy, we
conclude that operational forecast of weather-induced landslides is feasible, and it can help reduce landslide risk.
We propose 30 recommendations to further develop and improve geographical LEWSs, and to increase their
reliability and credibility. We encourage landslide forecasters and LEWSs managers to propose open standards
for geographical LEWSs, and we expect our work to contribute to this endeavour.

1. Introduction

The design, implementation, management, and verification of
“landslide early warning systems” (LEWSs) are subjects that are gaining
interest in the scientific and technical literature, and among decision
makers. Analyses of the general and specific features of LEWSs exist,
including the works of e.g., Aleotti (2004); Yin et al. (2007); Wieczorek
and Glade (2005); Medina-Cetina and Nadim (2008); Huggel et al.
(2010); Alfieri et al. (2012); Stahl et al. (2012); Thiebes (2012); Wilson
(2012); Intrieri et al. (2012, 2013), Calvello (2017); Chae et al. (2017);
Fathani et al. (2016); Park et al. (2019), and Pecoraro et al. (2019).
Examination of these works reveals a clear emphasis on “local” systems
designed to predict the short-term behavior of single landslides, in-
dividual slopes or small catchments. A recent exception is the work of
Piciullo et al. (2018) who have examined geographical LEWSs, which
they called “territorial” systems. Building on these works, and on our
experience in the design, implementation, management, and verifica-
tion of LEWSs in Italy, we review regional, national, and global LEWSs
covering areas from a few hundreds of square kilometres to the major

part of the globe. In the review, we do not consider local systems.
The paper is organized as follows. After the introduction of the

terminology used in the work (Section 2), we present the rationale for
landslide forecasting and early warning (Section 3). Next, we examine
the characteristics of 26 past and existing LEWSs (Section 4). This is
followed by a geographical and temporal analysis of the LEWSs, of the
data and models used for landslide forecasting, and of the advisory
schemes adopted by the LEWSs (Section 5). Next, we discuss open is-
sues and perspectives in operational landslide forecasting, and in the
design, management, and verification of LEWSs (Section 6). We con-
clude by outlining the lessons learned (Section 7), and summarizing 30
recommendations for the further improvement of existing and the de-
velopment of future geographical LEWSs.

2. Terminology

There is no standard language in the literature for describing early
warning systems for natural hazards. To avoid confusion, here we
clarify the meaning of some key terms used in the work. We
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acknowledge that our use of some terms is different from what can be
found in the literature.

The Oxford Learner’s English Dictionary defines an “early-warning”
as “a thing that tells you in advance that something serious or dangerous is
going to happen”. First used in the military, the term “early warning
system” is “a condition, system, or series of procedures indicating a po-
tential development or impending problem” (Oxford English Dictionary),
or “any series of steps established to spot potential problems”
(Dictionary.com). In this work, an “early warning system” (EWS) is a
device, system or set of capacities that generates and disseminates
timely and meaningful information to enable individuals, communities,
and organizations threatened by a hazard to act timely and appro-
priately to avoid or to reduce the impact of the threat (Seibold, 2003;
Zschau and Küppers, 2003; UNISDR, 2006; Di Biagio and Kjekstad,
2007; Huggel et al., 2010; Medina-Cetina and Nadim, 2008; Alfieri
et al., 2012; United Nations, 2016). The meaning of “early” depends on
the type of the hazard, and the perspective and responsibilities of who
issues, and who receives and uses the warning message (Hamilton et al.,
1997; Capparelli and Versace, 2011). A “warning” is an advice, a re-
commendation or an order to take an action e.g., to abandon an area, to
remain inside a building or structure, to move to an upper floor
(Hamilton et al., 1997). A “landslide early warning system”, or LEWS, is
an EWS devoted to landslides (Di Biagio and Kjekstad, 2007; Medina-
Cetina and Nadim, 2008; Huggel et al., 2010; Stähli et al., 2015;
Calvello, 2017; Greco and Pagano 2017; Piciullo et al., 2018; Segoni
et al., 2018a).

We use the term “landslide” to encompass all types of mass move-
ments (Hungr et al., 2014). Unless otherwise specified, in the work
landslides are weather-induced, including rainfall and snowmelt in-
duced landslides. Most LEWSs exploit thresholds, and a “threshold” is
the minimum or maximum level of a quantity needed for a process to
take place, or a state to change (White et al., 1996). A “rainfall
threshold” is the minimum amount of rainfall for possible landslide
occurrence in a period (Reichenbach et al., 1998; Guzzetti et al., 2007;
Segoni et al., 2018b). Thresholds can be defined empirically, statisti-
cally, or using physically-based approaches. We use the terms “em-
pirical” for thresholds defined heuristically (e.g., visually) and “statis-
tical” for thresholds determined through statistical approaches
including e.g., frequentist (Brunetti et al., 2010; Peruccacci et al., 2012,
2017), Bayesian (Guzzetti et al., 2007) and conditional probability
(Berti et al., 2012) approaches.

We use the term “geographical” for LEWSs covering a geographical
area (as opposed to site specific, “local” LEWS – not considered in this
work), and we distinguish between regional, national, and global
LEWSs. Our “geographical” systems were called “territorial” systems by
Piciullo et al. (2018). A “regional” LEWS covers a large municipality, a
metropolitan area, an administrative district, province or region,
whereas a “national” LEWS covers an entire nation or a large part of a
nation or state. We reserve the term “global” for LEWSs covering the
larger portion of the globe.

In the literature, confusion exists between “prediction” and “fore-
cast”. Unless otherwise specified, we use the term “prediction” to refer
to an estimate of an event happening in the future, the present or the
past, and “forecast” for an estimate of the future state of a natural
system obtained with a numerical model (Ramage, 1993). A “nowcast”
is a short-term forecast, typically up to six hours (WMO, 2017), and a
“hindcast” a forecast in the past, often used for testing a model using
past data and information. We use the term “advisory” to encompass all
stages or levels considered by the LEWSs, and the related messages.

To rank the development stage of the LEWSs, we use the terms
“designed” for a system that is planned and designed, but for which a
prototype does not exist; “experimental”, when a working prototype
exists and is undergoing testing and preliminary evaluation; “pre-op-
erational” for a system that is working according to specifications but
not necessarily regularly, that is undergoing testing, and it is not yet
endorsed or certified by any organization; and “operational” when a

system is working regularly according to specifications, and it is en-
dorsed or certified by an organization. Finally, we use the term “dis-
missed” for a system that was abandoned or dismantled, irrespective of
the reasons for abandoning or dismantling the system.

Albeit not clearly, the literature separates landslide models, warning
models, and warning systems (Calvello, 2017). Here, we use the terms
“landslide model”, “forecast model”, “process model”, and “landslide
forecast model” as synonyms, to describe a functional, empirical or
physical relation linking measurements (e.g., rainfall) or variables (e.g.,
the water table depth in the slope) to the (possible) occurrence or lack
of occurrence of landslides. Thus, a rainfall threshold is a type of
landslide model. Further, a “warning model” is a framework for issuing
landslide advisories. It can include one or more landslide models and
advisory criteria i.e., rules, procedures, and protocols used to decide
and issue advisories. Lastly, a “warning system” is the physical im-
plementation of a warning model, which may contain one or more
landslide forecast models.

3. Rationale for landslide forecasting and early warning

Systematic efforts to investigate concepts and frameworks for the
early warning of natural hazards as cost-effective tools for disaster
prevention and risk reduction begun in the 1990s, in the framework of
the United Nations International Decade for Natural Disaster Reduction
Early Warning Programme, and continued under its successor, the
United Nations secretariat for Disaster Risk Reduction, first in the
Hyogo Framework for Action 2005–2015 (UNISDR, 2005) and next in
the Sendai Framework for Disaster Risk Reduction 2015–2030
(UNISDR, 2015). Descriptions of the concepts and frameworks of EWSs
for different natural hazards are given e.g., by O’Neill et al. (1997);
Hamilton et al. (1997); Zschau and Küppers (2003); Aleotti (2004);
Basher (2006); UNISDR (2006); Calvello (2017); European Commission
(2008); Huggel et al. (2010); Alfieri et al. (2012), and the United Nation
(2016).

Focusing on landslides, Endo (1970) and Onodera et al. (1974) in
Japan, Campbell (1975) in the USA, Lumb (1975) in Hong Kong, and
Eyles (1979) in New Zealand, were first to identify empirical de-
pendencies between rainfall and landslide occurrence, a key finding at
the base of any modern, scientific attempt at operational landslide
forecasting and landslide early warning. Campbell (1975) was probably
the first to envision the possibility to forecast rainfall-induced land-
slides and to propose a framework for a LEWS – in his case for shallow
landslides and debris flows in southern California. Recognizing that
“The many variables that influence the origin of each individual debris
flow make the prediction of small soil slips in specific places extremely
difficult”, he suggested that:

“A warning system […] could be constructed [using] three major ele-
ments, each of which is partly or wholly operative at the present time: (1)
a system of rain gauges, recording the rainfall on an hourly basis; (2) a
weather-mapping system capable of recognizing centers of high-intensity
rainfall in the storm area and, at frequent intervals, plotting the location
of these centers with respect to location of gauges with adequate registry
for accurate transfer to slope maps or topographic maps; and (3) an
administrative and communications network to collate the data, re-
cognize when critical factors have been exceeded in a particular area,
and inform the residents there. Such a system is probably well within the
capability of existing technology”.

Campbell (1975) clear description of an operational LEWS and his
lucid foresight were extraordinary; even more so considering that it
took three decades to implement the vision in just a few regions of the
world, as it will become apparent in the next section.

Forecasting landslides is a difficult and uncertain task that lays at
the fuzzy boundary between science, technology, and decision making.
The task is complex, and all the attempts towards operational landslide
forecasting have adopted, implicitly or explicitly, a number of
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simplifying assumptions to reduce to a manageable extent the complex,
and not yet fully understood, challenge of forecasting the possible oc-
currence of landslides, and the technological issues and operational
problems related to the timely dissemination of meaningful information
to administrations, organizations, communities, and individuals (Keefer
et al., 1987; Wilson, 2012; United Nations, 2016). Below we discuss
nine assumptions (Table 1).

The first assumption is that rainfall induced landslides can be pre-
dicted. The assumption is difficult to prove theoretically, but there is
accumulating evidence that landsliding can be predicted, and that
landslide forecasts can contribute to reduce landslide risk, particularly
the risk to the population, at different temporal and geographical
scales, and in different climatic and physiographical settings (Keefer
et al., 1987; Wilson, 2012; Fathani et al., 2018; Rossi et al., 2019).

The second assumption descends from “uniformitarism” (Lyell,
1830; Hooykaas, 1963; Gould, 1965; Haff, 1996; Furlani and Ninfo,
2015), and it prescribes that “the past is a key to the future”. Rainfall
thresholds are defined studying past rainfall and landslide information,
and spatially distributed slope stability models are calibrated using
rainfall measurements and landslide information obtained from past
events. Thresholds and slope stability models are then used to predict
future landslides based on the assumption that future landslides will
occur under the same conditions that caused landslides in the past. The
assumption implies the stationarity of the rainfall and the landslide
records, which are not guaranteed over long periods and where climate
and environmental changes are large (Furlani and Ninfo, 2015; Gariano
and Guzzetti, 2016).

The third assumption is that precipitation (chiefly rainfall) is the
primary or the only trigger of (shallow) landslides. The simplification
assumes that, infiltrating into the slope, rainfall accumulates in a sa-
turated or partially saturated zone above a low permeability layer,
often at or near the base of the colluvium, increasing pore-water
pressure at shallow depth. This leads to a force imbalance that initiates
the landslide. Debate exists on the role of the antecedent rainfall and
soil-moisture conditions that can promote landslide initiation
(Campbell, 1975; Brand et al., 1984; Keefer et al., 1987; Wilson, 2012).
The relevance of the antecedent conditions depends on the local and
regional settings, including e.g., the intensity and duration of the pre-
cipitation, the lithological characteristics of the rocks and soils, and the
climate. Highly permeable soils and rocks are less sensitive to ante-
cedent conditions, because water can drain easily; and where climate
has distinct seasonal variations – such as in a Mediterranean climatic
regime – the role of the antecedent rainfall is more relevant than where
climate is stable throughout the year (Wilson, 2012).

The fourth assumption is that rainfall is a good proxy for the
groundwater conditions that lead to shallow landslides. The simplifi-
cation assumes that all (or most) of the rainfall that falls on a slope
infiltrates (at least initially), reaches the saturated or partially saturated
zone above the potential sliding surface, and contributes to slope in-
stability at shallow depth (Campbell, 1975; Keefer et al., 1987; Wilson,
2012). The simplification is severe, as it implies that the surface and

sub-surface morphological, lithological, and hydrological conditions
are second order elements for landslide initiation. However, the sim-
plification may prove reasonable over large areas (Alvioli et al., 2014).

The fifth assumption is that a threshold is an adequate descriptor of
the stability/instability behaviour of a slope forced by rainfall. The
simplification implies that over centuries or millennia, slopes equili-
brate to the long-term precipitation regime conditioned by climate, and
that for each slope a critical pore-water pressure – the result of a critical
rainfall amount – exists and, when reached or exceeded, it triggers
shallow landslides (Keefer et al., 1987; Wilson, 2012). Under low
rainfall conditions a hillslope balances infiltration with evapo-
transpiration and surface and deep runoff, maintaining stability. When
rainfall is intense the infiltration rate exceeds the deep drainage rate, a
zone of partial or complete saturation forms, instability conditions
occur and the slope fails. The assumption implies a “stable/unstable”
behaviour of the slope, which is simplistic to describe the behaviour of
single slopes, but may prove reasonably adequate for large areas or
entire catchments (Reichenbach et al., 1998; Guzzetti et al., 2007).

The sixth assumption prescribes that rainfall can be measured and
forecasted with sufficient spatial and temporal accuracy to predict
landslide occurrence. The simplification assumes that the rainfall field
obtained by rain gauges, weather radars or satellite estimates, is re-
presentative of the rainfall conditions and history at the location of the
landslides, before and when landslides initiate. This may not be the case
everywhere, given the low density of rain gauges (Michaelides, 2008;
Kidd et al., 2017), particularly in mountain terrain (Nikolopoulos et al.,
2015; Marra et al., 2017) where the radar signal is blocked or affected
by other complications, in mountainous or complex terrain (Germann
et al. 2006; Wilson 2012). Problems exists also with rainfall forecasts
that are assumed to be accurate in space and time, and of adequate
spatial and temporal resolution to predict landslides. Again, this may
not be the case where the weather patterns are complex and were
weather evolves rapidly.

The seventh assumption is that landslides can be forecasted with
sufficient lead time to allow organizations, communities, and in-
dividuals to take mitigation actions (Wilson, 2012; Calvello and
Piciullo, 2016). The lead time depends on the type and velocity of the
landslides (Hungr et al., 2014), the extent of the area covered by the
forecast, the scopes of the LEWS and of its users and beneficiaries. The
assumption implies that LEWSs use different tools, data and informa-
tion depending on the extent of the geographical and temporal cov-
erages of the forecasts, and the type of landslides. As an example, to be
effective, a LEWS designed to forecast soil slips and debris flows may
use rainfall forecasts to extend the lead time, giving more time to react
to the expected landslide events. However, since rainfall forecasts are
affected by uncertainty, they reduce the temporal and spatial accuracy
of the landslide predictions (Keefer et al., 1987; Wilson, 2012).

The eighth assumption is that landslide forecasts can be used to
issue useful landslide advisories (Wilson, 2012; Calvello and Piciullo,
2016). The assumption implies that landslide forecasts are reasonably
accurate and contain valuable information to help mitigating landslide

Table 1
Rationale for landslide forecasting and landslide early warning. References: 1, Lyell (1830); 2, Furlani and Ninfo (2015); 3, Campbell (1975); 4, Keefer et al. (1987);
5, Wilson (2012); 6, Baum and Godt (2010); 7, Calvello and Piciullo (2016); 8, Versace et al (2018); 9, this work.

Assumption References

1 Landslides can be predicted, in space and time. 8, 9
2 The past is the key to the future. 1, 2
3 Rainfall is the primary trigger of landslides, and promotes the initiation of landslides through infiltration into the slope. 3, 4, 5
4 Rainfall is a good proxy for the groundwater conditions that lead to slope instability. 3, 4, 5
5 A threshold is a reliable descriptor of the behaviour of a slope forced by rainfall. 4, 5, 9
6 Rainfall can be measured and forecasted with the spatial and temporal accuracy necessary to predict landslides. 9
7 There is sufficient time to warn people leaving in potentially dangerous areas. 8, 9
8 Landslide forecasts can be used to issue useful landslide advisories. 5, 6, 7
9 Based on landslide advisory one can take actions to minimize landslide risk. 5
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risk, and that the inherent probabilistic content of the forecasts, and
their uncertainties, are mapped into meaningful advisory levels
(Calvello and Piciullo, 2016). In most cases, the mapping is not trivial
and conditions the success (or failure) of a LEWS, and the usefulness of
an advisory system. This is because the number and significance of the
advisory levels control the performance of a LEWS (Piciullo et al.,
2017a, 2017b). The assumption further implies that the same landslide
forecast may be mapped differently (e.g., using different advisories
schemes) depending on the beneficiaries and on the user needs.

The ninth assumption is that if (or when) organisations are informed
that landslides are expected that could pose a threat to their assets or
interests, or if (or when) communities or individuals are told that their
safety or property is threatened by landslides, they would take appro-
priate measures to avoid or to minimize the threat (Wilson, 2012). The
assumption implies that the information on the expected landslides is
conveyed from the LEWS to the interested organisations, communities
or persons in sufficient time, and in a way and format known to, and
understood by the beneficiaries. Further, the users should have valid
and effective actions to take, should be aware of them, and should be
willing and prepared to take the actions. As such, the assumption im-
plies preparative information campaigns before landslide advisories are
issued regularly. It also implies that the advisories are issued by a
trusted source (UNISDR, 2015).

4. Past and present landslide early warning systems

We now describe the main characteristics of 26 past and existing
LEWSs. We present the systems based on their regional, national, or
global coverage, loosely ordering the systems from the oldest to the
newest in each geographical category. We consider only systems for
which sufficient information was available to us to attempt a descrip-
tion and a critical analysis. We are aware that a few other LEWSs have
existed or exist today (e.g., in Nicaragua, Indonesia, Sri Lanka, in
Tennessee, North Carolina, Georgia, Virginia in the USA), but for these
other systems we did not find sufficient (or any) information to allow a
description and a thorough analysis. We further acknowledge that we
may ignore the existence of a few other past and present LEWSs.
However, we maintain that collectively the 26 LEWSs presented here,
and analysed in the next section, are representative of the main char-
acteristics, capabilities, and current problems of geographical LEWSs.

4.1. Regional systems

4.1.1. Hong Kong
The first regional geographical LEWS was set up in Hong Kong in

1977 by the Geotechnical Control Office (now Geotechnical
Engineering Office, GEO) in response to catastrophic landslide events in
1972 and 1976 that caused many fatalities (Brand et al., 1984; Malone,
1988). Jointly operated by the GEO and the Hong Kong Observatory
(HKO), the “Landslip Warning System” is the longest-lived and arguably
the most successful LEWS in the world. Today, the LEWS issues land-
slide advisories for Hong Kong island, Kowloon and the New Territories
(HGK, #1 in Figs. 1,2,3 ) (Chan et al., 2003; Choi and Cheung, 2013;
Wong et al., 2014).

Through its more than 40 years of operation, the LEWS has un-
dergone several changes. From 1977 to 1983, the system was in a pre-
operational phase and used rainfall measurements collected by 20 rain
gauges and two empirical rainfall thresholds defined by studying
landslide and rainfall records from 1950 to 1973 (Lumb, 1975). The
thresholds considered daily rainfall (from 1983, 24 h “rolling” rainfall,
R24) and cumulated (antecedent) rainfall in the previous 15 days. In this
first phase, two landslide advisory levels were used internally. This was
changed in the second phase (1984–1998), when the LEWS became
operational and the advisories were announced publicly. In the second
phase, the LEWS used empirical rainfall thresholds determined by
analysing landslide and rainfall data from 1963 to 1982 (Brand et al.,

1984) and considering R24 and 1 h rainfall intensity. Of the two ad-
visory levels, the lowest was issued internally when R24 exceeded 100
mm at a single representative rain gauge, and the highest was released
publicly when one or more of the following criteria were met: (i) R24

exceeded 175 mm; (ii) the cumulated rainfall in the previous 20 h and
the rainfall forecasted for the next four hours exceeded 175 mm in at
least ten rain gauges; and (iii) an intensity of 70 mm h-1 was exceeded
at any rain gauge. In the third phase (1999–2003), the LEWS began
considering landslide density i.e., the number of expected landslides per
km2, in vulnerable areas. This was done using an empirical relationship
linking R24 to known (observed) landslide density (Pun et al., 1999).
The advisory levels were increased to three, including, a “consultation”
level, when R24 exceeded 100 mm in at least ten rain gauges, prompting
dialogue between the GEO and HKO; an “alert” level, still internal,
when the rainfall required to reach the next level was less than 100 mm;
and a public “warning” level when the system forecasted at least ten (15
from 2001) landslides in the Hong Kong territory. The figure was ob-
tained from an empirical relationship linking R24 (rainfall cumulated in
the previous 21 h and forecasted for the next three hours) to landslide
density, multiplying the density by the size of each vulnerable area, and
summing the values for all the vulnerable areas.

The current phase of the LEWS is operational since 2004, and uses
(i) improved rainfall measurements taken by a dense network of 122
automatic, high rate (5-min interval) rain gauges; (ii) rainfall estimates
from SWIRLS radar nowcasts (Yeung, 2012); (iii) better weather fore-
casts; and (iv) a set of four empirical relationships linking R24 to
landslide density for the four most common types of engineered slopes
in Hong Kong i.e., soil cuts, rock cuts, fill slopes, and retaining walls
(Yu, 2004; Chan et al., 2012). Using this complex information, for 1600
1.2 km × 1.5 km grid cells covering the Hong Kong territory, the LEWS
forecasts the expected number of landslides for each of the four slope
types. The system uses the same three advisory levels as in the previous
phase, with three main differences. First, R24 is calculated cumulating
the past 24 h rainfall. Second, during the “consultation” phase, HKO
provides 1 to 3-h rainfall nowcasts based on radar data (Yeung, 2012).
Third, the public “warning” level is reached when 15 or more slope
failures are forecasted. Landslide advisories are disseminated to the
public using various media including an official website, TV and radio
channels, mobile phone apps, and social networks.

The LEWS predictive skills were evaluated quantitatively using 15
landslide events between 2001 and 2005 (Cheung et al., 2006). For
each advisory in this period, the forecasted number of landslides in
each level was compared to the number of reported landslides, and the
obtained figure was used to determine the number of correct / incorrect
forecasts. In the 5-year evaluation period, the LEWS proved successful
in forecasting the failure of engineered slopes, with very few false
alarms (Piciullo et al., 2018).

4.1.2. San Francisco Bay area, California, USA
From 1985 to 1995, the U.S. Geological Survey (USGS) and the U.S.

National Weather Service (NWS) operated jointly a LEWS for the San
Francisco Bay area (SFBA) (SFB, #2 in Figs. 1,2,3). Following a short
experimental period, system operation began in February 1986 when
the first public debris-flow hazard advisory in the United States was
issued successfully. The system was terminated ten years later, in 1995,
due to lack of human and economic resources (Wilson, 2012). This
revolutionary LEWS used 24-h Quantitative Precipitation Forecasts
(QPF) issued twice daily by the NWS with estimates of the total ex-
pected rainfall in four consecutive 6-h periods, and hourly rainfall
measurements taken by 45 tipping-bucket rain gauges (in 1985, one
rain gauge every ∼400 km2, increased to 60 in 1995, one gauge every
∼300 km2) operated by the NWS. The forecasted and the measured
rainfall were compared against empirical rainfall thresholds for possible
landslide occurrence in the SFBA (Keefer et al., 1987; Wilson, 2012).

In 1986, the first warnings were issued based on two empirical
rainfall intensity–duration (ID) thresholds; a higher threshold was
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determined by examining shallow landslides and debris flows occur-
rence during six storms between 1955 and 1983 in the SFBA (Cannon
and Ellen, 1985); and a lower threshold proposed for the La Honda
study site in the Santa Cruz Mountains (Wieczorek, 1987). The second
threshold was used in areas deemed particularly susceptible to rainfall-
induced shallow landslides and debris flows (Wilson, 2012). By 1989,
recognizing that antecedent seasonal rainfall was important for the
initiation of debris flows in the SFBA, a threshold for the accumulated
antecedent seasonal rainfall was added to the LEWS. This third seasonal
antecedent threshold was calibrated using soil moisture measurements
taken at the La Honda study site, which served as a benchmark for the
entire San Francisco Bay region (Wilson, 2012).

The LEWS adopted a protocol in four steps of increasing severity to
analyse the storms and decide on the proper advisory level. Before the
rainfall totals reached the seasonal antecedent threshold, debris flow
occurrence was considered improbable, and no advisory was issued.
When the seasonal threshold was exceeded, the individual storms were
evaluated individually to see if the expected intensity and duration of
the rainfall was sufficient to trigger debris flows. Storms with peak
rainfall periods below the lower threshold of Wieczorek (1987) were
considered unlikely to initiate dangerous debris flows, and in general
were not considered for an advisory. Brief and general (unspecific)
advisories were issued for storms with accumulated rainfall just above
the lower threshold of Wieczorek (1987). When the accumulated
rainfall was approaching the upper threshold of Cannon and Ellen
(1985), a “flash-flood/debris-flow watch” was issued “advising people

living on or below steep hillsides, or near creeks, to stay alert and be
prepared to evacuate, as debris flows were a strong possibility during
the watch period” (Wilson, 2012). Lastly, when the accumulated rain-
fall exceeded the upper threshold (Cannon and Ellen, 1985), or when
information on significant debris flow activity was available (e.g., from
the media), a “flash-flood/debris-flow warning” was issued. For seven
storms between 1986 and 1995 one or more debris-flow advisories were
issued by the NWS, and communicated to the public through local radio
and televisions (Wilson, 2012). The advisories predicted accurately the
time of major landslide events, but were less accurate about the areas
where the landslides occurred (Keefer et al., 1987). Local government
agencies used the advisories for planning emergency response and to
suggest evacuations.

While the original LEWS described by Keefer et al. (1987) and
Wilson (2012) was dismissed, at the time of writing there is an opera-
tional landslide monitoring system across the SFBA that informs NWS
alerts to reduce landslide risk. The details of the thresholds and alert
levels have not been published (Collins et al., 2012; Mirus et al., 2019).

4.1.3. Western Oregon, USA
From 1997 to 2007, the Oregon Department of Forestry (ODF) op-

erated a LEWS to forecast the possible occurrence of debris flows in
selected areas of Western Oregon (WOR, #3 in Figs. 1,2,3) (Wilson,
2012). In 2007, the NWS took over the operation and management of
the LEWS (Baum and Godt, 2010). A result of the synergic effort by four
Oregon state government departments and offices (ODF, DOGAMI,

Fig. 1. Characteristics of 26 landslide early warning systems (LEWSs) considered in the work. Red, regional LEWS. Blue, national LEWS. Purple, global LEWS. ID,
number of LEWS used in the text, figures, and tables. See Fig. 2 for LEWSs location. Code: HGK, Hong Kong; SFB, San Francisco Bay area; WOR, Western Oregon; SEA,
Seattle; SCA, Southern California; NVC, North Vancouver; RDJ, Rio de Janeiro; COM, Combeima valley; JAV, Java; CHM, Chittagong metropolitan area; STW,
Southern Taiwan, EMR, Emilia-Romagna; PIE, Piedmont; UMB, Umbria; TUS, Tuscany; LIG, Liguria; SAR, Sardinia; APU, Apulia; SIC, Sicily; TWN, Taiwan; ITA, Italy;
NOR, Norway; CAC, Central America and Caribbean; IDN, Indonesia; SCT, Scotland; GLB, Global system. MAP, mean annual precipitation in the period 1970–2000
from Fick and Hijmans (2017). Köppen-Geiger climate types from Peel et al. (2007). Geological types from Chorlton (2007). Seismicity level from Giardini et al.
(2003). References: (1) Brand et al. (1984); Malone (1988); Chan et al. (2003); Choi and Ceung (2013); Wong et al. (2014). (2) Keefer et al. (1987); Wilson (2012).
(3) Mirus, pers. comm. (2019). (4) Chleborad (2003); Godt et al. (2006, 2009); Mirus, pers. comm. (2019). (5) NOAA-USGS Debris-Flow Task Force (2005); Mirus,
pers. comm. (2019). (6) Jakob et al. (2012). (7) Ortigao et al. (2001); Ortigao and Justi (2004). (8) Cepeda and Murcia (1988); Godoy et al. (1997); Huggel et al.
(2007). (9) Liao et al. (2010). (10) Ahmed et al. (2018). (11) Wei et al. (2018). (12) Martelloni et al. (2012); Lagomarsino et al. (2013); Segoni et al. (2015a, 2015b,
2018b). (13) Tiranti and Rabuffetti (2010); Tiranti et al. (2013, 2014). (14) Ponziani et al. (2013). (15) Segoni et al. (2014, 2015a); Rosi et al. (2015). (19) Brigandì
et al. (2017). (20) Yin et al. (2015, 2016); Lin and Yin, pers. comm. (2019). (21) Rossi et al. (2012a, 2012b, 2018). (22) Boje et al. (2014); Devoli et al. (2015, 2018);
Krøgli et al. (2018). (23) Kirschbaum et al. (2015). (24) Hidayat et al. (2019); Mulyana et al. (2019). (25) Reeves and Freeborough, pers. comm. (2019). (26)
Kirschbaum and Stanley (2018); Mirus et al. (2019); Kirschbaum, pers. comm. (2019).
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ODOT, OEM) and the US National Weather Service, the LEWS uses
rainfall measurements and forecasts that are compared to empirical ED
rainfall thresholds established for debris flow prone areas based on the
analysis of past rainfall events that caused a significant number of
debris flows. ODF geotechnical specialists, on alert during critical
conditions, may lower the thresholds heuristically considering specific
weather conditions (e.g., snow at low elevation with warm rain ex-
pected, heavy rain after a hard freeze, storms moving from the south or
over the Pacific Ocean), the geographical location of the debris flow
prone areas, and the susceptibility to rapidly moving landslides. Be-
tween 1997 and 2006, the LEWS issued eight landslide “advisories” and
four “warnings” (http://www.oregongeology.org/Landslide/
ODFDebrisFlowWarningTechOverview.pdf, accessed 14 September

2019). The “advisories” were issued when the forecasts indicated that
the threshold precipitation was reasonably possible, and “warnings”
when the threshold was reached in coastal or inland debris flow prone
areas, or was deemed likely to be exceeded during periods of darkness
at critical locations (e.g., in populated areas). During “warning” per-
iods, an ODF geotechnical expert was on alert.

4.1.4. Seattle, Washington, USA
Since 2002, the USGS, the NWS, and the City of Seattle operate a

prototype LEWS for Seattle and the Puget Sound, along the NW coast of
the US state of Washington (SEA, #4 in Figs. 1,2,3). The LEWS
exploited complex information, including (i) near real time precipita-
tion measurements taken by rain gauges in the City of Seattle and daily

Fig. 2. Location of 26 past and present landslide early warning systems (LEWSs) considered in the work. See Fig. 1 for LEWSs numbering. Global map shows locations
of eleven regional (red) and seven national (blue) LEWSs, and coverage of the global LEWS (violet). Green dots show non-earthquake-induced fatal landslides
between 2004 and 2016 inventoried by Froude and Petley (2018) and updated recently to cover the period from January 2004 to December 2017 (Froude and Petley,
personal comm. 2019). Map for Italy shows eight regional LEWSs (red). Both maps use the Equal Earth map projection (EPSG:2018.048) (Šavrič et al., 2019). For
each LEWS, the coloured boxes show the geographical coverage (red, regional; blue, national, purple, global). Upper row of the box shows: LEWS ID (Fig. 1); Köppen-
Geiger climate types of Peel et al. (2007); system development stage (in 5 classes). Middle row shows: sources of rainfall information (in 3 classes); if the system uses
snowmelt / snow cover (snowflake), soil wetness / soil moisture (W) or susceptibility (S) information, and if the system was evaluated (V). Lower raw shows: number
of alert levels (from 2 to 5), the advisory frequency and the advisory dissemination level (internal, authorities, public). See text for explanation.
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climate measurements taken by twelve stations in the Seattle area; (ii)
soil moisture and pore pressure measurements; (iii) QPFs provided by
the NWS; (iv) snowmelt estimates; (v) empirical rainfall thresholds for
possible landslide occurrence, including an antecedent threshold
linking precipitation cumulated in the 72 h (3 days, P3) before landslide
activity to the precipitation in the 15 days (P15) before P3 (Chleborad,
2003) and an empirical ID threshold (Godt et al., 2006); and (vi) esti-
mates for the Antecedent Water Index (AWI), a proxy for soil wetness
and a substitute for soil moisture and pore pressure monitoring, which
accounts for rainfall and evapotranspiration and uses an exponential
decay to model soil drainage (Godt et al., 2006, 2009). The antecedent
threshold was determined studying rainfall events that caused 199
“wet-season” (November to April) landslides from 1933 to 1997
(Chleborad, 2003), and the ID threshold examining six rainfall events
with landslides between 1978 and 1997, validated using rainfall and
landslide data from 1997 to 2003. To combine this complex informa-
tion, the LEWS used a decision tree (Godt et al., 2006; Chleborad et al.,
2008). The antecedent threshold was used in routine operations as an
indicator of conditions favourable to landslide occurrence, and the ID
threshold (40 or 55 mm day−1, depending on wetness conditions, Baum
and Godt, 2010), together with the AWI came into play during heavy
rainfall periods (> 25 mm in 24 h) expected to last for at least one or
two days, to indicate when large numbers of landslides were likely. In
an attempt to improve the landslide prediction rate, a prototype hy-
drological threshold informed by soil moisture and pore-water pressure
conditions was proposed recently by Smith et al. (2017) and Scheevel
et al. (2017), but is not yet implemented operationally (Mirus et al.,

2019).
To issue informal landslide advisories to government officials and

the public, this LEWS used a 4-level advisory scheme (Chleborad et al.,
2008; Baum and Godt, 2010). Rainfall conditions below the thresholds
represented the “null” level, when landslides were not expected. Ex-
ceedance of the antecedent threshold by measured and forecasted
rainfall, or exceedance of the ID threshold by forecasted rainfall (40 or
55 mm day−1, depending on wetness conditions), represented an
“outlook” and activated more intense monitoring of weather condi-
tions, soil moisture and pore pressure, and tracking of the AWI. During
an “outlook”, measured or forecasted heavy rainfall or AWI>−0.1
raised the advisory level to a “watch”, and the NWS informed govern-
ment officials and the public of possible landslide occurrence. When the
AWI exceeded 0.02 or soil saturation exceeded 60%, and the measured
and forecasted rainfall exceeded the ID threshold, the advisory level
was raised to a “warning”, and the NWS alerted government officials
and the public.

4.1.5. Southern California, USA
In 2005, NOAA and the USGS launched an innovative prototype

LEWS for flash floods and debris flows in recently burnt areas in eight
counties of Southern California (SCA, #5 in Figs. 1,2,3). The LEWS
operates on a 24 -h, 7-day-a-week basis, and combines the NWS Flash
Flood Monitoring and Prediction system with rainfall thresholds for
debris flow and flash flood occurrence in burnt areas (NOAA-USGS
Debris-Flow Task Force 2005). The LEWS monitors precipitation in near
real time using rain gauge networks, C-band Doppler radars and

Fig. 3. Temporal coverage of 26 past and present landslide early warning systems (LEWSs) considered in this work. See Fig. 1 for the LEWSs characteristics, and
Fig. 2 for the LEWSs numbering. Horizontal bar chart shows temporal coverage of the single LEWSs in the 44.5-year period from January 1977 to June 2019. Bars
show temporal range of the LEWSs. Bar colours show population density (d, people per km2) in the LEWSs areas, in three classes. Black symbols show LEWSs
development stage, in five classes. Upper vertical bar chart shows count of LEWSs per year. Vertical light blue bars show years of the Kobe (UNISDR, 2005) and
Sendai (UNISDR, 2015) UN global conferences and related frameworks.
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satellite estimates. QPF are obtained from a suite of numerical and
statistical weather models mediated by forecasters’ expertise. Studying
storms that did and did not produce debris flows in recently burnt
areas, empirical ID thresholds were determined for the first winter after
a fire, and following a year of vegetative recovery, for three different
physiographic and weather settings in Southern California (Cannon
et al., 2009; NOAA-USGS Debris-Flow Task Force 2005). The ID
thresholds were updated repeatedly to improve predictions of post-fire
debris-flow likelihood (Staley et al., 2013, 2016, 2017). The LEWS uses
web-based technology to provide information about each fire, and to
show hazard maps for catchments deemed likely to produce large debris
flows in burnt areas. When measured and forecasted precipitation ex-
ceeds pre-defined thresholds, flash flood and debris flow advisories are
delivered to emergency personnel and the public through the NOAA’s
Advanced Weather Information Processing System (AWIPS) using a 3-
level advisory system, including “outlook”, “watch”, and “warning”.
Between 2005 and 2008, the LEWS issued 104 “warnings”, 45% of
which are known to have produced debris flows. Local communities
and emergency response personnel successfully used the advisories for
evacuations and to deploy equipment (Restrepo et al., 2009).

4.1.6. Vancouver, British Columbia, Canada
From October 2009 to April 2010, and from October 2010 to April

2011, Jakob et al. (2012) operated an experimental, near real-time
debris-flow warning system for the District of North Vancouver, in
British Columbia (NVC, #6 in Figs. 1,2,3). For four catchments covering
∼600 km2, empirical ID thresholds had failed to forecast known debris-
flows and were considered unsuited for operational debris-flow fore-
casting. Discriminant analysis of 25 rainfall variables, including cu-
mulated storm rainfall, rainfall duration, and mean rainfall intensity for
different periods, for 63 storms, of which 27 that caused and 36 that did
not cause debris flows, allowed the identification of the 4-week ante-
cedent rainfall, the 2-day antecedent rainfall, and the 48-h event rain-
fall intensity during the landslide-triggering storm as the three best
variables to discriminate between storms that had, and had not resulted
in debris flows. Based on these rainfall variables, two classification
functions were defined for storms that did and did not cause debris
flows. For each storm, subtraction of the classification scores obtained
for the two functions gave the index ΔCS, a proxy for the likelihood of
debris flow occurrence. Depending on ΔCS, the LEWS considered five
advisory levels i.e., “no watch”, “watch I”, “watch II”, “warning”, and
“severe warning”. In the operational periods, nine debris flows were
documented during four storms when the “warning” level was reached,
and in one storm when the “watch II” level was exceeded for 26 con-
secutive hours. No debris flows were observed for the “watch I” and “no
watch” levels. The “severe warning” level was never reached in the
operational periods. In nine cases, the “warning” level was reached and
debris flows were not observed, resulting in false alarms (false posi-
tives).

4.1.7. Rio de Janeiro, Brazil
Following multiple debris-flow disasters, in 1996 the city of Rio de

Janeiro established an operational LEWS. Managed by the Fundacão
Instituto de Geotechnica do Municìpio do Rio de Janeiro (GEO-Rio
foundation), the Alerta-Rio (Rio Watch) system (RDJ, #7 in Figs. 1,2,3)
uses (i) rainfall and meteorological data collected every 15 min by a
network of 33 automated meteorological stations, corresponding to an
average density of one station every ∼ 37 km2; (ii) rainfall estimates
obtained by two meteorological Doppler radars installed in 1999 and
2010; and (iii) short-term numerical weather forecasts issued twice
daily by the Brazilian Centre for Weather Forecasting and Climate
Studies (Ortigao et al., 2001; Ortigao and Justi, 2004). To issue the
advisories, Rio Watch compares rainfall measured by the meteor-
ological stations with empirical rainfall thresholds originally defined by
D’Orsi et al. (1997) analysing 65 rainfall-induced landslides, and
modified subsequently. Three thresholds that consider cumulated

rainfall in 1, 24, and 96-h periods separate four landslide severity le-
vels, characterized by an increasing expected landslide abundance, in-
cluding (i) a low level for landslides not directly triggered by rainfall;
(ii) a medium level for the occurrence of sporadic rainfall-induced
landslides, mostly on artificial slopes; (iii) a high level for abundant
landslides triggered by heavy rainfall on natural and artificial slopes;
and (iv) a very high level, for abundant and widespread landslides on
natural and artificial slopes. Landslide advisories are issued in Portu-
guese, once daily for four areas of the Rio de Janeiro municipality. To
distribute the advisories to the authorities, emergency response agen-
cies and the public, Rio Watch exploits multiple communication means,
depending on the severity of the advisory. During normal operation, the
system issues one advisory per day. Medium level warnings are updated
every six hours and disseminated using a dedicated website and sent to
identified municipality departments. In addition to this, high and very
high warning levels are communicated to the public through television
and radio stations. To evaluate the forecasting performances of the Rio
Watch LEWS, Calvello et al. (2015a, 2015b) applied the “event, dura-
tion matrix performance” (EDuMaP) method of Calvello and Piciullo
(2016) to known rainfall and landslide events in the 3-year evaluation
period 2010–2012. Results revealed the overall good performance of
the system, albeit with a significant number of false alarms in the SE
zone, probably due to a low rainfall threshold.

4.1.8. Combeima valley, Colombia
In 2009, the Swiss Development and Cooperation Agency launched

a project to develop a LEWS for the Combeima valley, a hilly and
mountainous area in Colombia where rainfall induced landslides are
frequent (COM, #8 in Figs. 1,2,3) (Cepeda and Murcia, 1988; Godoy
et al., 1997; Huggel et al., 2007). Operative in 2011 (Thiebes, 2012), no
further information on the functionality of the system was available to
us at the time of writing. The LEWS used daily rainfall measurements
taken by twelve rain gauges, and ECMWF ERA-40 6 h rainfall re-
analyses from 1957 to 2002 at the centre of a 2.5° × 2.5° grid cell lo-
cated ∼ 60 km NE of the valley. A stochastic approach was used to
estimate the error associated to the ERA-40 rainfall reanalyses. Since a
threshold for possible landslide occurrence was not available for the
Combeima valley, and landslide and rainfall information to construct a
threshold was not available, the LEWS adopted the minimum global ID
threshold for shallow landslides and debris flows proposed by Caine
(1980). The system further used an optimized cost function considering
(i) the occurrence (or the lack of occurrence) of debris flows; (ii) the
costs associated to human losses in case of a debris flow event without
evacuation (“false negative”); and (iii) the costs of evacuation when
debris flows do not occur (“false positive”). In addition, the LEWS used
local geophones to detect debris flow activity in drainage channels of
the Combeima valley. This geophysical information was transmitted in
real time to the Regional Emergency Committee of Tolima, in Ibagué.

4.1.9. Java, Indonesia
Liao et al. (2010) described the design of a LEWS for Java, a

128,297 km2 island of Indonesia where rainfall induced landslides are
frequent (JAV, #9 in Figs. 1,2,3). The LEWS exploited satellite-based
precipitation estimates provided by the NASA Tropical Rainfall Mea-
suring Mission (TRMM), QPFs provided by a weather model, a statis-
tically-based landslide susceptibility assessment, and a modified version
of the physically-based SLIDE model for spatially-distributed slope
stability evaluation (Montrasio and Valentino, 2008). Where suscept-
ibility was deemed high or very high, the SLIDE model was run at
30 m× 30 m resolution using pre-defined values for the necessary
geometrical and mechanical properties of the slope terrains, forced by
measured and forecasted rainfall. At the time of writing, no information
is available on the status of this proposed LEWS.

4.1.10. Chittagong Metropolitan Area, Bangladesh
For the densely populated Chittagong Metropolitan Area (CHM,
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#10 in Figs. 1,2,3) of Bangladesh, where rainfall-induced landslides are
frequent and have repeatedly caused loss of lives and property, a team
of scientists from five countries operates a LEWS on a voluntary basis
(Ahmed et al., 2018). To prepare landslide forecasts, the LEWS exposits
three empirical rainfall thresholds, daily quantitative rainfall forecasts,
and a statistically-based landslide susceptibility zonation. Three ED
rainfall thresholds, for 24, 48, and 72-h accumulation periods, were
obtained from daily rainfall measurements in the 58-year period
1960–2017, and a record of 50 landslides in the same period, 14 of
which were used to definite the thresholds and 36 for their validation.
The daily rainfall forecasts are obtained from World Weather Online, a
global weather forecast provider. The landslide susceptibility zonation
was obtained from the same 50 landslides used to construct the
thresholds, and a set of eleven thematic maps showing morphology,
drainage, geology, soil and other environmental information, modelled
using an artificial neural network classification approach. The LEWS
produces landslide advisories heuristically, combining the rainfall
forecasts, in three classes, and the susceptibility zonation, also in three
classes. The worst scenario is when high cumulated rainfall is fore-
casted in a highly susceptible area. Less severe scenarios occur when
high cumulated rainfall is forecasted in medium or low susceptibility
areas, or when low or medium cumulated rainfall is forecasted in
medium or low susceptibility areas. Landslide advisories are made
available publicly on the web, and concerned citizens can also register
to receive 3-day landslide scenarios via e-mail. At the time of writing,
the LEWS was not adopted or endorsed by any public organization in
Bangladesh.

4.1.11. Southern Taiwan
In southern Taiwan, Wei et al. (2018) designed and tested a pre-

operational LEWS (STW, #11 in Figs. 1,2,3) that uses rainfall mea-
surements, a landslide susceptibility zonation, and empirical rainfall
thresholds. The rainfall measurements are obtained by a network of 96
rain gauges managed by the Taiwan Central Weather Bureau (CWB),
corresponding to an average density of one gauge every ∼77 km2. The
susceptibility zonation, in three classes of low, moderate, and high
susceptibility, was prepared through logistic regression modelling of
landslide and thematic information, adopting a slope unit terrain sub-
division. Rainfall thresholds were determined for each susceptibility
level through an historical analysis of past rainfall events with land-
slides, based on 3 h mean rainfall intensity (I3) and 24 h cumulated
rainfall (R24). The LEWS prepares landslide forecasts for each slope unit
based on an empirical matrix that combines rainfall intensity, I3 and
cumulated rainfall, R24. When the thresholds are reached or exceeded,
the system issues advisories adopting a 4-level scheme of increasing
severity. For the same severity level, the threshold values increase as
susceptibility decreases, and a larger (smaller) rainfall amount is ne-
cessary to issue an advisory in less (more) susceptible slope units. The
four advisory levels are linked to actions of increasing severity, namely,
no action for the “low” level, advisory messages sent to authorities and
the public for the “medium” level, recommended evacuation for the
“high” level, and mandatory evacuation for the “extreme” danger level.
The LEWS was validated quantitatively using three catastrophic
shallow landslide events occurred in 2016, and two past event in-
ventories. Results revealed the good forecasting performances of the
LEWS.

4.1.12. Emilia-Romagna, northern Italy
In 2006, the regional government of Emilia-Romagna was the first

in Italy to operate a regional LEWS to forecast landslides in their ter-
ritory (EMR, #12 in Figs. 1,2,3). SIGMA, jointly developed by the
University of Florence, the Geological Survey and the Civil Protection
Agency of the Emilia-Romagna Region (Martelloni et al., 2012;
Lagomarsino et al., 2013; Segoni et al., 2015a, 2018c), forecasts
shallow and deep-seated landslides using quantitative, 72 h rainfall
forecasts obtained from the COSMO-I7 numerical weather model, and

hourly rainfall measurements taken by originally 19 (Martelloni et al.,
2012) now 25 (Lagomarsino et al., 2013) automated rain gauges, each
representative of the rainfall conditions in the originally 19, now 25
geo-hydrological alert zones covering the region. Every day, and for
each alert zone, the LEWS compares against pre-defined, statistical
rainfall thresholds the amount of rainfall cumulated in 1 to 3-day
periods for shallow landslides, and in 4 to 245-day periods (eight
months) for deep-seated landslides (Martelloni et al., 2012). SIGMA
considers the effect of snow accumulation in the rain gauges, and of
snowmelt on the ground that can generate landslides in the Emilia-
Romagna region (Martelloni et al., 2013). The system adopts a 4-level
scheme of landslide “criticality” based on the expected number of
landslides in each alert zone, including “no landslides” (0 to 1 land-
slides), “low” (2–19 landslides), “moderate” (20–59), and “high” (≥
60). To enhance the forecast spatial resolution, the system uses a
100 m× 100 m grid-based landslide susceptibility map, in four classes,
obtained using a Bayesian, random forest approach used to model a set
of 25 morphometric and thematic variables (Segoni et al., 2015b). A
heuristic matrix is then used to modulate the landslide criticality levels
with landslide susceptibility, and a nested, 4-tier system is adopted to
prepare landslide forecasts at increasing spatial resolutions, from the
large geo-hydrological alert zones (tier 1), through mid (tier 2, hun-
dreds of km2) and high (tier 3, tens of km2) resolution for munici-
palities, to a very-high resolution (tier 4, 100 m × 100 m) used to
highlight where landslides are more likely during a storm (Segoni et al.,
2015b). The performance of SIGMA was evaluated for the 3-year period
2008–2010. Results showed that all the missed alarms and the majority
of the false alarms (84%) occurred in the lowest critical level
(Lagomarsino et al., 2013), and that the percentage of missed and
correctly forecasted landslides for each critical level was independent of
the local morphological and environmental settings (Martelloni et al.,
2012).

4.1.13. Piedmont, northern Italy
Since 2008, the regional government of Piedmont operates a re-

gional LEWS to forecast landslides in the mountains and the hills of
their territory (PIE, #13 in Figs. 1,2,3). Building on early work by
Aleotti (2004), the Piedmont Regional Environmental Protection
Agency developed and operates a suite of three complementary land-
slide forecasting systems, namely, the DEFENSE (Tiranti et al., 2014),
SMART (Tiranti and Rabuffetti, 2010) and TRAPS (Tiranti et al., 2013)
systems. DEFENSE (Tiranti et al., 2014) compares hourly, empirical ID
thresholds against rainfall intensity estimates obtained by a weather
radar, using a storm-tracking algorithm (Cremonini and Bechini, 2010;
Cremonini and Tiranti, 2018) and QPFs in good visibility areas, to
forecast the occurrence of channelized debris flows in small mountain
catchments. SMART (Tiranti and Rabuffetti, 2010) uses empirical ID
thresholds to forecast shallow landslides in the mountains and the hills
based on rainfall measured by a network of ∼ 400 rain gauges, cor-
responding to an average density of one gauge every ∼ 63 km2, and
precipitation forecasted by the COSMO-I7 numerical weather model.
The spatial-temporal landslide forecasts are modulated locally using a
1:100,000 scale landslide susceptibility map. Lastly, TRAPS (Tiranti
et al., 2013) compares cumulated rainfall thresholds against 60-day
antecedent cumulated precipitation and snowmelt to forecast the (re-)
activation of deep-seated translational and rotational slides common in
the hills of southern Piedmont. The three nowcasting and forecasting
systems are updated hourly, and the outcomes monitored through a
dedicated web-based interface. Automatic landslide advisories, in the
form of bulletins, are prepared at 13:00 daily for each of the eleven geo-
hydrological alert zones covering the region, adopting a 4-level ad-
visory scheme (“no significant phenomena”, “localized phenomena”,
“widespread phenomena”, and “abundant and widespread phe-
nomena”), and are delivered via email to civil protection and local
authorities, and via SMS messages to forecasters on duty. The predictive
performance of this complex LEWS was evaluated through a hindcast of
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two past events in 2013 (Devoli et al., 2018) and 2016 (Cremonini and
Tiranti, 2018). Results revealed that both events were forecasted suc-
cessfully, and that the forecasts proved valuable to decide appropriate
civil protection actions.

4.1.14. Umbria, central Italy
Since 2013, the regional government of Umbria operates a LEWS in

their territory (UMB, 14 in Figs. 1,2,3). The LANDWARN system
(Ponziani et al., 2013) operates at two geographical scales i.e., on 111
known and instrumented landslides, mostly in urban and sub-urban
areas; and on the entire regional territory. At the regional scale, every
hour LANDWARN analyses rainfall and temperature measurements
taken by a network of meteorological stations (i.e., an average density
of one station every ∼100 km2) in the previous 20 days, and quanti-
tative, 72 -h rainfall forecasts provided by COSMO-ME at 5 km × 5 km
resolution. The LEWS compares measured and forecasted rainfall with
pre-defined empirical ED thresholds, corrected considering soil
moisture conditions estimated by a soil water balance model, based on
the Green and Ampt (1911) infiltration model, using rainfall and tem-
perature information for the preceding 20 days. The LEWS prepares
near-real time, dynamic landslide risk scenarios combining measured
and forecasted rainfall data with a susceptibility zonation of Umbria, at
100 m × 100 m resolution, and with vulnerability information for dif-
ferent types of elements at risk, including roads, infrastructures, and
normal and strategic buildings. Using a 4-level advisory scheme of in-
creasing risk, the system publishes maps showing the estimated risk
levels in each grid cell. To our knowledge, no validation of the risk
scenarios or evaluation of the system performance was performed.

4.1.15. Tuscany, central Italy
In 2015, after two years of testing, the regional government of

Tuscany began operating a LEWS in their territory (TUS, #15 in
Figs. 1,2,3). Designed by the University of Florence to support decisions
of the regional civil protection authorities (Segoni et al., 2015a), the
LEWS uses near real-time rainfall measurements taken by 322 auto-
mated rain gauges, corresponding to an average density of one gauge
every ∼ 71 km2, quantitative rainfall forecasts provided by the COSMO
I5/I7 weather model at 7 km × 7 km resolution for 6, 12, 24, and 48-h
periods (Cacciamani et al., 2002), and 25 statistical ID thresholds, one
for each geo-hydrological alert zone in the Region, determined studying
rainfall records and information on more than 3000 landslides in Tus-
cany between 2000 and 2013 by Segoni et al. (2014) and Rosi et al.
(2015). Every hour and for each rain gauge, the LEWS cumulates the
measured and the forecasted rainfall for 6, 12, 24, and 48-h periods to
define four landslide scenarios. For each alert zone, a landslide advisory
is issued when the measured and the forecasted rainfall in at least one
rain gauge exceeds the corresponding threshold, for any of the four
scenarios. Civil protection personnel consult the forecasts through a
proprietary web-based interface, and use them to prepare and publish
daily bulletins showing landslide critical levels in each alert zone,
adopting a 4-level advisory scheme. To our knowledge, no validation of
the landslide risk scenarios or evaluation of the performance of the
system was performed.

4.1.16. Liguria, northern Italy, Apulia and Sardinia, southern Italy
The regional governments of Liguria, Apulia and Sardinia are testing

the pre-operational use of the SARF LEWS (LIG, SAR, APU; #16, 17, and
18 in Figs. 1,2,3). These are regional versions of the national SANF
LEWS (ITA, #21) presented in section 4.2.2. Testing of the systems
began in 2014 in Liguria, in 2017 in Sardinia, and in 2019 in Apulia.
The three LEWSs exploit rainfall measurements taken by regional rain
gauge networks, quantitative rainfall forecasts, ED rainfall thresholds,
and a common landslide susceptibility assessment. The three regional
LEWSs currently use hourly rainfall measurements taken by 341 rain
gauges in Liguria and in the surroundings alert zones (an average
density of one gauge every ∼ 16 km2), 95 in Sardinia (one gauge every

∼ 250 km2), and 223 in Apulia and in the surrounding regions (one
gauge every ∼ 91 km2), and quantitative rainfall forecasts for 3, 6, 12,
24, and 48-h periods provided by the Italian COSMO-I7 numerical
weather model at 7 km× 7 km resolution (shortly to become COSMO-
I5 at 5 km × 5 km resolution), updated twice daily. The system for the
Liguria region (#16) also exploits an ensemble of regional rainfall
forecasts (Corazza et al., 2018), and an improved rainfall field obtained
merging point rainfall measurements at the gauge locations and spa-
tially distributed rainfall estimates obtained by a weather radar
(Silvestro et al., 2009; Sinclair and Pegram, 2005; Pignone et al., 2013).
In Liguria, the LEWS uses a regional, statistical ED threshold obtained
studying 316 rainfall events triggering 381 landslides in the period
between October 2004 and August 2014. Pending the definition of re-
liable regional thresholds, in Apulia and Sardinia the LEWSs use a na-
tional threshold defined for Italy by Peruccacci et al. (2017). Finally,
due to the lack of specific regional susceptibility assessments, the three
LEWSs use the same grid-based, statistical landslide susceptibility
model used by the SANF national LEWS (#21).

Every hour, for their territory, the three LEWSs compute a “now-
cast”, through a weighted sum of the probabilities of landslide occur-
rence for 24, 48, 72, and 96-h antecedent rainfall periods; a “forecast”,
from the probabilities associated to rainfall forecasts for the next 3, 6,
12, 24, and 48 h; and a second “forecast”, combining the probabilities
associated with the antecedent rainfall and the rainfall forecasts,
modulated by landslide susceptibility. The “nowcasts” and the “fore-
casts” are prepared for each rain gauge, aggregated within each geo-
hydrological alert zone in the regions, and interpolated at 1 km × 1 km
resolution. The “nowcasts” and “forecasts” are made available to re-
gional civil protection forecasters using a dedicated web-based plat-
form. Evaluation of the LEWS prediction skills has started in Liguria by
comparing the system “nowcasts” and “forecasts” against the time and
location of 414 known landslides triggered by 230 rainfall events be-
tween April 2012 and September 2015. In Apulia and Sardinia, col-
lection of information on the past landslides is underway, and will be
used to evaluate the LEWSs performance adopting an hindcast ap-
proach.

4.1.17. Sicily, southern Italy
Since September 2017, the Civil Protection Department of the re-

gional government of Sicily operates HEWS (Brigandì et al., 2017), a
LEWS used to forecast rainfall-induced landslides in the island (SIC,
#19 in Figs. 1,2,3). Designed by the University of Messina (Brigandì
et al., 2017), HEWS uses two sets of empirical ED thresholds proposed
by Gariano et al. (2015) for Eastern and Western Sicily studying a re-
cord of 265 shallow landslides in Sicily in the 12-year period
2002–2012, and hourly rainfall measurements taken by a network of
169 rain gauges in the same period. To issue landslide advisories, HEWS
compares 48 -h QPFs for Sicily against the two sets of rainfall thresholds
for Eastern and Western Sicily, for three non-exceedance probability
levels (0.07, 0.20, 0.50, Gariano et al., 2015). The three thresholds,
corresponding to “ordinary”, “moderate”, and “high hazard” condi-
tions, are used to separate four levels of increasing severity, with each
level associated to a risk condition, and to specific civil protection
phases and actions. Once daily, based on the HEWS forecasts, the re-
gional civil protection office prepares a bulletin with landslide advisory
levels for the nine geo-hydrological alert zones in Sicily. The bulletins,
valid from 16:00 on the issuing day to 23:59 on the following day, are
made available to the public on a website. To our knowledge, no vali-
dation of the landslide advisories or evaluation of the LEWS perfor-
mance was executed.

4.2. National systems

4.2.1. Taiwan
Due to its geographical location and the geological and climatic

settings, Taiwan is highly prone to rainfall-induced landslides. It is
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therefore not surprising that the Taiwanese government has long been
interested in operational landslide forecasting and related early
warning. According to Wilson (2012), early attempts to establish an
EWS for debris flow warning in the island’s mountain areas began in the
early 1990s, but proved “disappointing”. The system often produced
false and missed alarms, and people living in debris flow prone areas
lost confidence in the system; which was terminated in 1998 (Wilson,
2012). Efforts resumed in 2000 when the Soil and Water Conservation
Bureau (SWCB) pooled with the National Cheng-Kung University and
the National Taiwan University to design and implement an operational
system to forecast the possible occurrence of rainfall-induced debris
flows in the island (TWN, #20 in Figs. 1,2,3). First, the potential of all
mountain catchments to generate debris flows in response to high in-
tensity rainfall was assessed, the torrents ranked, and the areas poten-
tially affected by debris flows delineated. Next, nine threshold values
for debris flow occurrence based on the “effective cumulated rainfall”, a
weighted sum of the event rainfall and the corresponding 7-day ante-
cedent rainfall, were established heuristically based on the analysis of
past events in catchments with different geomorphologic characteristics
and debris flow potential. The higher the threshold, the less debris flow
potential for the catchment.

Managed by the SWCB, the system was first used for evacuation
purposes in 2004, and at the time of writing is operational (Yin et al.,
2015, 2016; Lin and Yin, pers. comm. 2019). The system uses 10-min
accumulated rainfall taken by a network of> 300 rain gauges (two rain
gauges in each potential debris flow catchment), and quantitative
rainfall forecasts provided by the Ensemble Typhoon Quantitative
Precipitation Forecasts weather model (Hong et al., 2015), at a max-
imum 5 km × 5 km resolution, run by. Every hour, the system calcu-
lates the “effective cumulated rainfall” and compares the values against
the established thresholds. Every four hours, regular debris flow ad-
visories are issued for each village (0.05 ∼ 15 km2) in pre-defined
debris flow risk catchments. Additional advisories are issued during
typhoons or severe storms, depending on rainfall conditions. The ad-
visories are made available to central and local authorities, and to the
public using a 3-level scheme. Above a lower “no-warning” level, the
first advisory level (“yellow”) uses rainfall forecasts, and is issued to
invite people to leave the debris flow risk areas. The second advisory
level (“red”) uses rainfall measurements taken from rain gauges, and is
issued to force evacuation from debris flow prone areas. To maximize
the dissemination of the debris flow advisories, the SWCB uses multiple
media, including TV, radio, website, telephone, e-mails, fax, voice
broadcast, and SMS. The predictive performances of the system are
evaluated annually, using information on new debris flow events, and
reliability and accuracy indexes for the warning criteria (i.e., the
thresholds) and the advisories.

4.2.2. Italy
For the Italian National Civil Protection Department, CNR IRPI has

designed and manages SANF, a pre-operational LEWS for Italy (ITA,
#21 in Figs. 1,2,3) (Rossi et al., 2012a, 2018). Design of the Italian
LEWS began in 2008, and during ten years of testing and development
the system has undergone multiple changes. In the current version, the
LEWS uses hourly rainfall measurements, quantitative rainfall forecasts,
an ED rainfall threshold, and a grid-based, synoptic-scale landslide
susceptibility assessment to produce landslide “nowcasts” and “fore-
casts” for the whole of Italy. Hourly rainfall measurements are provided
by more than 2500 rain gauges available from various regional net-
works in Italy, corresponding to an average density of one gauge every
∼ 120 km2. Rainfall forecasts are provided by the COSMO-I7 numerical
weather model at 7 km × 7 km resolution (shortly to become COSMO-
I5 at 5 km × 5 km resolution), updated twice daily at 00-00 UTC and
12:00 UTC. Work is in progress to use rainfall estimates provided by a
national mosaic of 24 C-band and X-band meteorological radars, which
provide rainfall estimates updated every 15 min.

Designed to operate with multiple thresholds, the system currently

uses a single statistical ED rainfall threshold obtained studying rainfall
records and the location and time of occurrence of 2819 landslides in
Italy between 1996 and 2014 (Peruccacci et al., 2017). The threshold is
used to determine the probability of landslide occurrence for any given
set of cumulated rainfall and rainfall duration value, from 1 to 1212 h.
Finally, the LEWS uses a grid-based, 25 m × 25 m resolution statistical
landslide susceptibility assessment obtained modelling a set of geo-
morphological, event, and multitemporal landslide inventory maps
prepared by CNR IRPI, and small-scale morphometric, geo-lithological,
and land use / coverage terrain information. In the model, susceptibility
is given in probabilistic terms, and quantitative estimates of the model
skill and prediction performance, and of the model errors and un-
certainty were ascertained.

A team of 16 landslide forecasters with different backgrounds
manages SANF. Every hour, and for the entire Italian territory, the
LEWS computes one “nowcast” and two “forecasts”. The landslide
“nowcast” uses rainfall measurements obtained by rain gauges, and is
calculated as the weighted sum of the probabilities for 24, 48, 72, and
96-h antecedent rainfall periods, given the ED threshold. The first
“forecast” uses rainfall forecasts, and is calculated from the prob-
abilities associated to the rainfall expected in the next 3, 6, 12, 24, and
48 h. The second “forecast” combines the “nowcast” and the first
“forecast”, and modulates the result with landslide susceptibility. The
three probabilities of landslide occurrence – based on the measured and
the forecasted rainfall, and of landslide susceptibility – are multiplied,
assuming their statistical independence. The LEWS computes the
landslide “nowcasts” and “forecasts” for each single rain gauge. Next,
the probabilities at the point location of the rain gauges are aggregated
for each of the 134 geo-hydrological alert zones in Italy, and are in-
terpolated on a 5 km × 5 km national grid. Results are made available
to national civil protection forecasters using a dedicated web-based
platform, and are available as OGC services. SANF also provides an-
cillary information that can help landslide forecasters decide on the
severity and expected impact of a rainfall-induced landslide event. The
information includes e.g., the non-exceedance probability and the re-
turn period of measured cumulated rainfall for different periods, from 1
to 672 h (28 days), the location and magnitude of harmful landslide
events in Italy (Salvati et al., 2010, 2018).

The predictive performance of the LEWS was estimated in an ex-
ercise that hindcasted 412 landslides between March 2014 and
February 2017 for which accurate information on the time and place of
occurrence was known. Results revealed that the landslide “nowcasts”
were successful in predicting the time and location of the landslides,
whereas the 24-h “forecasts” suffered from the uncertainty inherent in
the forecasted rainfall.

A specialized version of the LEWS for the National Italian railway
company is being tested. Centered around the 17,727 km railway in-
frastructure, SANF RFI produces “nowcasts” and “forecasts” used by the
National railway company to help decide if and where trains should
reduce velocity, traffic should be stopped pending inspections, or to
plan for maintenance.

4.2.3. Norway
The Norwegian Water Resources and Energy Directorate (NVE)

operates a LEWS for Norway (NOR, #22 in Figs. 1,2,3) (Boje et al.,
2014; Devoli et al., 2015, 2018; Krøgli et al., 2018). The “Jord-
skredvarslingen” system is part of a larger EWS that covers floods and
snow avalanches, in addition to landslides. Development of the LEWS
began in February 2010, and following an experimental phase began in
January 2012, the system went operational in October 2013. The LEWS
uses (i) a complex set of measurements obtained by a national network
of monitoring stations; (ii) a suite of numerical forecast models; (iii) a
set of heuristic thresholds; and (iv) information on landslide suscept-
ibility. The monitoring network consists of ∼ 400 meteorological sta-
tions that measure hourly and daily precipitation, temperature, wind
speed and direction, and snow coverage and depth, ∼ 400 hydrological
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stations that measure river discharge, and snow depth and coverage,
and ∼ 80 hydrogeological stations to obtain point groundwater mea-
surements. The forecast suite consists of two meteorological models,
AROME MetCoOp (Müller et al., 2017) and an ECMWF model, the HBV
hydrological model (Bergström, 1995; Beldring et al., 2003), and the S-
Flow groundwater simulation model. The short-term AROME MetCoOp
forecast model, at 2.5 km × 2.5 km resolution, produces 3 and 24-h
weather forecasts and is used for the first three days of the landslide
forecast. The long-term ECMWF forecast model, at 9.0 km × 9.0 km
resolution, produces 24-h forecasts and is used for the longer period
forecasts, up to nine days. The HBV is a distributed hydrological model
that exploits observed and forecasted precipitation, and temperature
data used in Scandinavia to forecast river runoff, snowmelt, ground-
water, soil saturation, and soil frost. S-Flow is a one-dimensional soil
water and heat flow model developed by NVE to simulate water and
heat dynamics in a column of layered soil covered by vegetation. The
thresholds are geo-hydrological, and consider the relative (percentage
of annual mean) water supply vs. the relative soil saturation degree,
eventually modulated by landslide susceptibility. Minimum, average
and maximum thresholds were defined through expert judgment, ana-
lysing information on 206 historical landslides in Norway. As such, they
may not be easy to reproduce objectively (Krøgli et al., 2018). The
LEWS began operations using national thresholds for the whole of
Norway. Later, recognizing that soil saturation and soil moisture con-
ditions leading to landslides may differ geographically, regional
thresholds were added for Southern and Eastern Norway (Boje, 2017).
Information on landslide susceptibility includes a catchment scale sus-
ceptibility assessment for landslides in soils (Bell et al., 2014), and a
1:50,000 scale susceptibility assessment for debris avalanches and small
debris flows (Fischer et al., 2012, 2014).

The LEWS updates daily a national assessment of landslide hazard at
the regional scale (i.e., for each county and/or group of municipalities
in Norway) for rainfall and snowmelt induced landslides, including
shallow translational slides, channelized debris flows, debris ava-
lanches and slush flows. The heuristic assessment is given in four levels
of increasing dangerousness, represented by ramping colours nicely il-
lustrated by a footwear of increasing height and protection against
water and mud (fig. 7 in Krøgli et al., 2018), and is communicated to
the public through a bulletin, in Norwegian, and since January 2018
also in English. The assessments and updates are published on a dedi-
cated website at least twice daily, before 11:00 and before 15:00, de-
pending on weather conditions. Each landslide forecast and advisory
covers three days and is valid 24 h, from 07:00 on the day of issue to
06:59 on the following day (08:00 to 07:59 during daylight saving
time). The LEWS delivers updates to national and regional stakeholders.
Since early 2017, concerned citizens can subscribe to obtain advisories
for specific natural hazards, including landslides, notified via text
messages or e-mails.

A team of 14 experienced forecasters with different backgrounds
operates the LEWS, five of whom are also flood forecasters and two are
also snow avalanche forecasters. This favours a cross-hazard con-
sistency of the forecasts issued by NVE. The system operated on a 24-h,
7-day-a-week basis, with one forecaster on duty every day. Outside the
working hours, forecasters are “on call” from 08:00 to 21:00, and 24/7
during severe conditions. For their daily evaluations the landslide
forecasters use a single tool to visualize observations and forecasts as
thematic maps and time-series. The same information is available to the
public (http://www.xgeo.no/, in Norwegian). This fosters transpar-
ency.

A quantitative evaluation of the performance of the Norwegian
LEWS was conducted for the 4-year period 2013–2017, and revealed an
overall rate of correct daily assessments of over 95%, including days
when the weather was good and no landslide was expected (Krøgli
et al., 2018). A survey among users of the forecasts in the same period
yield positive feedbacks (Krøgli et al., 2018).

4.2.4. Central America and the Caribbean
Kirschbaum et al. (2015) described a prototype LEWS for Central

America and the Caribbean, an area of ∼480,000 km2 encompassing
nine countries (CAC, #23 in Figs. 1,2,3). This multi-national LEWS used
a small-scale landslide susceptibility zonation, in five classes, obtained
through a fuzzy logic approach applied to a set of coarse-scale (30
arcsec ×30 arcsec) thematic variables (Kirschbaum et al., 2016), and
satellite-based rainfall estimates, at 0.25° × 0.25° spatial, and 3 h
temporal resolutions provided by the Tropical Rainfall Measuring
Mission (TRMM) Multi-satellite Precipitation Analysis Real Time ver-
sion (TMPA-RT) (Huffman et al., 2007, 2010). Landslide “nowcasts”
were considered only where susceptibility was moderate to very high.
For these areas, the LEWS first computed the Antecedent Rainfall Index
(ARI) as a time-weighted average of the rainfall in the previous 60 days,
with the weights adjusted considering landslide reports. Next, it
checked whether the ARI was equal or greater than the 50th percentile
of the ARI calculated from daily TMPA estimates between 2000 and
2014. When the ARI was below the 50th percentile, landslides were not
expected, and “nowcasts” were not issued. When the ARI was equal to
or larger than the 50th percentile, the daily rainfall was considered.
Where daily rainfall was below the 50th percentile of the daily rainfall
in the period 2000-2014, landslides were not expected and “nowcasts”
were not issued. Where daily rainfall was in the range of percentiles
[50th–95th), the area was attributed a “moderate landslide hazard”,
and where daily rainfall was equal or larger than the 95th percentile,
the area was given a “high landslide hazard”. The “nowcasts” of the
expected landslide “hazard” were issued publicly via a dedicated
website, which has since been taken down (Kirschbaum pers. comm.
2019).

4.2.5. Indonesia
Working with Deltares and the Muhamadiyah University

Yogyakarta, Balai Litbang Sabo (BLS), the Indonesian Sabo Research
and Development Center, has designed and operates a LEWS for
Indonesia, a country with more than 1.9 × 106 km2 of land area (IDN,
#24 in Figs. 1,2,3). System implementation began in 2016, and from
2017 the LEWS is operational, managed by BLS (Hidayat et al., 2019;
Mulyana et al., 2019). Using Delft-FEWS (Werner et al., 2013) as a
platform, the LEWS uses satellite rainfall estimates, quantitative rainfall
forecasts, and two empirical rainfall thresholds to prepare national
landslide forecasts at 0.25° × 0.25° latitude/longitude resolution. The
satellite-based rainfall estimates are taken from TRMM. Quantitative
rainfall forecasts are provided jointly by the Indonesia Research Centre
for Water Resources and the Indonesia Meteorological, Climatological
and Geophysical Agency. The two empirical rainfall thresholds were
determined by studying 83 past rainfall events with landslides, con-
sidering the cumulated rainfall in the day of the landslide, and in the
three days preceding the day of the landslide. Landslide advisories are
prepared only for areas considered landslide prone by the Badan Geo-
logi, the Geological Agency of Indonesia.

Twice weekly, on Tuesday and Friday, the LEWS issues new ad-
visories for the next four days. When none of the two thresholds is
exceeded, no advisory is issued. When one or the other of the two
thresholds is exceeded, a “yellow warning” is given; and when both
thresholds are exceeded, a “red warning” is issued. To support the de-
cision to issue a “red warning”, the USGS TRIGRS regional slope sta-
bility model (Baum et al., 2008, 2010), forced by 6-day TRMM cumu-
lated rainfall estimates, is run at nine locations in Java and Sumatra for
which soil data are available. If the computed factor of safety in the
model areas falls below 1.2, a “red warning” is issued. The landslide
advisories are disseminated publicly on a dedicated web site (http://
202.173.16.248/status_longsor.html). In addition, BLS manages a
WhatsApp group for national and local authorities. At the time of
writing, the LEWS is not validated, but efforts are underway to collect
systematic information on landslide occurrence, which will be used for
validation and performance evaluation (Sutanto 2019, pers. comm.).
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4.2.6. Scotland
The British Geological Survey (BGS) has designed and manages a

LEWS for Scotland (SCT, #25 in Figs. 1,2,3) (Reeves and Freeborough,
pers. comm. 2019). Established in 2017, the LEWS relies on a con-
ceptual, spatially distributed Water Balance Model (WBM) with cali-
brated parameters that assesses the temporal and spatial variations of
the soil moisture conditions in the near-surface. The assumption is that
the likelihood of rainfall-induced shallow landslides depends upon the
moisture conditions in the soil mantling the landscape, and on how
much rain is expected for the following day. The BGS soil Parent Ma-
terial Model (Lawley and Smith, 2008) is used to decide the dominant
soil types at the near-surface, and their physical, mechanical and hy-
drological characteristics.

The WBM is run twice daily, approximately every 12 h, depending
on the transfer times of the near-real time data, at 1 km × 1 km grid
resolution, using 24 h cumulated rainfall obtained by meteorological
radars, and temperature and relative humidity measurements provided
by the UK Met Office. The model estimates the effective rainfall and the
potential soil moisture antecedent conditions in the upper one meter of
the landscape’s soil profile. The modelled soil moisture is then eval-
uated against 24-h ensemble rainfall forecasts, also provided by the UK
Met Office, to produce forecasts of the potential water stress in the
landscape. Three threshold curves are used to represent transitions
between four zones of stressed landscape potential, considered a proxy
for the likelihood of shallow landslide occurrence. The threshold levels,
which indicate indicative levels of soil saturation, were generated from
dated landslide events in Scotland available from the Great Britain’s
National Landslide Database (Foster et al., 2011; Pennington et al.,
2015).

The LEWS does not issue automatic advisories. Instead, BGS land-
slide forecasters compare the WBM probability forecasts to suscept-
ibility and vulnerability maps, and prepare heuristic daily landslide
advisories, valid for next 24 h, using a scheme of increasing landslide
hazard impact consistent with the 4-level scheme adopted by the UK
Natural Hazard Partnership to issue their Daily Hazard Assessment
(DHA) for Great Britain, for twelve hazards, including landslides. The
landslide assessments are sent to the UK Met Office team that prepares
the DHA. When the assessment is “green”, the evaluation is not in-
cluded in the DHA; when instead the assessment is “yellow” or above,
details on the expected landslide hazard impact are included in the
DHA. The LEWS is under validation, and the threshold curves for the
zones of the stressed landscape potential are being tested (Reeves and
Freeborough, pers. comm. 2019).

4.3. Global systems

Hong and Adler (2007) were the first to propose a global LEWS for
rainfall and earthquake triggered landslides (GLB, #26 in Figs. 1,2,3).
The prototype LEWS worked at 0.25° × 0.25° grid resolution from
50 °N to 50 °S. For rainfall-induced landslides, it produced a dynamic
assessment of possible landslide occurrence using rainfall information
provided by TMPA-RT, which was evaluated every three hours against a
single, global ID rainfall threshold established using TRMM estimates
between 1999 and 2006 and ∼ 70 landslides globally in the same
period (Hong et al., 2006). When the ID threshold was exceeded in a
grid-cell, the LEWS used a synoptic-scale landslide susceptibility zo-
nation obtained through a heuristic, weighted linear combination of
elevation, slope, soil properties, and land cover landslide predisposing
factors (Hong and Adler, 2007) to predict landslide occurrence in the
two highest susceptibility classes.

Using information on 205 landslides in 2003, and 350 landslides in
2007, Kirschbaum et al. (2009, 2012) tested the predictive performance
of the global LEWS, which they found poor and which they attributed to
(i) the unreliability of the susceptibility zonation; (ii) the inability of the
satellite rainfall estimates to capture high intensity precipitation events;
(iii) the inadequacy of a single global threshold to predict landslide

occurrence in multiple geomorphological and climatological settings;
and to (iv) the incompleteness of the landslide catalogue used to define
the threshold. In an attempt to address these issues, Kirschbaum et al.
(2012) tested a modified version of the LEWS in four countries of
Central America. The modified system used a more accurate, statisti-
cally-based landslide susceptibility map and the empirical ID threshold
proposed by Guzzetti et al. (2008) for humid subtropical regions, to
produce landslide forecasts at the original (0.25° × 0.25°) and at a finer
(0.1° × 0.1°) geographical resolution that performed better than the
original global model of Hong and Adler (2007).

Building on this experience, Kirschbaum and Stanley (2018) in-
troduced the global Landslide Hazard Assessment model for Situational
Awareness (LHASA). The new global LEWS operates at 0.01° × 0.01°
grid resolution from 60 °N to 60 °S, and produces global landslide
“nowcasts” showing where and when rainfall-induced landslides are
likely. The LEWS uses 7-day daily rainfall estimates provided by the
Integrated MultisatellitE Retrievals for GPM (IMERG) and calculates the
ARI for the past 7 days using a weighted accumulation, a proxy for the
antecedent rainfall conditions (Crozier, 1999; Glade et al., 2000). The
model then considers a global landslide susceptibility map at
1 km × 1 km resolution prepared through heuristic fuzzy modelling of
landslide, slope, geology, distance to fault zones, presence of roads, and
forest loss geographical data (Stanley and Kirschbaum, 2017).

To combine the rainfall and susceptibility information, the system
uses a decision tree approach (Kirschbaum and Stanley, 2018). Every
three hours, LHASA updates the ARI at each pixel and compares it
against a rainfall threshold, defined as the 95th percentile of the ARI
calculated from daily TMPA rainfall estimates in the 15-year period
2000–2014 and subsequently transformed to use the IMERG estimates
based on GPM data (Stanley et al., 2017). When the ARI is below the
95th threshold, landslides are not expected and “nowcasts” are not is-
sued. When instead the ARI is above the threshold, susceptibility is
considered. Where susceptibility in a grid cell is “very low” or “low”,
landslides are not expected and “nowcasts” are not issued. Where sus-
ceptibility is “moderate-high” or “very high”, then the grid cells are
assigned a “moderate-high” or “high” hazard level, respectively
(Kirschbaum and Stanley, 2018). In a hindcast exercise, LHASA was
validated using TMPA estimates from 1 January 2007 to 31 December
2016 (3652 days), and IMERG estimates from 25 March 2014 to 2
October 2017 (1287 days), against 4930 landslides globally, and
against 384 fatal landslides in Nepal from 2007 to 2016. Results re-
vealed the acceptable performance of the new global LEWS. A current
limitation of LHASA lays in the inability to consider rainfall forecasts,
but efforts are underway to bridge this gap (Kirschbaum, pers. comm.
2019; Mirus et al., 2019).

5. Analysis

5.1. Geographical analysis

At the time of writing, only five nations, 13 regions and the me-
tropolitan areas of Chittagong, Hong Kong, Rio de Janeiro, and Seattle
benefit from LEWSs (Figs. 1,2). Collectively, these LEWSs cover a
minute percentage of the terrain potentially affected by landslides
globally (Nadim et al., 2006). Visual analysis of the global distribution
of fatal, non-seismically-induced landslides from 2004 to 2016 com-
piled by Froude and Petley (2018), and updated recently to cover the
period January 2004 – December 2017 (green dots in Fig. 2), reveals
that many regional and national LEWSs do not operate where fatal
landslides are numerous i.e., where landslide risk to the population is
high. The global system of Kirschbaum and Stanley (2018) fills in where
no alternative exists, but it cannot substitute for regional or national
LEWSs, chiefly because of inherent limitations in the considered vari-
ables, the inability of a simple model to describe the wide variety of
hillslope processes, and the difficulty of the IMERG rainfall estimates to
capture local intense rainfall events that generate landslides. We
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recommend that more national and regional LEWSs are implemented,
covering a larger proportion of the landmasses (Table 2).

Fig. 1 lists information on terrain elevation and relief where LEWSs
operate (or operated), which we jointly take as a loose proxy for the
variability and complexity of the topographic and morphological set-
tings in the LEWSs areas. We note that LEWSs were implemented in a
broad range of terrain elevations and relief, and we conclude that to-
pography and terrain morphology do not limit the implementation,
operation, and management of LEWSs. This is a positive conclusion for
operational landslide forecasting and early warning. However, terrain
morphology, mainly elevation, may affect the triggering factors and
local conditions of meteorologically-induced landslides. At high eleva-
tion and where climate is cold, snow and ice may condition the in-
itiation of landslides (Hungr et al., 2014). Only three regional LEWS
(#4, 12, 13) and the national system for Norway (#22) use information
on snowmelt and/or snow cover (Fig. 2). These are areas where
snowmelt induced landslides are known to occur. However, other
LEWSs in areas where snowfall is common and snowmelt induced
landslides occur do not use information on snow cover or snowmelt
(#3, 6, 14, 15, 16, 21, 25); and this is a problem that may degrade the
performance of the LEWSs.

Fig. 1 and the 26 boxes in Fig. 2 show the predominant climate type
in the areas covered by the LEWSs. To assign a climate to each LEWS,
we used the world climate map compiled by Peel et al. (2007) who
considered five Köppen-Geiger climate types i.e., tropical, arid, tem-
perate, cold, and polar. Of the 26 LEWSs, 21 were assigned a pre-
dominant climate type, four (#5, 13, 21, 22) a predominant and a
secondary climate type, and the global LEWS all climate types. Regional

and national LEWSs cover all the Köppen-Geiger climates, with the
majority of the systems (18) in the temperate climate, followed by the
tropical (6) and cold (3) climates (Fig. 4). One LEWS operates in the
arid climate of Southern California (#5), and the system for Norway
(#22) partly in a polar climate. Considering the areal extent covered by
the LEWSs, the majority of the area covered by the systems is in tem-
perate (72.0%) and tropical (24.0%) climates. Although the arid
(30.2%) and polar (12.8%) climates cover 43.0% of the landmasses,
landslides are more frequent and abundant in tropical (19.0%), tem-
perate (13.4%), and subordinately in cold (24.6%) areas (Nadim et al.,
2006). This is matched by the proportion of the area of the LEWSs in the
main climate types.

Geology and seismicity are known to condition the distribution and
abundance of non-seismically-induced landslides (Vanmaercke et al.,
2014, 2017). To assign a prevalent geological domain to each LEWS, we
used the generalized global geological map compiled by Chorlton
(2007), who considered five main rock type domains i.e., igneous,
metamorphic, sedimentary, tectonic, and volcanic rocks; and to attri-
bute to the LEWSs a seismicity level, we used the Global Seismic Hazard
Map of Giardini et al. (2003), in four classes (Fig. 4). We found, that the
regional and the national LEWSs were implemented in all the geological
domains, and primarily in sedimentary (55.0%) rocks and sub-
ordinately in volcanic (20.0%) and metamorphic (17.5%) rocks. Simi-
larly, we found that LEWSs were implemented in all seismic classes, and
are more numerous in the medium (36.0%) and the high (28.0%)
classes, followed by the low (20.0%) and the very high (16.0%) seis-
micity classes. Considering the areal extent covered by the LEWSs, the
majority of the systems were implemented in sedimentary (46.8%) and

Table 2
Recommendations for the further development and improvement of geographical LEWSs, and to increase their reliability and credibility.

We recommend to: Section

Establishment and operation of LEWSs
1 Deploy and manage regional and national LEWSs covering large parts of the continents. 5.1
2 Increase rate of LEWS deployment. Cover large areas rapidly with national LEWSs. 5.2
3 Maintain existing LEWSs. Extend their operational life. 5.2
4 Implement new LEWSs where landslide risk to the population is high. 5.2

Landslide and rainfall data
5 Collect accurate information on the time of occurrence of landslides. 6.1
6 Establish strategies for landslide and rainfall data collection. 6.1
7 Improve quantification and comparison of landslide triggering rainfall fields. 6.1
8 Address incompleteness and non-stationarity of landslide and rainfall records. 6.1
9 Use multiple sources of rainfall information. Consider source type and uncertainty. 5.3

Landslide models and advisories
10 Define and use standard methods to define landslide threshold models. 6.1
11 Define and use open criteria to decide the number of the threshold models. 6.1
12 Define and use open criteria to evaluate landslide forecast models. 6.1
13 Explain how susceptibility is used in operational LEWSs. 5.3, 6.2
14 Use sound probabilistic approaches for landslide models, forecasts and advisories. 6.2
15 Address the role of climate and environmental changes on landslide forecast models. 6.1

LEWS evaluation
16 Consider uncertainties in landslide models, forecasts and advisories. 5.3
17 Consider lack of landslide information when evaluating forecasts and advisories. 5.3
18 Use optimization procedures to decide and revise advisory levels. 5.3, 5.5
19 Advance and use clear and open criteria to evaluate the LEWS skills and performance. 5.3, 6.4
20 Assess consequences of using external or general advisory schemes. 5.4, 6.3
21 Evaluate all parts of a LEWS using appropriate tools and criteria. 6.4

LEWS management
22 Log LEWS system activity and events systematically. 5.3
23 Integrate site specific monitoring and physically-based models in LEWS. 6.2
24 Improve all aspects and components of existing landslide forecast models and LEWS. 6.5
25 Share openly landslide models, advisory systems and LEWSs frameworks. 6.5
26 Use of long-range weather forecasts for seasonal landslide forecasting. 6.5
27 Use multiple models for landslide forecasts and advisories. 6.5

Communication and dissemination
28 Use simple, common, standard vocabulary for advisory and messages. 5.5, 6.3
29 Define open standards for LEWSs design, implementation, maintenance, evaluation. 6.5, 7
30 Landslide community to decide on and disseminate open standards for LEWSs. 7
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volcanic (46.7%) rocks, followed by metamorphic rocks (14.7%); and in
the medium (68.6%) seismicity class, followed by the very high
(16.7%), high (12.8%), and low (1.9%) seismicity classes.

From this geographical analysis, we conclude that LEWSs can be
deployed and operated virtually everywhere in the world, without any
morphological, climate, geological, seismic, or tectonic constraint
(Fig. 4).

5.2. Temporal analysis

Only two years after the visionary description of an operational
LEWS proposed by Campbell (1975), the first prototype system was
established in Hong Kong (Chan et al., 2003; Choi and Cheung, 2013;
Wong et al., 2014), followed seven years later by the system in the San
Francisco Bay area (Keefer et al., 1987) (Fig. 3). The year after the
system in the SFBA was terminated (1995, Wilson, 2012), a new system
was launched in Rio de Janeiro (1996), followed a year later by the
LEWS for Western Oregon (1997). At the turn of the millennium, the
systems in Hong Kong (#1), Western Oregon (#3), and Rio de Janeiro
(#7) were the only three operational LEWSs, globally (Fig. 3). Only in
the mid of the first decade of the new century new LEWSs became
operational in Taiwan (#20), Seattle (#4), and Southern California
(#5). At about the same time, Hong and Adler (2007) experimented

with the first global LEWS. In 2015, the year of the Sendai conference
that called for a renewed effort to use EWSs as cost-effective tools to
mitigate the consequences of natural hazards (UNISDR, 2015; Teisberg
and Weiher, 2009; Rogers and Tsirkunov, 2010; Alfieri et al., 2012), 17
LEWSs were operational, pre-operational or in their design phase,
globally (Fig. 3); in the Hong Kong and the Rio de Janeiro metropolitan
areas, and in six nations (Colombia, Indonesia, Italy, Norway, Taiwan,
USA).

Since 2005, due to increased data availability and technological
readiness, and an augmented interest amongst landslide scientists and
with decision makers, the number of LEWSs has increased at a rate of
about one new system every year, further increased to 1.5 new systems
per year in the last five years (Fig. 3). This is positive; but we note that
at the present rate it will take several decades before a significant
portion of the landmasses potentially affected by landslides will be
covered by regional or national systems. We recommend the pace of
LEWS deployment be increased, focusing on national LEWSs – which
allow coverage of large areas more rapidly – and where landslides risk
to the population is high or very high (Nadim et al., 2006; Froude and
Petley, 2018; Haque et al., 2019; Rossi et al., 2019) (Fig. 2, Table 2).

Campbell (1975); Wieczorek et al. (1983); Brand et al (1984);
Malone (1988); Wiley (2000); Einstein and Sousa (2006), and Piciullo
et al. (2018) have noted that in many areas LEWSs were established
after major landslide disasters. If this was acceptable in the early years
of LEWSs design, the harmfulness of landslides and the global relevance
of the landslide problem are now clear (Nadim et al., 2006; Petley,
2012; Froude and Petley, 2018; Haque et al., 2019), as is the potential
effectiveness of LEWSs (Baum and Godt, 2010; Wilson, 2012; Krøgli
et al., 2018). We argue that there is no reason for waiting further dis-
ruption and, in line with the Sendai Framework for Disaster Risk Re-
duction (UNISDR, 2015) and European recommendations (Alfieri et al.,
2012), we advocate that new LEWSs are established wherever possible
(Table 2).

Hong Kong has the longest-lived LEWS that has been operational for
more than 40 years, followed by the system in Rio de Janeiro that has
been running for more than 20 years (Figs. 1,3). Of the other LEWSs, six
have been operational or pre-operational for ten or more years, six for
five to ten years, and six for less than five years. The limited number of
LEWSs active for long periods (two or more decades) limits the possi-
bility to evaluate and compare the performances of the systems, and to
execute reliable cost-benefit analyses. It also limits the assessment of
the effects of climate and environmental changes on the systems and
their performances (Wilson, 2012; Gariano and Guzzetti, 2016). We
therefore recommend that existing LEWSs are maintained to extend
their operational period (Table 2).

We further note that three LEWSs ceased in the 42.5-year examined
period (Fig. 3); of which the USGS–NWS LEWS for the SFBA (#2) was
the only one that was dismissed due to lack of human and economic
resources, and motivation (Wilson, 2012). Other dismissed LEWSs (#6,
23) were design, proof of concept or prototype systems, or were man-
aged by university or research groups that lacked a mandate and the
motivation for the long-term management of the LEWSs. The first
global system by Hong and Adler (2007) was discontinued, but replaced
by the new LHASA global system of Kirschbaum and Stanley (2018). We
note that, with the exception of the initial attempt in the early 1990s in
Taiwan (Wilson, 2012), none of the pre-operational or operational
systems managed by government organizations was terminated. We
conclude that once a LEWS is established and is properly managed in a
region or nation, the system proves useful and it is maintained.

5.3. Data and forecast models

All the examined LEWSs use rainfall information, including mea-
surements from rain gauge networks (20, 76.9%), forecasts obtained
from numerical weather models (21, 80.8%), nowcasts obtained from
weather radars (7, 26.9%), and satellite-based rainfall estimates (4,

Fig. 4. Donuts show percentage of count of LEWSs in (upper) the Köppen-
Geiger climate types of Peel et al. (2007), in five classes; (centre) the main
geological types of Chorlton (2007), in five classes; and (lower) the seismicity
levels of Giardini et al. (2003), in four classes.
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15.4%) (Fig. 5A). The majority of the LEWSs (16, 61.5%) rely on two
sources of rainfall information, five (19.3%) on three, and five (19.3%)
on a single source (Fig. 5B). The most common combinations are
rainfall measurements and forecasts (12, 46.2%), and rainfall mea-
surements, forecasts, and nowcasts (5, 19.3%), but examples exist of
LEWSs that use nowcasts and forecasts (#25), or rainfall measurements
and radar nowcasts (#1). We conclude that LEWSs can operate with
different sources of rainfall information and with combinations of
rainfall measurements, estimates, and forecasts. We further note that
most LEWSs do not consider the inherent uncertainty associated with
rainfall measurements, forecasts, nowcasts or satellite estimates. An
exception is the regional system for Liguria (#16) that uses an ensemble
of rainfall forecasts and produces ensembles of landslide forecasts,
whose spread measures the uncertainty in the forecasts. We recommend
that the LEWSs exploit multiple sources of rainfall information, con-
sidering the characteristics and uncertainties typical of the sources
(Table 2).

A few LEWSs use information on soil moisture and soil wetness (#2,
4, 22), snow cover or snow depth (#4, 22), surface air temperature
(#14, 22), and burnt areas (#5). In Seattle (#4), recent studies using
soil moisture and pore-water pressure conditions lead to the definition
of hydrological thresholds that proved more accurate than the old

thresholds (Mirus et al., 2018a, 2018b). The new hydrological thresh-
olds are not used operationally in the LEWS yet. We encourage land-
slide forecasters to use information on transient events or processes that
can change the propensity (“susceptibility”) or the frequency of land-
slide occurrence, including e.g., snow coverage, temperature (for eva-
potranspiration and rapid snowmelt), recently burnt areas, forest clear-
cutting, and other land use/cover changes.

All the examined LEWSs adopt models for their landslide
forecastsLEWSs (76.9%) use rainfall threshold models, and seven
(26.9%) physically-based models (Fig. 5C), including distributed slope
stability models (#9, 24), soil water balance models (#14, 22, 23, 26);
one system (#25) uses both distributed slope stability and soil water
balance models. Of the 20 systems that use rainfall threshold models,
the majority (12, 60%) use one empirical threshold type, five two
threshold types (25%), and three systems three threshold types (15%)
(Fig. 5D). The most common threshold type is the mean rainfall in-
tensity–rainfall duration (ID), followed by the cumulated event rain-
fall–event rainfall duration (ED) (Guzzetti et al., 2007). The SANF and
SARF LEWSs in Italy adopt a probabilistic approach based on a 50% ED
non-exceedance probability threshold (Rossi et al., 2018), and the
LEWS for North Vancouver (#6) uses a regression model built from 25
rainfall variables to discriminate rainfall conditions that cause and do

Fig. 5. Threemap charts show proportions of LEWSs for:
(A) the type of source of the rainfall data, in four classes
(rain gauge measurement, weather forecast, radar now-
cast, satellite estimate); (B) the number of sources of
rainfall data, in three classes (one, two, three sources); (C)
the type of landslide forecasting models, in three classes
(threshold model, physically-based model, both model
types); (D) number of thresholds used, in three classes
(one, two, three thresholds); (E) landslide susceptibility
model types, in three classes (statistical classification
model, physically-based model, both model types, no
model used); and (F) the verification procedures used, in
four classes (qualitative, quantitative, both, underway at
the time of writing). Boxes are colored based on the LEWS
geographical coverage: red, regional; blue, national;
purple, global.
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not cause debris flows (Jakob et al., 2012). Although it is known that
statistical and physically-based models have (often large) uncertainties
(Peruccacci et al., 2012), none of the examined LEWSs incorporate
uncertainty in their landslide forecasts. We recognize that this is not
easy to do, but we encourage landslide forecasters to incorporate and
propagate model uncertainties in their forecasts (Table 2).

When a landscape is forced by rainfall, one expects landslides to
occur with less or more probability depending on susceptibility (Brabb,
1984; Guzzetti, 2006; Reichenbach et al., 2018). This is true assuming
the rainfall trigger is homogeneous; a condition that seldom occurs. In
fact, the likelihood of rainfall-triggered spatial landslide occurrence
(i.e., susceptibility) depends on the transient rainfall forcing and the
terrain conditions (Lombardo et al., 2018). Thus, susceptibility is im-
portant for landslide forecasting. Of the 26 examined LEWSs, 18
(69.2%) used and eight (30.8%) did not use information on landslide
susceptibility. Of the LEWSs that used susceptibility, twelve (46.2%)
obtained the information from statistically-based models, three (17.6%)
used expert-based evaluations, three (17.6%) a physically-based ap-
proach (Fig. 5E). The LEWS for Scotland (#25) uses spatially dis-
tributed soil moisture / water content estimates, which are dynamic
proxies for susceptibility.

The examined systems exploit information on landslide suscept-
ibility in different ways, depending e.g., on the extent of the area
covered by the LEWS, and the type and scale of the susceptibility in-
formation. In the SFBA, the LEWS used expert opinion to help select the
appropriate threshold (Wilson, 2012). In Taiwan, for the national LEWS
(#20) mountain catchments were ranked based on their propensity to
generate debris flows (Yin et al., 2015, 2016), whereas the regional
system uses susceptibility to group slopes in three classes for which
separate thresholds are used (Wei et al., 2018). The LEWS for Chit-
tagong (#10) uses susceptibility with forecasted rainfall in an expert-
based matrix to select from different landslide scenarios. In Umbria
(#14), the LEWS uses susceptibility together with rainfall and vulner-
ability information to prepare dynamic landslide risk scenarios
(Ponziani et al., 2013). In Italy, the national LEWS (#21) and the re-
gional systems for Liguria, Sardinia, and Apulia (#16, 17, 18), use a
probabilistic susceptibility assessment to modulate the landslide fore-
casts based on measured and forecasted rainfall. They can also show
“non-susceptible” landslide areas (Marchesini et al., 2014) to help in-
form landslide forecasters. The LHASA global LEWS (#26) uses a pre-
defined decision tree to combine a 1 km × 1 km resolution suscept-
ibility assessment to the TMPA rainfall estimates (Kirschbaum and
Stanley, 2018). Overall, use of susceptibility information in the ex-
amined LEWSs is not always clear. For this reason, we reiterate the
recommendation of Reichenbach et al. (2018) who encouraged in-
vestigators to be explicit when describing how susceptibility is com-
bined with rainfall measurements, estimates, and forecasts in opera-
tional LEWSs (Table 2).

Evaluation (or verification) is an important, often overlooked task of
any system that attempts to forecast natural events, including landslides
(NOAA-USGS Debris Flow Task Force, 2005; Baum and Godt, 2010;
Piciullo et al., 2018). Our analysis revealed that the majority of the
LEWSs (20, 76.9%) have undergone (or are under) some form of eva-
luation, including ten (38.5%) with a quantitative evaluation, three
(11.5%) with a qualitative verification, two (7.7%, #16, 21) with both
quantitative and qualitative evaluations of the forecasting skills, and
five (19.2) for which the verification has started or is in progress
(Fig. 5F). Albeit this is a positive result, it reveals that one national and
seven regional systems are operated with no evaluation of their fore-
casting skills. We note that no standard method exists to perform the
quantitative or qualitative evaluations. Gariano et al. (2015) and papers
in Segoni et al. (2018a, 2018b) discussed the inherent difficulty in
evaluating the performances of rainfall thresholds, due primarily to the
lack of accurate and complete information on landslide occurrence, and
Calvello and Piciullo (2016) proposed a standard procedure for the
assessment of the performances of a LEWS. We recommend that

landslide forecasters consider the possible (or probable) lack of accu-
rate landslide information when evaluating their forecasts. Event
landslide inventory are often incomplete, or are affected by systematic
biases e.g., along roads or in populated areas (Van Den Eeckhaut and
Hervás, 2012). New advances in detecting event-triggered landslides
(Mondini et al., 2019) may improve our ability to validate LEWSs, and
to quantify their performances. Exploitation of social media, through
various ways of manual or automatic harvesting of information, may
prove a valuable alternative (Kirschbaum et al., 2010, 2015; Baum
et al., 2014; Calvello and Pecoraro, 2018; Froude and Petley, 2018;
Juang et al., 2019). We further recommend that landslide managers
evaluate the systems using the approach proposed by Calvello and
Piciullo (2016), or a similar one (Park et al., 2019). Lastly, we en-
courage LEWS managers to perform, preferably quantitative, systematic
logging and evaluations of the LEWS adopting a common set of eva-
luation criteria (Table 2).

5.4. Operational framework

To analyze the LEWSs operational framework, two issues are im-
portant. First, whether the LEWS operates continuously, like a weather
forecast system, or “on demand”, when the need arises. Second, whe-
ther the LEWS runs automatically, or it requires expert intervention.
Intermediate conditions exist, and we use the four cases identified
above for descriptive purposes.

Most of the examined LEWSs operate continuously, and provide
model outputs and advisory information at predefined time intervals
(mostly daily) and fixed times, determined based on organizational
constraints (e.g., the need to issue a bulletin at a given hour). During
storms or severe weather conditions, or when landslides are expected,
some of the LEWSs can run additional or specific forecast models (#1,
20, 24), and extra personnel are informed or called on duty (#13, 22).
Most of the LEWSs increase the frequency of their advisories or issue a
new advisory when a higher level is reached or exceeded, or they give
updates; but exceptions exist. The LEWS for the SFBA (#2) was oper-
ated only when the seasonal conditions and the weather forecasts were
deemed favourable to the initiation of shallow landslides and debris
flows (Keefer et al 2010; Wilson, 2012). The national LEWS for Italy
(#21) and the regional systems for Liguria, Sardinia, and Apulia (#16,
17, 18), adopt an intermediate approach, and operates in two modes: a
standard mode that automatically provides a new landslide forecast
every hour, valid for the next 24 h; and a monitoring mode, that allows
forecasters to examine the evolution of the landslide forecasts during a
storm. The difference between “on demand” and continuously oper-
ating systems is reflected in the operational costs and in the perfor-
mances of the systems.

Selection between “automatic” and “manual” systems depends on
multiple issues, including e.g., landslide location, abundance, and
types, location, type, number, and value of the elements at risk, re-
sponse capacity, and on the LEWS characteristic time (Baum and Godt,
2010; Chae et al., 2017; Capparelli and Versace, 2011; Versace et al.,
2018) i.e., the time required for possible effective responses to an ad-
visory. Since the latter is a particularly relevant information, we sear-
ched for it in the examined LEWS. However, we did not find quanti-
tative, or even qualitative or anecdotal information on how long the
systems can provide advance warning i.e., the lead-time between an
advisory and the landslide occurrence. For geographical LEWSs, fore-
casters and managers assume that the time between the landslide
forecast and the landslide onset or impact is sufficient to take appro-
priate risk mitigation actions (Baum et al., 2005; Chleborad et al., 2008;
Baum and Godt, 2010; Huggel et al., 2010; Jakob et al., 2012; Chae
et al., 2017; Versace et al., 2018).

The scientists who designed and managed the LEWS for the SFBA
(#2) recognized that their system could not operate automatically, and
that expert judgement was required to assimilate the complex and
changing rainfall, and landslide information to make an informed
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decision about the potential hazard, and choose the appropriate ad-
visory (Wilson, 2012). This is the choice of most regional and national
LEWSs, for which a landslide advisory is the result of a supervised
process involving consultation and expert judgement. An exception is
the global system of Kirschbaum and Stanley (2018) (#26) – and pre-
viously the global system of Hong and Adler (2007), and the LEWS for
Central America and Caribbean (Kirschbaum et al., 2015) (#23) – that
provide automatic forecasts and related advisories. This is justified by
the extent of the geographical area covered by the global LEWS that
does not allow for supervised forecasts. Another exception is the LEWS
for Chittagong (#10) that adopts an automatic, unsupervised procedure
to prepare the forecasts and issue the advisories. The LEWS for Pied-
mont (#13) distributes automatic advisories to civil protection per-
sonnel, local authorities, and forecasters on duty.

5.5. Advisory systems

Preparation and dissemination of timely and meaningful informa-
tion is a crucial task for any LEWS (Sorensen, 2000; Baum and Godt,
2010; Huggel et al., 2010; Wilson, 2012; Chae et al., 2017); an exercise
of decision making under uncertainty (Polasky et al., 2011;
Dimitrakakis and Ortner, 2019). The task poses a threefold problem.
First, one has to select to whom to address the advisory (the “audi-
ence”). Second, one has to select the number of advisory levels, which
depend on the audience, the uncertainty associated to the forecast, and
the capability to make decisions based on inherently uncertain fore-
casts. Third, one has to decide the content and scope of the messages for
each advisory level, which also depend on the audience, the confidence
on the forecasts, and the ability to make decisions under uncertainty.

The 26 LEWSs use from two to five advisory levels to address three
main “audiences”, namely (Fig. 6): (i) an internal audience, when the
forecast information is used only by those who manage the LEWS and is
not distributed outside of the forecasting team; (ii) the authorities,
when the forecast information is given to the authorities mandated to
decide and take actions (e.g., civil protection personnel, elected or
nominated authorities, infrastructure or asset managers); and (iii) the
public, when the information is open to the public. Most regional and
national LEWSs adopt an escalating approach. The information is first
used internally to analyse the situation and make decisions (e.g., per-
form other analyses, change the monitoring frequency, consult with
experts, call additional personnel). When pre-defined thresholds are
reached or exceeded, or based on consultation, the information is then
passed to the authorities, who may take actions, including the dis-
semination of the forecast information to the public.

Fig. 6 shows that two systems (#8, 9) use a two-level advisory
scheme for internal use (#8 also to advice authorities), and only one
system (#10) uses a two-level scheme for issuing public messages. Si-
milarly, only one LEWS (#6) adopted a five-level scheme to address the
general public. Most LEWSs use four or three advisory levels, with more
levels used for public advisories than for internal use. We maintain that
the use of three to four advisory levels is a reasonable compromise
between the complexity and uncertainty of operational landslide fore-
casting, and the need to provide effective information to authorities and
the public, who typically are not landslide experts (Wilson, 2012). Use
of a small number of advisory levels helps the evaluation of and can
increases the forecasting skills of a LEWS, and Piciullo et al. (2017a,
2017b) have proposed an optimized selection of the levels based on the
EDuMaP method (Calvello and Piciullo, 2016). We note that none of the
examined LEWSs has determined their advisory levels through an op-
timization procedure. This may be because the advisory levels are
dictated by organizational or legal constraints, or by the need to com-
bine the landslide advisories with those for other hazards in multi-risk
frameworks (Gunawan et al., 2017). We encourage landslide forecasters
and LEWS managers to decide or revise the number and characteristics
of the landslide advisory levels based on optimization procedures
(Table 3).

Usually, LEWSs adopt the international traffic light colour scheme
(green, amber, red), with the number of colours varying depending on
the number of the advisory levels. There are clear advantages in using
this scheme, and chiefly the fact that it is recognized and understood
worldwide. However, there are possible problems when the scheme is
used for landslide (or other hazards) advisories. First, colour blind
people (> 330 million, globally) may not see red and green colours, or
they may mix colours with red or green components. Second, “green” is
intuitively associated to “safe”, which is not what is meant by most
landslide advisory schemes (Table 3). In the UK, “green” means that
“landslides are not likely and there are no reports of landslides”; in
Norway it indicates “generally safe conditions”; and in Italy the “ab-
sence of significant predictable phenomena, although small landslides
and rockfalls cannot be excluded locally.” In all these cases, landslides
can occur even in the “green” level condition. Given the landslide
variability (Guzzetti et al., 2012; Hungr et al., 2014) and the un-
certainty in landslide forecasting, this is reasonable for landslide ex-
perts, but it may not be easy for citizens or non-experts to understand.

Analysis of the content and efficacy of the messages issued by the
LEWSs is outside the scope of this work. However, we note that the
content and type of messages vary substantially (Keefer et al., 1987;
Wilson et al., 1993; Wiley, 2000; Wieczorek and Glade, 2005; NOAA-
USGS Debris-Flow Task Force 2005; Baum and Godt, 2010; Wilson,
2012). With a few exceptions (e.g., Norway, Taiwan), the information is

Fig. 6. Relationships between the number of advisory levels (from 2 to 5), in
four classes, y-axis, and the distribution level of the landslide advisories, in
three classes (internal distribution, distributed to the authorities, distributed to
the public), x-axis. Large external donuts show LEWSs geographical coverage,
in three classes: red, regional; blue, national; purple, global. Small internal
donuts show population density d, people per km2, in three classes: yellow,
d< 300; green, d ≤ 300 < 3000; purple, d ≥ 3000. Bold numbers in the
centre of each donut show LEWSs count.
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given only in the local language, and this may limit the comprehension
of the messages by tourists or foreigners.

The text of the first landslide warning issued by the USGS and the
NWS on 14 February 1986 for the SFBA was as follows (Keefer et al.,
1987):

“Due to continued very heavy precipitation in the Lexington Burn area of
the Santa Cruz Mountains, the USGS and NWS advise of an increased
hazard of mudslides and debris flows. This is based upon earth mea-
surements taken in the burn area by the USGS and estimated rainfall
from the Weather Service continuing at approximately 2 inches per 6
hours. If the precipitation rate increases to 3 inches per 6 hours or
more, the USGS advises that mudslides are possible throughout much of
the San Francisco Bay area. Persons living in the mountainous areas of
the Bay area should watch for earth slippage and be prepared to move to
safe ground.”

With 110 words, the message was very carefully written, and it
included all the important elements of an advisory (Baum and Godt,
2010). In the first sentence, it gave the trusted sources (“USGS and
NWS”) (UNISDR, 2015), and the type (“mudslides and debris flows”)
and reason (“continued very heavy precipitation”) for the threat. The
next two sentences provided the scientific evidence, and quantitative
measures to use the advisory in the next hours. The last sentence offered
advice (“watch for earth slippage and be prepared to move”). A similar
message is probably too long for modern media (635 characters, more
than twice the maximum length of a “tweet”); and today LEWSs prefer
short, concise, pre-coded messages, or they issue messages with dif-
ferent information levels.

We note that confusion exists on the language of the advisory levels.
As an example, for four-level schemes, the words “null”, “no land-
slides”, “no significant”, “low”, “no watch”, “normal”, “normal vigi-
lance” are used to describe the lowest level; “outlook”, “attention”,
“low”, “localized”, “medium”, “watch I”, “watch II”, “quiet”, for the
second level; “moderate”, “watch”, “high”, “warning”, “pre-alarm”,
“widespread” for the third level; and “warning”, “alarm”, “high”, “very
high”, “extreme”, “severe warning”, “abundant and widespread” for the
highest level. Some LEWSs link the advisory levels to the number of the
expected landslides; with the number and limits of the classes also not
common (Table 3). We recognize that adopting a common, standard
language for the levels and the messages may be difficult, as they may
depend on country or region specific organizational, liability, and legal
constraints. Nonetheless, we encourage LEWS managers to adopt a
standard vocabulary to define the advisory levels and the messages
associated to each level.

Lastly, we note that the LEWSs use a variety of media and strategies
to disseminate their advisories. In the 1980′s, the systems in Hong Kong
(#1) and the SFBA (#2) used messages broadcasted by TV stations.
Today, LEWSs exploit a wide range of media, including dedicated web
sites, text messages, emails, fax, instant text, image, audio and video
services, audio and video news for radio and TV stations, apps for
smartphone and tablets, and changing road signs.

6. Discussion and perspectives

Geographical LEWSs have proven valuable tools to forecast land-
slides operationally, and by means of their advisories they can con-
tribute to saving lives and reducing damage. But, LEWSs are complex
systems, and several issues with their design, implementation, man-
agement, and verification remain open. Here, we discuss what we
consider the most relevant open issues with LEWSs’ design, im-
plementation and management.

6.1. Landslide and rainfall data, and threshold models

LEWSs use different forms and combinations of rainfall data and
forecast models (Figs. 1,5), the latter determined based on the analysis

of landslide and rainfall data. This is not surprising, as rainfall is the
main trigger of landslides. Surprising is the fact that little attention is
given to the quality of the landslide and the rainfall data used to de-
termine and use the landslide forecast models.

Knowing the time of occurrence of landslides is of paramount im-
portance to determine a rainfall threshold; but it is often difficult due to
the lack of accurate information on the time or period of occurrence of
the landslides (Brunetti et al., 2010; Gariano et al., 2015; Peruccacci
et al., 2017; Peres et al., 2018). Use of uncertain or wrong temporal
landslide information may result in erroneous thresholds, in wrong
forecasts, and in flawed verifications. For thresholds determined heur-
istically (i.e., visually) or statistically, the number of observations is
important. Some of the thresholds are (or were) based on a very small
number of landslides. The threshold used for the Chittagong metropolis
was decided using 14 landslides (Ahmed et al., 2018), the threshold for
Rio de Janeiro using 65 landslides (D’Orsi et al., 1997), the threshold
for Indonesia with 83 landslides (Mulyana et al., 2019), and the
threshold used by Hong and Adler (2007) for their global LEWS using
∼ 70 landslides globally. A small landslide catalogue results in large
uncertainties and in potentially inaccurate, or wrong thresholds
(Kirschbaum et al., 2009, 2012). Efforts are needed to collect more
accurate information on the time of occurrence of the landslides, as this
will improve the prediction performance of the forecast models
(Table 2).

Essential to the definition of accurate rainfall thresholds is the
quality (i.e., abundance, distribution, accuracy) of the rainfall data.
With a few exceptions (Wilson, 2012), little is known about the quality
of the rainfall data used to define the thresholds, and for operational
landslide forecasting. This is puzzling, because it is known that rainfall
data can have significant spatial, temporal and quantitative un-
certainties (Nikolopoulos et al., 2014, 2015; Kidd et al., 2017). The
density and frequency of the rainfall data also have consequences on
the thresholds, and the forecast skills (Marra et al., 2015, 2017;
Sungmin and Foelsche, 2019). The rain gauge density used by the
LEWSs varies from one gauge every ∼ 10 (#1) to ∼ 800 (#22) km2,
and the temporal sampling from 5-min (#1) to daily measurements
(#8, 10) (Fig. 1). The rain gauge density influences the performance of
the LEWSs, and the large observed differences limits the significance of
the possible comparisons. The source of the rainfall data also conditions
the thresholds and their use. Rossi et al. (2012b, 2017) and Brunetti
et al. (2018) showed that rainfall thresholds can be determined using
satellite-based rainfall estimates, but the satellite-based thresholds are
different from similar thresholds prepared using rain gauge data in the
same areas. We argue that thresholds can only be used with the same
type of rainfall data used to prepare them (Rossi et al., 2017). This has
consequences for operational landslide forecasting, and for the eva-
luation of the LEWS performances. Efforts are required to improve the
quantification of landslide triggering rainfall fields, and to compare and
combine rainfall fields obtained from different sources e.g., rain gauge
measurements and radar estimates (Sinclair and Pegram, 2005; Pignone
et al., 2013), or satellite-based products (Huffman et al., 2010, 2015)
(Table 2).

A long-lived issue is the exportability of rainfall thresholds, which
proves difficult, forcing investigators to compile records of historical
landslides and spatially and temporally coincident rainfall data in each
new area (Govi and Sorzana, 1980; Wilson, 1997; Crosta, 1998;
Guzzetti et al., 2007, 2008; Baum and Godt, 2010). The difficulty is
now mitigated by tools that facilitate and accelerate the collection
(Calvello and Pecoraro, 2018) and the organization and management
(Napolitano et al., 2018) of landslide information, and of algorithms
and software to reconstruct rainfall events and to calculate rainfall
thresholds (Melillo et al., 2015, 2018; Baum et al., 2018). However,
even large datasets may not be sufficient to obtain reliable thresholds.
Peruccacci et al. (2017) segmented a catalogue of> 2200 rainfall
events with landslides in Italy and obtained 26 topographic, litholo-
gical, land-use/cover, climatic, and meteorological thresholds.
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Considering the uncertainties, the thematic thresholds overlapped in
the range of durations from one to 48 h of interest for operational
landslide forecasting, making it difficult to select and use the thresholds
operationally.

Little or no information is available on the methods and techniques
used to determine the thresholds used in the LEWSs. With a few ex-
emptions (#4, 16–18, 21), rainfall threshold models were defined
heuristically or using elementary statistics, and the uncertainties asso-
ciated to the models are rarely defined (Brunetti et al., 2010) and used.
This is surprising, as a forecast without uncertainty is of little use.
Model uncertainty has multiple sources, including the number, dis-
tribution, and accuracy of the empirical data points, the definition of
the rainfall conditions that initiate the landslides, and the methods used
to decide the thresholds. To address the issue, Rossi et al. (2012a);
Vessia et al. (2014) and Melillo et al. (2015) proposed methods, pro-
cedures, and algorithms for the objective reconstruction of rainfall
events responsible for landslides. Melillo et al. (2018) released software
for the automatic definition of rainfall thresholds and their un-
certainties, and Rossi et al. (2017) proposed methods and procedures to
propagate the rainfall measurement uncertainty to determine rainfall
thresholds and the associated uncertainties. Additional efforts are
needed to standardize the methods used to define the threshold models
(Table 2). Use of standard methods will allow for better and more
meaningful comparisons of the models, and of the LEWSs performances.
It may also help exporting threshold models to neighbouring or distant
areas (Guzzetti et al., 2007).

Although examples exist of areas where simple threshold models
proved ineffective for landslide forecasting (Jakob et al., 2012), rainfall
thresholds are generally reliable and an effective tool for operational
landslide forecasting (Fig. 1). A threshold assumes a dichotomic beha-
viour, with landslides either expected or not expected given a certain
amount of rainfall in a period (Reichenbach et al., 1998; Guzzetti et al.,
2007). However, this is a simplification. Reality is different, and poses
multiple questions. Here, we address questions related to the threshold
models. Below (Section 6.3), we discuss issues with the conversion of
landslide forecasts into advisories.

First, how many thresholds are needed for operational landslide
forecasting? Piciullo et al. (2017a, 2017b) proposed to select the
number and level of the thresholds based on an optimization procedure
that minimizes the false alarm rate (Calvello and Piciullo, 2016). Rossi
et al. (2018) defined a probabilistic ED rainfall space that allows fore-
casters and LEWSs managers to decide multiple non-exceedance prob-
ability thresholds depending on their needs and expectations, and
Martinotti et al. (2017) proposed an ensemble-non-exceedance prob-
ability algorithm for the prediction of rainfall-induced landslides. De-
spite these promising results, further experimentation is needed to de-
cide on the number of thresholds needed for operational landslide
forecasting, how to verify the threshold models, and even if – or to what
extent – a threshold model is adequate for operational landslide fore-
casting and early warning (Table 2).

Second, how often should the threshold models be updated? One
could argue that the thresholds should be revised and updated when-
ever new landslide and rainfall data becomes available. Scheevel et al.
(2017) used new data for the Seattle area and obtained slightly different
thresholds from Godt et al. (2006) and Chleborad et al. (2008) for the
same area. We added 335 data (14.5% increase) collected in the same
period with the same methodology to the dataset used by Peruccacci
et al. (2017) to define the national threshold for Italy, and the threshold
remained unchanged. The different results may depend on the size, the
quality, and the period covered by the datasets, and by the local me-
teorological, physiographic and environmental conditions. New in-
formation should be considered with care, as it may introduce biases in
the data and the thresholds, particularly if the dataset used to decide
the original thresholds is small, and if the new information derives from
a single, large or extreme event. We stress that, to a large extent,
consistency and representativeness of the data samples is more

important than the number of the empirical data points used to decide
reliable thresholds. Research is needed to establish reliable and effec-
tive strategies for landslide and rainfall data collection, and threshold
definition (Guzzetti et al., 2007, 2008) (Table 2). Further, changing
thresholds frequently complicates the validation of the threshold
models.

Third, to what extent can we use past rainfall and landslide data to
predict current and future landslides? The question is difficult to answer
(Furlani and Ninfo, 2015). Past landslide and rainfall data may not have
the same accuracy and resolution of present and future data, con-
ditioning the reliability of the threshold models and forecasts. Global
and regional climate and environmental changes may affect the
number, abundance, distribution, type, frequency, and activity of
landslides in ways and at rates that we are only beginning to under-
stand and measure (Gariano and Guzzetti, 2016; Haque et al., 2019),
limiting the applicability of threshold models prepared with historical
data. To address the problem, for their national and regional LEWSs in
Italy, Rossi et al. (2012a, 2017) have narrowed the time span of the
landslide and rainfall data used to decide the thresholds, trading length
of the record for accuracy and completeness of the data. The choice
limited the number of the empirical data used to constrain the thresh-
olds (Peruccacci et al., 2017). Efforts are needed to study the role of
climate and environmental changes on rainfall thresholds and their
operational use, and to address the inherent incompleteness and non-
stationarity of historical landslide and rainfall records (Table 2).

6.2. Landslide susceptibility

In their landmark paper, Baum and Godt (2010) clarify that “pre-
cipitation thresholds for landslide occurrence are useful in constraining
when landslides are likely to occur; however, they are not spatially
explicit”, and do not provide information on where landslides are ex-
pected, given threshold-exceeding rainfall. This is information poten-
tially available from landslide susceptibility maps (Reichenbach et al.,
2018). LEWSs require an understanding of the areas potentially affected
by landslides (Baum et al., 2005; Stähli et al., 2015), as one expects
landslides to be more frequent and abundant where susceptibility is
high; and many LEWSs use information on landslide susceptibility
(Brabb, 1984; Guzzetti, 2006). Godt et al. (2012) and Marchesini et al.
(2014) have explored the concept of “non-susceptibility” i.e., the defi-
nition of areas where landslide susceptibility is null or negligible, and
where landslides are not expected. This geographical information can
also be used in LEWSs. However, multiple issues remain open with the
integration of susceptibility information in LEWSs for operational
landslide forecasting. Firstly, the scale, resolution, and spatial domains
of landslide susceptibility assessments and of rainfall data and thresh-
olds are typically very different. How to combine susceptibility and
threshold models prepared at very different scales remains an open
problem. An option is to prepare susceptibility assessments specifically
designed for operational landslide forecasting, at scales and with spatial
resolutions compatible with those required or expected by landslide
forecasts. Secondly, susceptibility is by definition time invariant
(Guzzetti, 2006) i.e., it should not change when a landscape is forced by
a specific trigger. How to use long term (decades to millennia) sus-
ceptibility assessments for short term (hours to days) landslide forecasts
remains a conceptual and operational problem. Thirdly, combination of
probabilistic susceptibility and threshold models should follow the laws
of probability e.g., the probabilities should be conditionally in-
dependent or the marginal probabilities should be known and treated
appropriately. In the literature, it is not always clear if the LEWSs adopt
sound probabilistic approaches. Further research is needed to address
these issues.

LEWSs can run physically-based susceptibility models, singularly
(#9) or in combination with threshold models (#24). The approach is
promising, but has limitations. Firstly, the area where the physically-
based model is run is typically smaller (or much smaller) than the area
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for which the forecast is prepared. Secondly, physically-based model-
ling requires site specific geotechnical and hydrological information
which is usually available only for small areas. Thirdly, the test area
should be forced by the same rainfall field as the larger forecast area.
The issues are closely related, and question the representativeness of
the model outputs (and forecasts) obtained in small test areas for the
large forecast areas. Experiments are underway to test spatially dis-
tributed, physically-based models over large areas (Bellugi et al., 2011;
Raia et al., 2014). Modern computers can handle the computational
load needed by physically-based models over large areas (Alvioli et al.,
2014; Alvioli and Baum, 2016; Raia et al., 2014), producing results at
spatial resolutions and time intervals adequate for operational landslide
forecasting. However, the approach has conceptual and practical
drawbacks, the most relevant of which is the difficulty to collect the
static and dynamic geotechnical and hydrological information required
to run the models, capturing the natural variability of the properties at
the right scales. Further, existing models consider small shallow land-
slides (Montgomery and Dietrich, 1994; Baum et al., 2008; Brien and
Reid, 2007, 2008; Alvioli and Baum, 2016). Spatially-distributed
models that consider large deep-seated landslides exist (Brien and Reid,
2007, 2008; Mergili et al., 2014a,b) but, at the time of writing, they do
not consider the dynamic meteorological forcing needed for operational
landslide forecasting. Large, complex, deep-seated landslides driven by
rainfall or snowmelt, may be difficult to predict even by dynamic
models. Accurate mapping of existing landslides (Guzzetti et al., 2012)
coupled with satellite DInSAR monitoring (Del Ventisette et al., 2013;
Handwerger et al., 2019; Raspini et al., 2018) are needed to inform the
prediction of the activity of deep-seated landslides over large areas.

An additional, potentially synergic approach consists in the in-
tegration in regional LEWSs of monitoring and modelling information
obtained for single catchments (Fathani et al., 2016, 2018) or deep-
seated landslides (#14) (Martelloni et al., 2012; Ponziani et al., 2013;
Tiranti et al., 2013). Here the challenge is in the technological and
operational difficulty in extrapolating the monitoring and modelling
information regionally, or nationally. Albeit, modern monitoring and
communication technologies do not limit the number of landslides that
can be monitored and modelled (Stähli et al., 2015), the approach is
limited to areas where monitoring networks are already installed or
where the value and relevance of the elements at risk justify the effort
(Baum and Godt, 2010). Further, the approach does not consider first
time landslides that may occur with lower forcing than reactivated
landslides. Experimentation is needed to exploit and integrate site
specific monitoring and physically-based models for improved opera-
tional landslide forecasting, at different geographical scales (Stähli
et al., 2015; Mirus et al., 2018a, 2018b) (Table 2).

6.3. From landslide forecasts to advisories

Landslide forecast models, including rainfall thresholds or more
complex statistical or physically-based models and their combinations,
make process-based predictions that anticipate where and when land-
slides are expected to occur. This is important, but it is not sufficient to
authorities, emergency managers, stakeholders or the public
(Chleborad et al., 2008; Baum and Godt, 2010). For them, landslide
advisories providing information on the consequences of the expected
landslides and giving recommendations or orders on what to do (or not
do) when a warning is in effect, are necessary. Converting landslide
forecasts into proper advisories requires a change in perspective, from
process-based to impact-based predictions (WMO, 2015; Potter et al.,
2018). The step is not straightforward, and its complexity and relevance
are often underestimated (Calvello and Piciullo, 2016; Piciullo et al.,
2017a, 2017b). The difficulty of making the conversion is compounded
by the fact that some storms might cause tens of thousands of landslides
but few or no fatalities, whereas a small storm might produce a single
landslide with numerous casualties. Also, large storms may produce
fatal landslides distant from the storm centre where landslides are most

numerous. In November 1994, a large storm in northern Italy caused
several thousand landslides in the southern part of Piedmont region,
and only a few soil slips in the northern part of the region. At Varallo
Sesia, in the north of the region, one of these soil slips killed 14 people
(Crosta, 1998).

Albeit very little information is available in the literature on how
process forecasts are used to issue advisories, the conversion is typically
expert-driven (Chleborad et al., 2008; Baum and Godt, 2010) and
performed following more or less strictly or explicitly sets of pre-de-
fined rules (a “landslide protocol” Guzzetti et al., 2000) linking the
outcomes of one or more landslide forecast models to pre-defined ad-
visory levels for which specific or general recommendations (#1, 2, 22)
or orders (#20) are given. The protocol should consider the un-
certainties inherent in the landslide forecast models, and how the un-
certainties are expressed in the advisories. It should also reflect the
number and levels of the advisories, which conditions the performance
of a LEWS (Piciullo et al., 2017b). As discussed before, the number of
the advisory levels may depend on organizational, societal, and legal
constraints external to the LEWS. We recommend that where this is the
case, an honest assessment of the consequences of adopting an external,
general advisory scheme is executed (Table 2). In particular, the extent
to which the information and insight given by the process models is
adequate for the predefined advisory schemes, considering the inherent
uncertainties, should be clear.

The awareness of the people exposed to landslide hazard is im-
portant for their response to a warning (Huggel et al., 2010), and
communication and sociological problems must be considered and ad-
dressed when designing an effective landslide advisory scheme. Cannon
et al. (2009) argued that a lead time of hours to days is more useful for
emergency response than shorter lead times of minutes to hours typical
of emergency advisories. In this complex process, a crucial step is the
selection of the language and content of the advisory messages. The
language should be clear and unambiguous. However, our analysis of
the literature revealed that the language used for landslide advisories
and messages is often confusing, misleading, and far from standard. We
encourage LEWSs managers to establish a common language for their
advisories (Stähli et al., 2015) (Table 3) as this will facilitate dis-
semination (Sorensen, 2000), will contribute to improving the LEWS
performance, and will increase the credibility of the system. The in-
structions given in a landslide advisory should be easy to understand by
the public, who are generally uninformed about landslides and their
risk (Baum and Godt, 2010; Wilson, 2012). The actions to take when an
advisory is given should be reasonable and practicable. Further, any
landslide protocol should consider that frequent wrong advisories –
warnings not followed by landslides, or landslides that occur without
warning – can destroy trust in a LEWS (Wilson, 2012). It should also be
clear that perceived false/true alarms may be as important as real false/
true alarms in building or undermining trust in a LEWS. This should be
considered when preparing and issuing a landslide advisory.

6.4. Performance evaluation

A vital part of a LEWS is the evaluation of its performance i.e., how
successfully the system does against expectations and user require-
ments. The operation is complex, and it includes an evaluation of the
model forecasts, of the advisories, and of the system technological
implementation and functioning. All parts of a LEWS should be eval-
uated using appropriate metrics and criteria (Table 3). However, no
standard exists to evaluate the performance of a LEWS (Baum and Godt,
2010; Fathani et al., 2016; Chae et al., 2017; Piciullo et al., 2018;
Segoni et al., 2018a). This limits the comparability and credibility of
the LEWSs.

Evaluation should start with a verification of the performances of
the process forecast models. This is difficult and poses serious limita-
tions, because the lack of systematic (instrumental) information on
landslide occurrence (or the lack of occurrence) does not allow to

F. Guzzetti, et al. Earth-Science Reviews 200 (2020) 102973

22



exploit fully typical contingency tables (Staley et al., 2013; Gariano
et al., 2015), and the many related forecast verification indexes (Jollifee
and Stephenson, 2003). Instrumental monitoring can help, but it is
typically limited to a small number of sites, and it does not consider
first-time failures. Analysis of remote sensing images can help detect
new landslides (Mondini et al., 2019), and prepare landslide event in-
ventory maps (Mondini et al., 2011, 2019; Mondini, 2017), but it is not
systematic. Further, it allows to verify a forecast in space, but with poor
time information. Detection of non-earthquake-induced landslides
using local to global seismic networks is promising, but it works only
for failures that produce a detectable seismic signal (Ekström and Stark,
2013; Hibert et al. 2014; Fuchs et al., 2018; Schimmel et al., 2018).
When it works, the technique gives very accurate information on the
time of occurrence of the landslide. Combination of remote sensing and
seismic signal processing techniques may be part of the solution of the
problem. Automatic, semi-automatic or manual collection of informa-
tion on landslide occurrence from media sources provides valuable in-
formation, but is limited to landslides that cause damage or that occur
in built-up areas or along infrastructures (Chleborad et al., 2008; Van
Den Eeckhaut and Hervás, 2012; Calvello and Pecoraro, 2018; Pecoraro
et al., 2019). Manual collection is labour intensive, and the automatic
and semi-automatic methods require independent checking. As an al-
ternative, Peruccacci et al. (2017) measured the long-term performance
of a rainfall threshold model showing that all 52 rainfall-induced fatal
landslides in Italy between 2002 and 2012 were hindcasted correctly by
the model. The result was good, but failed to quantify false alarms, and
measured the model predictive skills only with respect to fatal land-
slides.

LEWS evaluation should continue with the assessment of the ad-
visory part. One has to assess if, or to what extent, a LEWS was able to
give the proper messages to different, prescribed audiences in terms of
the predicted consequences, as well as the response of the audiences in
terms of their understanding of the messages and of the actions taken
(or not taken), and the extent to which landslide risk was reduced. The
evaluation should consider the timing (Cannon et al., 2009; Jakob et al.,
2012; Wilson, 2012) and efficacy of the communication strategy (e.g.,
media and language used) (Baum and Godt, 2010; Stähli et al., 2015),
risk perception, awareness and preparedness (Huggel et al., 2010;
Scolobig et al., 2012; Wilson, 2012; Salvati et al., 2014; Chae et al.,
2017; Potter et al., 2018), and gender and age disparities in landslide
risk exposure, awareness and averseness (Badoux et al., 2016; Salvati
et al., 2018).

The last step should evaluate the technological performance of the
LEWS, including e.g., mean time between failures, total up/down time,
mean down time, time to recovery. These metrics are simple to calcu-
late and compare against benchmarks or minimum and optimal user
requirements once the system events are logged. However, we note that
in the literature no information is given on the LEWSs technological
performances, on the minimum and optimal user requirements, and
even on the fact that the main system events are logged.

Urgent, multi-disciplinary efforts are needed to advance the limited
capacity to evaluate the performances of the LEWSs (Table 2). We stress
that standard and shared performance evaluations approaches will
allow the discovery of problems in existing LEWSs and possible fixes,
and will increase the credibility and authority of the LEWSs; a key as-
pect for landslide risk reduction.

6.5. Perspectives

Despite the efforts and the definite progress, current models for
operational landslide forecasting remain limited in their ability to
predict landslides. Many LEWSs use forecast models that consider only
rainfall, and ignore other triggers e.g., rapid snowmelt, irrigation,
permafrost melting. Only a few models consider the soil moisture and
groundwater conditions that control landslide initiation (Fig. 1). With a
few exceptions (Tiranti et al., 2013; Segoni et al., 2015a, 2018c), LEWSs

consider only shallow landslides and associated flows, but ignore deep-
seated landslides that can occur hours or days after the end of a storm.
Most of the forecast models do not consider transient events that alter
the amount of rainfall that can initiate landslides and local suscept-
ibility to meteorologically-driven landslides, including e.g., forest and
wild fires (NOAA-USGS Debris-Flow Task Force 2005; Cannon et al.,
2009), forest cutting, seasonal or long-term agricultural changes. Most
models predict the location of the landslide initiation points or areas
but do not consider the landslide runout, which is crucial for rapidly
moving failures that may travel long distances in a short time, and can
affect areas distant from the initiation points (NOAA-USGS Debris Flow
Task Force, 2005; Baum and Godt, 2010; Hungr et al., 2014). Most
LEWSs do not consider the direct or indirect consequences of the
landslides (Ponziani et al., 2013), and those based on rainfall thresholds
may provide only approximate landslide risk conditions (Cannon et al.,
2009). Further, due to the limited ability to detect, locate, and report
new or re-activated landslides over wide areas (Chleborad et al., 2008),
verification of forecast models and landslide advisories remains un-
certain and LEWSs skills questionable. We maintain that there is scope
for new research aimed at improving all these aspects of current op-
erational landslide forecasting models and LEWSs (Table 2). Lastly, and
with only few exceptions (#13, 22), LEWSs typically operate single (or
a few) landslide models. We expect operational landslide forecasting
and LEWSs to improve significantly when landslide forecasters and
LEWS managers will share openly their landslide models and advisory
protocols, and will use multiple models for their landslide forecasts and
associated advisories (Table 2).

In meteorology, efforts are made towards long-range (seasonal)
weather forecasts. Albeit the predictive skills of long-range forecasts are
debated (Weisheimer and Palmer, 2014; Yang et al., 2018), seasonal
weather forecasts are being used increasingly for multiple applications,
and we see scope for long-range (seasonal) landslide forecasts. In line
with weather forecasts, long-range landslide forecasts should be at-
tempted using potential weather landslide precursors – such as monthly
to seasonal rainfall and temperature – obtained from model ensembles,
producing ensembles of landslide forecasts. Seasonal landslide forecasts
are not expected to predict the exact or even approximate location or
number of landslides at any given site or area; but instead to provide
insight on the expected trends in landslide activity. This may help
preparedness and guide maintenance activities, contributing to reduce
damages and costs, and the design and implementation of effective
mitigation strategies. Research is needed to understand how to use
long-range weather forecasts for seasonal landslide modelling, and how
to cope with uncertainties and their percolation through the weather-
landslide modelling chain. There is scope for new research aimed at
better understanding the impact of the current and projected climate
and environmental changes on landslides and their consequences
(Gariano and Guzzetti, 2016).

Lastly, we note that a few authors have argued in favour of stan-
dards or shared frameworks for the design, implementation, manage-
ment, and verification of LEWSs (UN-ISRD 2006; Chleborad et al.,
2008; Stähli et al., 2015; Fathani et al., 2016; Chae et al., 2017; Piciullo
et al., 2018; Segoni et al., 2018a). Such standards are currently lacking,
and this limits the credibility and usefulness of LEWS (Guzzetti et al.,
2012; Reichenbach et al., 2018). Recently, the international standard
ISO 22327:2018(E) was issued with “Guidelines for implementation of
a community-based landslide early warning system” (ISO, 2018). It is
not clear if this standard was discussed openly, and if it is accepted
broadly by the international landslide community. We recommend that
the landslide community become involved openly in the definition of
standards for LEWSs and operational landslide forecasting at all geo-
graphical and temporal scales (Table 2).

7. Conclusions

Based on our review of 26 past and existing landslide early warning
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systems (LEWSs) in a period of 42.5 years (Figs. 1,2,3), and on our
experience in the design, implementation, management and verification
of national and regional LEWSs in Italy, we conclude that operational
forecasting of weather-induced landslides is possible and feasible today,
and it can contribute to mitigate landslide risk, reducing fatalities and
economic loses. However, LEWSs remain complex, and operational
landslide forecasting a difficult and uncertain task. Both require con-
ceptual developments and technological improvements. Critical ex-
amination of the 26 LEWSs considered in this work allowed us to
identify a list of recommendations for the further development and
improvement of geographical LEWSs (Table 2). We conclude by adding
a last recommendation. We encourage the community of landslide
forecasters and LEWS managers to pull together and propose shared,
open standards for the design, the implementation, the management,
and the verification of geographical (“territorial” Piciullo et al., 2018)
LEWSs. We foresee that such standards will contribute to save lives and
to mitigate landslide risk, and we expect our work to contribute to this
endeavour.

Lastly, we acknowledge that the expansion of LEWSs will require
resources, which most probably will have to be taken from other,
competing safety strategies and risk reduction programs and measures.
We expect that in many areas, local, regional, and national priorities,
the availability of resources, the relative frequency of landslide ca-
sualties, and the extent and amount of landslide damage, will control
the development and expansion of new landslide early warning sys-
tems.
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