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7. LANDSLIDE HAZARD ASSESSMENT 

Nothing is more dangerous 
than underestimating a hazard. 

 
There are many good reasons 

not to avoid hazards. 

 

 

 

A hazard is the likelihood that a danger will materialize. A natural hazard is the hazard posed 
by a potentially damaging natural event or process, such as an earthquake, flood, volcanic 
eruption, snow avalanche, hurricane, ground subsidence or mass movement. Landslide hazard 
refers to the potential for the occurrence of a damaging slope failure within a given area and in 
a given period. To properly define landslide hazard, the magnitude, size, or dimension of the 
expected failure must also be quantified, deterministically or in probabilistic terms, because 
the “magnitude” of the event is linked to its destructive power. Landslide hazard is portrayed 
on maps. A landslide hazard map partitions a territory based upon different levels of landslide 
hazard (landslide hazard zoning). As it will become clear later, producing a single landslide 
hazard map is problematic, as different hazard conditions (or probabilities) must be shown on 
the same map. An ensemble of maps can be prepared to show landslide hazard, and displayed 
in a GIS.  

In this chapter, I first examine a definition of landslide hazard, I then introduce a probabilistic 
model for landslide hazard assessment that fulfils the adopted definition, and I discuss known 
problems with the given definition and limitations of the proposed probability model. Next, I 
show three examples of the application of the proposed probability model for different types 
of landslides and at different scales, from the catchment to the national scale. In the first 
example, I illustrate an attempt to determine landslide hazard in the Staffora River basin (§ 
2.6), exploiting a detailed multi-temporal inventory map and thematic information on geo-
environmental factors associated with landslides. In the second example, I describe an attempt 
to determine levels of landslide hazard in Italy, based on synoptic information on geology, soil 
types and morphology, and an archive inventory of historical landslide events. In the third 
example, I exploit a physically-based computer model capable to simulating rock falls for the 
determination of rock fall hazard in south-eastern Umbria (§ 2.5). 

7.1. Background and definitions 

Physical scientists define a natural hazard either as the probability that a reasonably stable 
condition may change abruptly (Scheidegger, 1994), or as the probability of occurrence of a 
potentially damaging phenomenon within a given area and in a given period of time (Varnes 
and the IAEG Commission on Landslides and other Mass-Movements, 1984). Vandine et al. 
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(2004) define landslide hazard the estimate of the probability of occurrence of a specific 
landslide and that the landslide being a threat to an element at risk, without considering the 
effects or potential consequences. 

The definition proposed by Varnes and the IAEG Commission on Landslides and other Mass-
Movements, (1984) remains the most widely accepted definition for natural hazard and for 
maps portraying its distribution over a region (IDNHR, 1987; Starosolszky and Melder, 1989; 
Horlick-Jones et al., 1995; Murck et al., 1997). The definition incorporates – more or less 
explicitly – the concepts of: (i) magnitude, (ii) geographical location, and (iii) time recurrence. 
The first refers to the “size” or “intensity” of the natural phenomenon which conditions its 
behaviour and destructive power. The second implies the ability to identify the place “where” 
the phenomenon will occur or may develop. The third refers to the temporal frequency of the 
event, i.e., the ability to predict “when” or how frequently the expected event will happen 
(Guzzetti et al., 1999a). 

Application of the given definition to the various natural hazards differs, making conceptual 
and practical comparison and integration of hazard assessments difficult, if not impossible 
(Guzzetti et al., 1999a; Natural Hazard Working Group, 2005). Without the ambition of 
completeness, I now examine differences in the assessment of the hazard for some of the most 
common natural hazards, namely: earthquakes, floods, volcanic eruptions and mass 
movements. Traditionally, earthquake predictive models attempt to define hazard in terms of 
magnitude – a quantitative measure of the energy released by a seismic event –, affected area, 
and time recurrence. Ideally, earthquake hazard assessments largely fulfil the definition of 
hazard previously mentioned. Unfortunately, scientists are generally unable to predict at the 
same time and with the required accuracy where and when an earthquake will take place, and 
how severe it will be. Amongst scientists there is a general consensus that with the present 
state of knowledge the exact (or even approximate) time of an earthquake cannot be predicted. 
Probabilistic Seismic Hazard Analysis is based on the statistical analysis of past earthquake 
events. Despite some criticism, PSHA remains the most widely applied method to define 
seismic risk (Castaños and Lomnitz, 2002; Bommer, 2003; Wang et al., 2003). 

Despite the different meanings of the term “flood” (Baker, 1994), flood hazard evaluation 
essentially consists in the temporal prediction of an extreme hydrological event of a given 
magnitude (i.e., peak water flow or volume), whereas geographical location and spatial extent 
of the potentially inundated areas are determined from other sources of information, such as 
historical records and ground morphology. Estimates of the temporal occurrence of floods are 
mainly obtained from probabilistic analysis of the historical records of water levels or 
discharge measurements. For many gauging stations the record of measurements is short, and 
extrapolation techniques are used to obtain estimates of flood levels or water discharge for 
longer periods. Extrapolation inevitably introduces uncertainty in the hazard assessment. 
Where catchments are small, establishing hazard from water flow measurements may not be 
adequate (lack of warning time), or measurements may be completely lacking (“ungauged” 
basins). In these areas, the temporal prediction of an extreme hydrological event is obtained by 
studying measured, estimated, or forecasted rainfall. This undoubtedly introduces uncertainties 
in the hazard assessment. The extent and location of the potentially inundated areas are 
obtained from historical information and through the application of conceptual (simplified), 
physically based flood models, assuming a detailed description of topography and an input 
hydrograph. Accuracy of DTM and significance of the selected hydrograph are fundamental 
for the quality and relevance of flood spatial hazard assessments. 
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For volcanoes, the area affected by the eruption is implicitly defined in the analysis, i.e., the 
same volcano, which is usually well known in space. Before or during an eruption, scenarios 
are prepared to predict where individual or multiple lava flows or pyroclastic flows can travel 
and at what speed. The areas potentially affected by ash falls can also be determined. Again, 
these models (mostly physically based) are determined from external sources of information. 
The temporal occurrence of an eruption is estimated assimilating geological and 
volcanological knowledge, historical information and – most importantly – monitoring of 
physical and chemical properties, at depth and on the surface, including topographic 
deformations. The magnitude and destructiveness of an eruption depend largely on the type of 
the volcano. It is established mostly heuristically through the analysis of past eruptions and the 
recent behaviour of the investigated volcano. 

For mass movements a conceptual confusion arises from the use of the same term “landslide” 
to address both the landslide deposit (the failed mass) and the movement of slope material or 
of an existing landslide mass (Bosi, 1978; Cruden, 1991; Guzzetti et al., 1999a). It is like 
mistaking an earthquake with its ground effects, an eruption with the area affected by lava 
flows or ash falls, or a river flood with the inundated area. Landslide predictive models most 
commonly attempt to identify only “where” landslides may occur over a given region on the 
basis of a set of relevant environmental characteristics. Such models do not directly 
incorporate “time” and “magnitude”, i.e., size (Fell, 1994; Cardinali et al., 2002, Reichenbach 
et al., 2005), speed (Cruden and Varnes, 1996), kinetic energy (Hsu, 1975; Sassa, 1988), 
destructiveness (Hungr, 1997) or momentum of the failed mass. For this reason, these models 
cannot be correctly defined as hazard models (§ 6). Predictive models of landslide movement 
are generally confined to single slopes or individual small catchments (e.g., in the case of 
debris flows) where detailed geotechnical site investigations attempt to assess when and to 
what extent the slope-forming material, frequently an existing landslide deposit, will move. 
Also in this case the term hazard is somewhat incorrect since the location of the phenomenon 
under study is implicit, or derives from information acquired from other sources. 

The wide spectrum of landslide phenomena (Figure 1.1) and the complexity and variability of 
their interactions with the environment, both natural and human, make the acceptance of a 
single definition of landslide hazard difficult. For example, very large and fast moving rock 
avalanches are the most destructive and hazardous mass movements, but are relatively rare 
events. Slow-moving, deep-seated failures rarely claim lives but can cause large property 
damage. Fast-moving soil slips and debris flows cause widespread damage and casualties, and 
are as frequent as their potential triggers (i.e., high intensity rainfall events). Rock falls, 
despite their often small size, are among the most destructive mass movements, and a primary 
cause of landslide fatalities in many areas. Each type of slope movement poses different 
threats and may require a separate assessment, based on distinct definitions of landslide 
hazard.  

Recurrence, the expected time for the repetition of an event, is evaluated studying historical 
records (§ 3.3.1, § 4.5) or multiple-temporal inventories (§ 3.3.4). Historical data are difficult 
to obtain for single landslides or landslide prone areas. Despite the lack of consensus on the 
reliability and usefulness of historic information, where historical information is available it 
can be used for the temporal evaluation of landslide hazard at various scales (Guzzetti et al., 
1994; 2003; Ibsen and Brunsden, 1996; Cruden, 1997; Evans, 1997; Glade, 1998). Historical 
records may be integrated with temporal data derived from dendrocronology and other dating 
techniques which have been used by some investigators to date landslide deposits (Stout, 
1977; DeGraff and Agard, 1984; Trustrum and De Rose, 1988; Fantucci and Sorriso-Valvo, 



 

Chapter 7  
 

 

162  
 

1999; Lang et al., 1999; Stefanini, 2004). For first-time failures (Hutchinson, 1988) recurrence 
is not applicable. First-time landslides occur at or close to peak strength values, whereas 
reactivations occur between peak and residual conditions. Thus, first-time landslides provide 
little information on the behaviour of reactivations. Additionally, each time a landslide occurs, 
the topographic, geological and hydrological settings of the slope change, often dramatically, 
giving rise to different conditions of instability (§ 6.3.1). These changes allow 
geomorphologists to identify landslides and understand mechanisms and causes of failures, but 
limit their ability to forecast new landslides of reactivations. 

Finally, quantitative landslide hazard models predict the occurrence of future slope failures 
under the general assumption that in any given area slope failures will occur in the future 
under the same circumstances and because of the same conditions that caused them in the past. 
I examined the problems encountered in adopting the principle that “the past is the key to the 
future” when I introduced rationale for landslide mapping (§ 3.1) and when I discussed 
landslide susceptibility assessment (§ 6.2.1, § 6.3.1). The same arguments apply to landslide 
hazard evaluation. 

7.2. Probabilistic model for landslide hazard assessment 

In their well-known report, Varnes and the IAEG Commission on Landslides and other Mass-
Movements (1984) proposed that the definition adopted by UNDRO for all natural hazards be 
applied to mass movements. Landslide hazard is therefore “the probability of occurrence 
within a specified period of time and within a given area of a potentially damaging 
phenomenon”. Guzzetti et al. (1999a) amended the definition to include the magnitude of the 
event. Hence, the definition becomes: 

Landslide hazard is the probability of occurrence within a specified period and within 
a given area of a landslide of a given magnitude. (7.1)

For a landslide hazard forecast, the area and period for the prediction are simple to decide 
(albeit difficult to know). Definition of magnitude is more difficult because, in contrast to 
other natural hazards (e.g., earthquakes, volcanic eruptions, hurricanes), no unique measure of 
landslide magnitude is available. For earthquakes, magnitude is a measure of the energy 
released during an event ranked by the well known Richter scale, developed by Charles 
Richter and Beno Gutenberg. For volcanic eruptions, the Volcanic Explosivity Index devised 
by Christopher G. Newhall and Steve Self provides a relative measure (in 8 grades) of the 
explosiveness of eruptions based on a number of things that can be observed during an 
eruption. For hurricanes, the Saffir-Simpson scale measures the intensity of a hurricane in 5 
grades, based on wind speed and atmospheric pressure, and gives an estimate of the potential 
property damage and flooding expected from a hurricane landfall. For landslides a measure of 
the energy released during failure is difficult to obtain. Malamud et al. (2004a) introduced a 
landslide-event magnitude scale, based on the number of landslides triggered by a 
meteorological or seismic event. Hungr (1997) proposed destructiveness to be a measure of 
landslide magnitude. Raetzo et al. (2001) introduced an intensity scale for the magnitude of 
the damage. Building on the latter definitions, Cardinali et al. (2002), Guzzetti (2004) and 
Reichenbach et al. (2005) defined landslide destructiveness as a function of the landslide 
volume and of the expected landslide velocity, the latter obtained from the landslide type. For 
large regions, landslide volume and velocity are difficult to evaluate systematically, making 
the approach impracticable. Alternatively, where slope failures are chiefly slow moving slides 
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and slide earth-flows, destructiveness can be related to the area of the landslide, information 
which is readily available from landslide inventory maps. 

The definition of landslide hazard given in proposition 7.1 incorporates the concepts of 
location, time and size. To complete a hazard assessment one has to predict “where” a 
landslide will occur, “when”, or how frequently it will occur, and “how large” the landslide 
will be. In mathematical terms, this can be written as: 

HL=P[AL ≥ aL in a time interval t, given {morphology, lithology, structure, land 
use,…}] (7.2)

where, AL is the landslide area, measured e.g., in square meters. For any given area, equation 
7.2 expresses landslide hazard as the conditional probability of landslide size, P(AL), of 
landslide occurrence in an established period, P(NL), and of landslide spatial occurrence, S, 
given the local environmental setting. Assuming independence among the three probabilities, 
the landslide hazard, i.e., the joint probability is:  

S)N(P)A(PH LLL ××=  (7.3)

In the previous chapters, I have shown how to obtain the three probabilities in equation 7.3. 
The probability of landslide size can be estimated from the analysis of the frequency-area 
distribution of known landslides (§ 5, and equations 5.3 and 5.4). The probability of landslide 
occurrence in an established period can be estimated from the analysis of archive or multi-
temporal inventories, and can be quantified adopting a Poisson or a binomial distribution 
model for the occurrence of the landslide events (§ 4.5, and equations 4.7 and 4.8). 
Susceptibility, the spatial probability of landslide occurrence, can be obtained using a variety 
of methods and techniques (§ 6.2). For probabilistic landslide hazard assessments, 
susceptibility must be obtained with indirect, quantitative methods that provide numerical 
(probabilistic) estimates of the spatial probability of landslide occurrence (§ 6.2.3). 

The proposed probability model for landslide hazard relays on the same assumptions on which 
landslide mapping (§ 3.1) and the three considered individual probability models are based 
(see § 4.5, § 5.2, § 6.2.1). Failures to comply with one or all of the assumptions will affect the 
reliability of the model and the relevance and applicability of the results. In § 7.3.5 I will 
investigate the problems posed by each of the assumptions, including examples of how to 
evaluate their impact on a landslide hazard assessment. In addition, independence between the 
three probabilities is assumed. From a geomorphological point of view, this assumption is 
strong and may not hold, always and everywhere. In many areas one may expect slope failures 
to be more frequent (time component) where landslides are more abundant and landslide area 
is large (spatial component). However, given the lack of understanding of landslide 
phenomena, independence is an acceptable first approximation that makes the problem 
mathematically tractable (Guzzetti et al., 2005a). The assumption of independence is a 
simplification, and more complex models can be constructed using, e.g., Bayesian reasoning 
or Copulae. However, these approaches require the investigator to know the marginal 
probabilities. This is rather difficult, given the general lack of information on the statistics of 
landslide size and on the temporal statistics of slope failures. 
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7.3. Landslide hazard model for the Staffora River basin 

In this section, I discuss a landslide hazard assessment prepared for the Staffora River basin, in 
Lombardy Region. The hazard assessment was obtained by exploiting the thematic and 
landslide information available for the study area and presented in § 2.6, and it relies on the 
probabilistic landslide hazard model introduced in section § 7.2.  

To ascertain landslide hazard, the territory of the Staffora River basin – which extends for 275 
km2 – was partitioned into 2243 homogenous mapping units. For the purpose, the same 
procedure used to partition the Upper Tiber River basin for landslide susceptibility assessment 
(§ 6.4) was adopted. Starting from a DEM with a ground resolution of 20 m × 20 m, and a 
geographically coherent simplified representation of the main drainage lines, the territory was 
first subdivided into slope units (§ 6.2.2). The slope units were then further subdivided 
according to the main rock types cropping out in the basin. The further partitioning, solved 
problems of slope units characterized by rock types with different landslide abundance (i.e., 
different susceptibility). In this way, the study area was subdivided into 2243 geo-hydrological 
units, which represent the mapping units used for the hazard assessment. 

Most of the landslide information needed to ascertain landslide hazard was obtained from the 
detailed multi-temporal landslide inventory map presented in § 2.6, which shows 3922 
landslides, including 89 very old, relict mass movements. Figure 7.1 shows the multi-temporal 
landslide inventory used for the analysis, and Table 7.1 summarizes statistics of the mapped 
landslides, for different periods. In the following, I will exploit the temporal information on 
landslides shown in the multi-temporal inventory to determine the temporal probability of 
slope failure occurrence, and to verify the performance of the obtained landslide susceptibility 
model. 

Table 7.1 – Staffora River basin. Landslide descriptive statistics obtained from the available multi-
temporal inventory map shown in Figure 7.1. Percentage of landslide area (*) computed with respect to 

the total area covered by landslides (A0–E2). 
LANDSLIDES LANDSLIDE AREA 

Number Total Percentage* INVENTORY ESTIMATED LANDSLIDE AGE 
# km2 % 

A0 very old (relict) 89 34.72 49.30 
     

A1 older than 1955 1443 38.24 54.30 
     

A2 1955 active 306 2.46 3.49 
B1 1955-1975 318 2.38 3.39 
B2 1975 active 685 4.41 6.26 
C1 1975-1980 89 1.32 1.87 
C2 1980 active 305 2.40 3.41 
D1 1980-1994 455 2.06 2.92 
D2 1994 active 175 1.36 1.94 
E1 1994-1999 19 0.65 0.93 
E2 1999 active 38 0.85 1.21 

     
A0–A1  very old and older than 1955  1532 63.22 90 
A0–E2  very old to 1999 active 3922 70.42 100 
A1–E2  older than 1955 to 1999 active 3833 46.43 66 
A2–E2  1955 active to 1999 active 2390  12.08 17 
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Figure 7.1 – Staffora River basin. Multi-temporal landslide inventory map used to ascertain landslide 
hazard. Landslide inventory prepared through the interpretation of five sets of aerial photographs of 
different dates (§ 2.6). Capital letters indicate the year of the aerial photographs used to compile the 

inventory. F shows the entire multi-temporal inventory map, which includes relict and old slides 
(shown in grey) identified in the 1955 aerial photographs. Characteristics of aerial photographs are: A; 
18 July 1955, black and white, 1:33,000 scale. B; winter 1975, black and white, 1:15,000. C; summer 

1980, colour, 1:22 000. D; summer 1994, black and white, 1:25,000. E; 22 June 1999, colour, 
1:40,000. 
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7.3.1. Probability of landslide size 
To ascertain the probability of landslide size (a proxy for landslide magnitude), I selected the 
multi-temporal inventory map covering the 45-year period from 1955 to 1999. This inventory 
consists of 2390 landslides (A2–E2 in Table 7.1). The area of the individual landslides in the 
inventory was obtained from the GIS. Care was taken to calculate the exact size of the 
landslide, avoiding topological and graphical problems related to the presence of smaller 
landslides inside larger mass movements. For convenience, the crown area and the deposit 
were merged together, and the total landslide area was used in the analysis. Old and relict 
mass movements were excluded from the analysis and only recent and active landslides were 
used.  

Figure 7.2.A shows the probability density of landslide area in the Staffora River basin. Two 
estimates of the probability density are shown. I obtained the first estimate (blue solid line) 
using the inverse Gamma distribution of Malamud et al. (2004a) (eq. 5.4), and I obtained the 
second estimate (red dotted line) using the double-Pareto distribution of Stark and Hovius 
(2001) (eq. 5.3).  
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Figure 7.2 – Probability density (A) and probability (B) of landslide area in the Staffora River basin. 
Solid blue line is inverse gamma distribution (Malamud et al., 2004). Dotted red line is a double 

Pareto distribution (Stark and Hovius, 2001). Error bars in A indicate the range between the 5th and 
the 95th percentiles for the truncated inverse Gamma function. 

With the available landslide dataset, the two probability distributions provide very similar 
results and differ slightly only in the slope of the tails of the distributions (for inverse Gamma, 
α+1 = 2.77, std. dev. = 0.08, for double Pareto, α+1 = 2.50, std. dev. = 0.05). Figure 7.2.B 
shows the probability that a landslide will have an area smaller than a given size (left axis), or 
the probability that a landslide will have an area that exceeds a given size (right axis). Figure 
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7.2.B also shows the probability that a landslide in the Staffora River basin exceeds an area of 
2000 m2 and an area of one hectare, which are found to be 0.75 and 0.15, respectively. These 
values will be used to ascertain landslide hazards (Figure 7.7). 

7.3.2. Probability of temporal landslide occurrence 
To ascertain the temporal probability of landslide occurrence I selected the same multi-
temporal inventory map covering the 45-year period from 1955 to 1999, i.e., A2–E2 in Table 
7.1. First, the number of landslide events in each mapping unit was counted in the GIS, and the 
average rate of landslide events was established. Next, based on the past rate of landslide 
occurrence, landslide recurrence (i.e., the expected time between successive failures) was 
obtained for each mapping unit. Lastly, knowing the mean recurrence interval of landslides in 
each mapping unit (from 1955 to 1999), assuming the rate of failures will remain the same for 
the future, and adopting a Poisson probability model (eq. 4.7), the exceedance probability of 
having one or more landslides in each mapping unit was computed.  

Figure 7.3 shows the landslide temporal exceedance probability for different periods, from 5 to 
50 years. As expected, the probability of having one or more slope failure increases with time. 
Based on the historical record of landslides obtained from the multi-temporal inventory map, 
after 50 years many slopes in the Staffora River basin have a high to very probability of 
experiencing mass movements. 

7.3.3. Spatial probability of landslides 
I obtained landslide susceptibility for the Staffora River through discriminant analysis of 46 
thematic variables, including morphology (24 variables derived from a 20 m × 20 m DEM), 
lithology (14), structure (3) and land use (5). The percentage of the individual thematic 
variables in each mapping unit was computed in a GIS and used as independent variable in the 
statistical analysis. Very old landslides (A0 in Table 7.1) were excluded from the analysis, and 
considered as additional explanatory variable describing rock strength. 

A stepwise procedure was adopted to select the optimal landslide susceptibility model. Five 
separate statistical models were prepared using the same set of environmental variables and 
changing incrementally the landslide inventory map (Figure 7.4). The first model was 
prepared using solely the recent and the active landslides identified in the 1955 aerial 
photographs (A1-A2 in Table 7.1). The second model was obtained by adding the landslides 
identified in the 1975 aerial photographs (A1-B2). The same procedure was repeated adding 
the slope failures that were mapped in the 1980 (A1-C2), 1994 (A1-D2), and 1999 (A1-E2) aerial 
photographs. At each step, a different estimate of the probability of spatial landslide 
occurrence was obtained. The five susceptibility models were compared to establish statistical 
strength and geomorphological significance. Finally, the model prepared using the entire set of 
landslides inventoried in the period from 1954 to 1999 (A1-E2) was used to describe landslide 
susceptibility.  

Table 7.2 lists the 36 thematic variables entered in the landslide susceptibility model. 
Variables strongly associated with the presence of landslides include slope (SLO_ANG2), 
mapping unit area (SLO_AREA), drainage channel order (ORDER), drainage channel mean 
slope (LNK_ANGKE), the presence of cultivated (SEM) and uncultivated areas (INC), and of 
pasture (PRA). Like in the Upper Tiber River basin (Table 6.3), landslide susceptibility 
increases with slope gradient to a threshold, above which it decreases (in Table 7.2 compare 
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the SDFC of SLO_ANG and SLO_ANG2). The overall percentage of mapping units correctly 
classified by the susceptibility model is 78.9% (Table 7.3).  

 

Figure 7.3 – Exceedance probability of landslide occurrence in the Staffora River basin obtained 
computing the mean recurrence interval of past landslide events from the multi-temporal inventory 
(Figure 7.1). Shades of grey show exceedance probability for different periods: (A) 5 years, (B) 10 

years, (C) 25 years, (D) 50 years. Square bracket indicates class limit is included; round bracket 
indicates class limit is not included. 
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Figure 7.4 – Staffora River basin. Landslide susceptibility models obtained through discriminant 
analysis of the same set of independent thematic variables and changing the landslide inventory map 

(dependent variable, Figure 7.1 and Table 7.1). (A) using landslides identified in the period A1–A2; (B) 
using landslides in the period A1–B2; (C) using landslides in the period A1–C2; (D) using landslides in 
the period A1–D2; (E) using landslides in the period A1–E2. Shades of grey indicate spatial probability, 
in 5 classes. Square bracket indicates class limit is included; round bracket indicates class limit is not 

included.  



 

Chapter 7  
 

 

170  
 

Table 7.2 – Staffora River basin. Variables entered into the discriminant model as the best predictors of 
the occurrence of landslides in the 2243 geo-hydrological mapping units in which the basin was 

partitioned. Most important standardized discriminant function coefficients (SDFC) are shown in bold. 
Negative or positive sign of the coefficients indicates variables contributing toward stability (red) or 

instability (green), respectively. 

 VARIABLES DESCRIPTION  SDFC 

Drainage channel magnitude MAGN .124 
Drainage channel order ORDER -.232 
Drainage channel length LINK_LEN -.119 
Mapping unit area SLO_AREA -.246 
Terrain unit micro-relief R .139 
Mapping unit mean elevation ELV_M .097 
Mapping unit mean slope angle  SLO_ANG -1.456 
Mapping unit mean slope angle squared SLO_ANG2 1.265 
Mapping unit mean slope angle standard deviation ANG_STD .190 
Drainage channel mean slope  LNK_ANG -.286 
Mapping unit length standard deviation LEN_STD -.125 
Mapping unit slope (middle portion)  ANGLE2 .186 
Concave profile down slope CONV .208 
Concave-convex profile COV_COC .051 
Convex-concave profile COC_COV .150 
Rectilinear slope profile RET -.048 

M
or

ph
ol

og
y 

Complex slope profile CC .200 
Recent alluvial deposit ALLUVIO .592 
Monte Vallassa sandstone AR_BIS .441 
Ranzano sandstone AR_R_M_P -.065 
Scabiazza sandstone AR_SCA -.063 
Detritus DETRITO -.099 
Monte Lumello marl MR_AN_LO .146 
Rigoroso marl MR_B_R_C .129 
Bosmenso marl MR_BOSM .051 

Li
th

ol
og

y 

Monte Piano marl MR_P_R_B .122 
Bare rock or soil ALV -.085 
Dense forest BD .048 
Woods BMD -.038 
Uncultivated area INC -.281 
Pasture PRA -.222 La

nd
 u

se
 

Cultivated area SEM -.277 
Bedding dipping into the slope REG .078 

Mapping unit facing N-NE TR1 -.126 

St
ru

ct
ur

e 

Mapping unit facing S-SW TR3 -.053 
 Very old (relict) landslide (A0) FRA_OLD -.053 
    

As discussed in § 6.5, Table 7.3 provides a measure of the “degree of fitting” of the 
susceptibility model, i.e., of the ability of the model to predict the known distribution of (past) 
landslides. However, the contingency table does not prove the ability of the susceptibility 
model to predict the spatial occurrence of new (i.e., future) landslides. To obtain this, external 
(independent) information is required. The availability of the multi-temporal inventory map 
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allowed for a quantitative estimate of the prediction skill of the susceptibility model. To 
accomplish this, the total area of new landslides (at the date of the photographs) in each 
mapping unit was computed in the GIS. The obtained results were then compared with the 
susceptibility zoning obtained by the different discriminant models. Figure 7.5 relates the 
percentage of landslide area in each susceptibility class to the corresponding basin area, the 
latter ranked from most (left) to least (right) susceptible. 
Table 7.3 – Staffora River basin. Comparison between mapping units classified as stable or unstable by 

the discriminant model (Figure 7.4) and mapping units free of and containing landslides in the 
inventory map (Figure 7.1). 

  PREDICTED GROUPS (MODEL) 

  GROUP 0 
STABLE MAPPING UNITS 

GROUP 1 
UNSTABLE MAPPING UNITS 

G
RO

U
P 

0 
 

MAPPING UNITS FREE OF 
LANDSLIDES IN INVENTORY MAP 

69.0 % 
(class 1) 

31.0 % 
(class 3) 

AC
TU

AL
 G

RO
U

PS
 

(IN
VE

N
TO

RY
) 

G
RO

U
P 

1 

MAPPING UNITS CONTAINING 
LANDSLIDES IN INVENTORY MAP 

15.0 % 
(class 4) 

85.0 % 
(class 2) 

Overall percentage of mapping units correctly classified is 78.9%. 

In Figure 7.5 four curves are shown, which portray different information. The blue dashed line 
and the green dotted line relate the percentage of landslide area used to prepare the model 
(past landslides, A1-A2 for model A, and A1-B2 for model B) to the predicted susceptibility. 
The continuous red line and the continuous violet line relate the cumulative percentage of 
landslide occurred after the model was prepared to the model prediction. While the first two 
curves (green and blue) measure model fit, the latter two curves (red and violet) provide a 
quantitative measure of the model ability to predict future landslides geographically. As 
expected, model fit (blue and violet lines) is better than model skill, which decreases with the 
increase of the time span of the prediction. 
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Figure 7.5 – Staffora River basin. Percentage of landslide area in each susceptibility class (y-axis) vs. 
the corresponding basin area (x-axis), ranked from most (left) to least (right) susceptible. 



 

Chapter 7  
 

 

172  
 

7.3.4. Hazard assessment 
All the information needed to determine quantitatively landslide hazard in the Staffora River 
basin is now available, and the probability model introduced in § 7.2 can be applied. Figure 
7.6 shows the workflow. 

Environmental Thematic
Variables

Multi-temporal landslide
inventory map

Susceptibility
assessment
(Figure 7.4)

“Where”

Discriminant
Analysis

Exceedance
probability
(Figure 7.3)
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“How large”
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Double Pareto

DATA MODELS RESULTS

Landslide Hazard
Assessment
(Figure 7.7)
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Figure 7.6 – Block diagram exemplifying the work flow adopted to determine landslide hazard. 
Rectangles indicate input data. Diamonds indicate individual models, for landslide susceptibility, for 
the temporal probability of landslides, and for landslide size. Ellipses indicate intermediate results. 

Hexagon indicates the final result.  

Summarizing: (i) I obtained the probability of landslide size, a proxy for landslide magnitude, 
from the statistical analysis of the frequency-area distribution of the mapped landslides (eqs. 
5.3 and 5.4, and Figure 7.2); (ii) I obtained the probability of landslide occurrence for 
established periods by computing the mean recurrence interval between successive failures in 
each mapping unit, and by adopting a Poisson probability model (equation 4.7, and Figure 
7.3); and (iii) I obtained the spatial probability of slope failures (i.e., landslide susceptibility) 
through discriminant analysis of 46 environmental variables (equations 6.1 and 6.12, and 
Figure 7.4). Assuming independence, and multiplying the three probabilities, I obtain the 
landslide hazard, i.e., the joint probability that a mapping unit will be affected by future 
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landslides that exceed a given size, in a given time, and because of the local environmental 
setting (§ 7.2, equation 7.3).  

Figure 7.7 shows examples of the obtained landslide hazard assessment. The Figure portrays 
landslide hazard for terrain units in the central part of the Staffora River basin for four periods 
(5, 10, 25 and 50 years), and for two landslide sizes, greater or equal than 2000 m2 and greater 
or equal than one hectare. 

Figure 7.7 – Staffora River basin. Examples of landslide hazard maps for 4 periods, from 5 to 50 years, 
and for two landslide sizes, AL ≥ 2000 m2 (A) and AL ≥ 1 ha (B). Colours show different joint 

probabilities of landslide size, of landslide temporal occurrence, and of landslide spatial occurrence. 

7.3.5. Discussion 
I now attempt a general discussion of the problems encountered and the results obtained in the 
assessment of landslide hazard in the Staffora River basin. Most importantly, I examine the 
validity of the assumptions under which the hazard assessment holds (§ 3.1, § 4.5, § 5.2, § 
6.2.1). The discussion focuses on the experiment conducted in the Staffora River basin, but the 
framework and most of the conclusions are general, and applicable to other cases. 

The obtained landslide hazard model holds under a set of assumptions, namely: (i) landslides 
will occur in the future under the same circumstances and because of the same factors that 
produced them in the past, (ii) landslide events are independent (uncorrelated) random events 
in time, (iii) the mean recurrence of slope failures will remain the same in the future as it was 
observed in the past, (iv) the statistics of landslide area are correct and will not change in the 
future, (v) landslide area is a reasonable proxy for landslide magnitude, and (vi) the 
probability of landslide size, the probability of landslide occurrence for established periods, 
and the spatial probability of slope failures, are independent. 
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That slope failures will occur in the future under the same conditions and because of the same 
factors that triggered them in the past is a recognized postulate for all functional (statistically 
based) susceptibility assessments (see § 6.2.1 and 6.4.1 for a discussion). As for the Upper 
Tiber River basin (§ 6.4), the main difficulty with this assumptions is that the environmental 
conditions (predisposing factors) that caused landslides “must remain the same in the future” 
in order to cause similar slope failures. It is reasonable to established (assume) a validity of the 
hazard model for the Staffora River basin of 50 years, approximately equivalent to the length 
of the period covered by the multi-temporal inventory used to establish landslide recurrence. 
Hence, the problem is that of investigating the possibility that the predisposing factors will 
change in the next 50 years, changing landslide susceptibility.  

It is safe to assume that geological factors (e.g., lithology, structure, seismicity) will not 
change (significantly) in such a short geological time. Local morphological modifications can 
occur in the period due to stream erosion, landslides and human actions, but extensive 
morphological changes are not reasonably foreseeable. If significant changes should occur, the 
susceptibility model should be rejected or revaluated. Inspection of Table 7.2 reveals that 30 
of the 36 thematic variables entered into the susceptibility model are not expected to change 
significantly in the considered period. However, variables describing land use types may 
change, locally significantly, and changes in land use are known to affect landslide frequency 
and abundance (Guthrie, 2002; Glade, 2003). Quantitative estimates of land use change are not 
available for the Staffora River basin, although they could be obtained by interpreting and 
comparing the available sets of aerial photographs. Qualitative estimates indicate a reduction 
of about 25% of the forest coverage in the period from 1955 to 1999, in favour of cultivated 
land. In the same period, agricultural practices have changed, largely aided by powerful 
mechanical equipments. If land use will change considerably in the Staffora River basin, the 
role of some the environmental variables considered in the susceptibility model will also 
change, hampering the validity of the model. A new model should be prepared, considering 
variables showing areas of land use change. 

The adopted susceptibility model does not consider the landslide triggering factors, i.e., 
rainfall, seismic shaking or snow melting. Changes in the frequency or intensity of the driving 
forces will not affect (at least not in the considered period) the susceptibility model. However, 
the changes may affect the rate of occurrence of landslide events. 

In the Apennines, evidence exists that where abundant clay, marl and sandstone crop out 
landslides exhibit spatial persistence, i.e., landslides occur more abundantly where they 
occurred in the past (Cardinali et al., 2000, § 4.4). If this is the case for the Staffora River 
basin, the assumption that landslide events are uncorrelated random events in time may be 
violated. Analysis in a GIS of the multi-temporal inventory reveals that 40% of all the 
landslides identified in the period from 1955 to 1999 (A2–E2 in Table 7.2) occurred inside 
landslide areas mapped on the 1955 aerial photographs (A0–A1). Considering only the 2390 
landslides occurred in the 45-year period from 1955 to 1999 (A2–E2), 12% of the slope failures 
occurred in the same area of other landslides occurred in the same period. For the Staffora 
River basin, an archive inventory of historical landslide events covering the period from 1850 
to 1998 is available. Analysis of the information listed in this inventory indicates that 389 
landslide events occurred at 332 different sites, with only 38 sites affected two or more times. 
The same landslide site was affected on average 1.2 times, indicating a low rate of recurrence 
of events at the same site. All this concurs to establish that for the period of the hazard 
assessment (i.e., 50 years) in the Staffora River basin landslides can be considered 
uncorrelated random events in time. 
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Analysis of the archive inventory provides information also on the triggering mechanisms of 
the slope failures. Of the 248 landslide events listed in the catalogue for which the triggering 
mechanism is known, 210 (84.7%) were the result of intense rainfall, 16 (6.5%) to a 
combination of intense rainfall and snow melting, infiltration, irrigation or broken pipes, 14 
(5.6%) to erosion at the base of the slope, and eight (3.2%) to other causes. The analysis 
indicates that most of the landslides in the Staffora River basin are rainfall induced. If the rate 
of occurrence of the meteorological events that trigger landslides changes, the mean rate of 
slope failures will also change. If the intensity (amplitude and duration) of the rainfall will 
change, the rate of slope failures might change, in a way that is not predictable. For the 
coming decades, south of the Alps models of global climate change forecast the same total 
amount of yearly rainfall concentrated in a fewer number of high intensity events (Bradley et 
al., 1987; Brunetti et al., 2000; Easterling et al., 2000; IPCC, 2001). This may result in more 
abundant shallow landslides and in less frequent deep-seated slope failures (Buma and Dehn, 
1998; Dehn and Buma, 1999). Modifications in land use induced by changes in agricultural 
practices may also locally change the rate of occurrence of landslides. 

As I have shown in § 5, determining the statistics of landslide area is no trivial task (Guzzetti 
et al., 2002b; Malamud et al., 2004a). The (scant) available literature (Stark and Hovius, 2001; 
Guzzetti et al., 2002b; Guthrie and Evans, 2004a,b; Malamud et al., 2004a,b) seems to 
indicate that the frequency-area statistics of landslide areas does not change significantly 
across lithological or physiographical boundaries. Malamud et al. (2004a) showed that three 
different populations of landslides produced by different triggers (i.e., seismic shaking, intense 
rainfall, rapid snow melting) in different physiographical regions (southern California, central 
America, central Italy), exhibit virtually identical probability density functions. Data available 
for Umbria indicates that the probability density of landslide area does not change 
significantly with time. It is therefore safe to assume that in the Staffora River basin the 
frequency-area statistics of landslide area will not change in the period considered for the 
hazard assessment. It is also justified to use a single probability density function for the entire 
basin. 

Hungr (1997) argued that no unique measure of landslide magnitude is available, and 
proposed to adopt destructiveness as a measure of landslide magnitude. In the Staffora River 
basin, landslide area was taken as a proxy for landslide destructiveness and of landslide 
magnitude. The area of the individual landslides was obtained in a GIS from the multi-
temporal inventory. However, it is not established in the Staffora River basin that landslide 
area is necessarily a good measure of landslide destructiveness. Analysis of the archive 
inventory reveals that information on the size (area, length and width) of landslides is 
available for 26 events (6.7%), which range from 600 m2 to 0.6 km2 (mean = 5.8 ha, std. dev. 
= 13.5 ha). Damage caused by these landslides was mostly to the roads and subordinately to 
private homes and to the aqueduct. Information on landslide type is available for 28 events 
(7.2%), of which 15 were slides, 6 flows and 5 falls. Slides and flows caused the most severe 
damage, and falls produced only minor, temporary interruptions along the roads. Information 
on landslide velocity is available for five events, and ranges from 10 cm/h to 1 m/day. The 
ensemble of the historical information on damaging slope failures indicates that damage in the 
Staffora River basin is caused mostly by slow to rapid moving slides and flows (i.e., the type 
of failures considered in the hazard assessment), and that large landslides tend to produce 
larger damage. 

The last assumption of the proposed model is that the probabilities of landslide size, of 
temporal occurrence, and of spatial incidence of mass movements are all independent. The 
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legitimacy of this assumption is difficult to prove. As previously shown, in the Staffora River 
basin the probability of landslide area is largely independent from the physiographical setting. 
Hence, the probability of landslide area is independent from landslide susceptibility. The 
susceptibility model was constructed without considering the driving forces (meteorological or 
others) that control the rate of occurrence of slope failures in the basin. Thus, the rate of 
landslide events is largely independent from landslide susceptibility. Lastly, analysis of the 
information listed in the archive inventory revealed that slope failures occurred in all sizes, 
indicating that the rate of failures is independent from landslide size. Finally, the hazard model 
has produced many hazard maps, one for any of the many possible landslide scenarios (e.g., 
different landslide sizes, different return periods, etc.). How to combine this large number of 
maps into a single product useful to decision makers remains an open problem (§ 9.4). 

7.4. Assessment of landslide hazard at the national scale 

Establishing the level of landslide hazard for an entire nation is a difficult task, and only a few 
– largely empirical – attempts have been pursued (e.g., Radbruch-Hall et al., 1982; Brabb et 
al., 1999). The main difficulty of such attempts lies in the scant availability of relevant 
information for territories extending for hundreds of thousands of square kilometres. In Italy, 
relevant information is available to attempt a quantitative assessment of landslide hazard using 
a modified version of the probability model presented in § 7.2. The model requires three 
probability estimates, namely: (i) of the spatial probability of landslides (i.e., susceptibility), 
(ii) of the temporal occurrence of landslides, and (iii) of the magnitude (or the destructiveness) 
of the expected landslide event. Preliminary to the definition of landslide hazard is the 
selection of an appropriate mapping unit. For this experiment, the municipality (an 
administrative and political subdivision, § 6.2.2) is selected as the terrain partitioning unit. 
Italy is divided into 8102 municipalities, ranging in size from 1285 km2 (Rome) to 0.11 km2 
(Atrani, Campania) (mean area = 37.3 km2, mode = 26.25 km2, std. dev. = 50.00 km2). 

7.4.1. Spatial probability of landslide events 
Landslide susceptibility in each municipality was ascertained through discriminant analysis of 
independent thematic variables describing morphometry, hydrology, lithology and soil types 
(§ 2.1). Morphometric and hydrological variables were obtained in a raster GIS from the 90 m 
× 90 m DEM acquired by the Shuttle Radar Topography Mission (SRTM) in February of 
2000. Lithological information was obtained from a synoptic geological map published by 
Compagnoni and his collaborators, in the period from 1976 to 1983. For the statistical 
analysis, the large number of rock units shown in the synoptic geological map (145 units) was 
grouped into 20 lithological types. Similarly, the 34 soil types shown in the synoptic soil map 
of Mancini (1966) were grouped into 8 classes of soil thickness and 11 classes of soil parent 
material. As a dependent variable, the presence/absence of historical landslide events listed in 
the archive inventory of the AVI project (see § 3.3.1.1) was used. Figure 7.8 shows the result 
of the susceptibility assessment. 

7.4.2. Probability of event occurrence 
To establish the recurrence of the landslide events, and to estimate the probability of landslide 
occurrence in an established period, the archive inventory compiled by the AVI project was 
used (§ 3.3.1.1). This inventory lists 22,547 landslide events in the period between 1900 and 
2001. In each municipality, the average recurrence of landslide events was obtained dividing 
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the total number of events listed in the historical catalogue (from 0 to 353) by the time span of 
the investigated period (102 years, from 1900 to 2001). Assuming that the recurrence of 
landslides will remain the same for the future and adopting a Poisson probability model (§ 
4.5), the exceedance probability of having one or more damaging landslide event in each 
municipality was established for different periods, from 5 to 100 years.  

Figure 7.8 – Landslide susceptibility map of Italy, obtained through discriminant analysis of 
morphometric, hydrological, lithological and soil information. Mapping unit is the municipality. 

Probability of landslide spatial occurrence shown in 20 classes, from low (dark green) to high (dark 
blue). 

7.4.3. Probability of the consequences 
The probability model of landslide hazard requires an estimate of the magnitude of the 
expected events. No direct information on the statistics of the magnitude of landslides is 
available for Italy. In the archive inventory, the size (length, area, volume) or the velocity of 
the slope failures is known for a small number of events, preventing the use of these 
parameters as proxies of landslide magnitude. Salvati et al. (2003) compiled a catalogue of 
historical landslide (ad flood) events that resulted in deaths, missing persons, injuries and 
homelessness in the period from AD 1279 to 2002. Guzzetti et al. (2005b,c) used this 
catalogue to study the consequences of the damaging landslide events, including a quantitative 
estimate of societal risk (§ 8.3.1.2). Societal risk was obtained through the analysis of the 
frequency statistics of historical landslides with human consequences. The latter is a 
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quantitative measure of the destructiveness to the population caused by landslide events, and 
can be conveniently used as a proxy for landslide magnitude. 

7.4.4. Hazard assessment and discussion 
The information needed to establish landslide hazard is now available. To define the hazard 
the proposition given in equation 7.2 has to be slightly modified. Here, I define landslide 
hazard (at the national scale) as: 

HL=P[P(C) ≥ 1 in a time interval t, given {morphology, lithology, soil types,…}] (7.4)

where, PC is the probability of the consequences of a landslide event, measured by the number 
of fatalities caused by the event. For any given municipality, equation 7.4 expresses landslide 
hazard has the conditional probability of landslide damage to the population, P(C), of 
landslide occurrence in an established period t,  P(NL), and of landslide spatial occurrence (S), 
given the local environmental setting. Assuming independence, the landslide hazard, i.e., the 
joint probability, is:  

S)N(P)C(PH LL ××=  (7.5)

where, the probability of landslide damage to the population was obtained from the catalogue 
of landslides with human consequences, the probability of landslide events occurrence was 
established from the archive inventory of landslide events in Italy, and the probability of 
landslide events spatial occurrence was obtained though discriminant analysis of 
morphometric, hydrological, lithological and soil information. Figure 7.9 shows schematically 
how landslide hazard was obtained. 

To establish susceptibility, the presence / absence of historical events in each municipality was 
selected as the dependent variable. Clearly, local incompleteness in the archive inventory or 
errors in positioning historical landslide events affect the susceptibility model. Also, the 
abundance of historical events in each municipality was not considered in the susceptibility 
model. The independent variables were selected mostly from two thematic layers (the synoptic 
geological and soil maps) and a DEM. The relationship between this information and the 
location of historical landslide events in the municipalities was not established independently. 
Additional independent variables were obtained from the archive landslide inventory, 
including the density of the events (i.e., number of events in the municipality / area of the 
municipality). However, the percentage of the municipality that could be affected by 
landslides was not considered when computing the density. Land use and its changes, which 
are known to affect landslides, were not considered in the model, as were not considered 
changes in the population and its density distribution. 

To establish the recurrence of landslide events in each municipality, the archive inventory of 
landslide events in Italy was used (§ 3.3.1.1). Incompleteness in this catalogue will affect the 
probability of landslide events and the hazard model. To establish the probability of the 
consequences, the catalogue of landslides which resulted in deaths, missing persons, injured 
and homeless people, was used. Incompleteness of this catalogue will affect the probability of 
the consequences and the final hazard model. Also, independence between the historical 
landslide events and the events with consequences to the population has not been established. 
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Figure 7.9 – Schematic representation of the procedure adopted to evaluate landslide hazard at the 
national scale, in Italy. 

As in the case of the Staffora River basin (§ 7.3), the hazard model has produced (or can 
produce) many different hazard maps, one for any of the several possible landslide scenarios 
(e.g., different expected number of fatalities, different return periods, etc.). How to combine 
the large number of maps into a product useful to decision makers remains an open problem (§ 
9.4). 
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The obtained assessment is the first quantitative and reproducible estimate of landslide hazard 
available for Italy, at the national (synoptic) scale. The model is functional (i.e., statistical), 
and its quality depends (almost) entirely on the quality, completeness and relevance of the 
input data. Most vitally, the validity and limitations of the basic assumptions on which the 
probabilistic model was developed were not proven for this national hazard assessment. This 
is not an easy task that requires further investigation. 

7.5. Rock fall hazard assessment along the Nera and Corno valleys 

Rock fall is a common-place geomorphological process and represents a major hazard in 
mountain areas worldwide (Whalley, 1984; Flageollet and Weber, 1996). Rock falls range in 
size from small cobbles to large boulders of hundreds of cubic meters, travel at speeds ranging 
from few to tens of meters per second, and for long distances from the detachment zone to the 
deposition area (Cruden and Varnes, 1996). Despite their often relatively small size, rock falls 
are among the most destructive mass movements (Whalley, 1984; Rochet, 1987, Evans and 
Hungr, 1993; Evans, 1997), and in Italy they represent a primary cause of landslide fatalities 
(Guzzetti, 2000; Guzzetti et al., 2005c). 

The size and speed of rock falls, and their ability to travel long distances (exceeding one 
kilometre) makes the previously discussed methods to ascertain landslide hazard largely 
unsuitable to rock falls. In particular, it is the subdivision of terrain based on slope units or 
geo-hydrological units that is largely incompatible with this landslide type. A boulder 
detached from a rock cliff can travel across geo-hydrological or slope unit boundaries. Rock 
fall susceptibility and hazard are not related only to where rock falls occur (i.e., where they 
detach), but also to where rock falls travel and deposit. For rock falls, quantitative measures of 
their magnitude are possible. Knowing the mass of the falling boulder (i.e., the volume × the 
rock density) and its velocity, kinetic or potential energy can be easily computed, which 
represent a direct measure of the magnitude of the event, a good proxy for destructiveness. If 
the size of the boulder is undetermined, velocity can be selected as a reasonable proxy for 
magnitude.  

In the following, I describe a quantitative attempt to determine rock fall hazard along the Nera 
River and the Corno River valleys, in south eastern Umbria (§ 2.5). The attempt is based on 
the use of the computer programme STONE (Guzzetti et al., 2002), which I briefly describe 
below.. 

7.5.1. The computer program STONE 
To assess rock fall hazard, knowledge on the spatial (geographical) distribution of the 
expected rock falls is essential. To obtain this information, I contributed to develop STONE 
(Guzzetti et al., 2002), a computer program capable of simulating rock fall processes in three-
dimensions. STONE uses a lumped-mass approach to simulate rock fall processes. The falling 
boulder is considered dimensionless and a kinematic simulation is performed. The input data 
required by STONE include: (i) the location of the detachment areas of rock falls, (ii) the 
number of boulders launched from each detachment area, (iii) the starting velocity and 
horizontal angle of the rock fall, (iv) a velocity threshold below which a boulder stops, (v) a 
DEM describing topography, and (vi) the coefficients of dynamic rolling friction, and of 
normal and tangential energy restitution used to simulate the loss of energy where the boulder 
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is rolling and at the impact points. The latter variables are provided as raster maps, i.e., in a 
spatially distributed format. 

STONE is capable of coping with the uncertainty and the inherent variability in the required 
input data. The software accomplishes this in two ways: (i) by launching a variable number of 
blocks from each detachment cell, and (ii) by varying randomly the starting horizontal angle, 
the dynamic rolling friction coefficient, and the normal and tangential energy restitution 
coefficients. The software uses GIS technology to produce 2- and 3-dimensional rock fall 
trajectory lines and raster maps. The latter include three grids portraying: (i) the cumulative 
count of rock fall trajectories that pass through each cell, (ii) the maximum computed velocity, 
and (iii) the largest distance of the boulder to the ground computed along the rock fall 
trajectories (flying height) (Guzzetti et al., 2002). The three grid maps can be used to attempt 
to ascertain rock fall hazard. 

7.5.2. Application of the rock fall simulation model 
I used the computer program STONE in a 48 km2 area along the Nera River and the Corno 
River valleys centred on the town of Triponzo (§ 2.5). In this area rock falls are frequent and 
dangerous. In the 1980’s, a new tunnel was constructed along State Road 320 to bypass the 
Balza Tagliata gorge, east of Triponzo, where rock falls were particularly frequent and 
hazardous, and a section of the road was abandoned. In October 1997, earthquake shaking 
triggered several rock falls in the study area. The earthquake induced landslides were 
particularly abundant along the Balza Tagliata gorge (§ 3.3.3.3).  

Data used by STONE to complete the spatially-distributed rock fall simulation were described 
in § 2.5, and were obtained from: (i) existing topographic and geological maps, (ii) the 
interpretation of two sets of aerial photographs flown in July 1977 and in October-November 
1997, and (iii) field surveys. A DEM with a ground resolution of 5 m × 5 m was obtained by 
interpolating 10 and 5 meter interval contour lines obtained from the 1:10,000 scale base 
maps. The source areas of rock falls were mapped on the same topographic maps at 1:10,000 
scale from vertical aerial photographs at 1:13,000 and 1:20,000 scale, and then checked in the 
field. Oblique aerial photographs taken with a handheld camera from a helicopter immediately 
after the September-October 1997 earthquakes (§ 3.3.3.3) were used to refine the mapping 
locally. Minor rock slopes and road cuts from which rock falls can occur were mapped in the 
field. A total of 2.0 km2 of rock fall source areas were identified. This corresponds to about 
4.2% of the study area. Correcting for the steep topographic gradient, rock fall detachment 
areas extend for approximately 3.0 km2. 

Variables controlling the loss of energy at impact points (normal and tangential energy 
restitution coefficients) and where a boulder is rolling (dynamic friction angle) were obtained 
by recoding a surface geology and landslide inventory map prepared by updating the existing 
large-scale geological and landslide maps, mostly through the analysis of aerial photographs 
(Antonini et al., 2002a, b). For each lithological unit cropping out in the study area, values of 
the dynamic friction angle and of the normal and tangential energy restitution coefficients 
were obtained from the literature (Broili, 1973; ERM-Hong Kong, 1998; Fornaro et al., 1990, 
Azzoni et al., 1995; Crosta and Agliardi, 2000; Chau et al., 2003) and from the personal 
experience in the use of the computer program STONE. Table 7.4 summarizes the values of 
the dynamic rolling friction angle, and the normal and tangential energy restitution coefficients 
assigned to each terrain type. 
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Definition of the values shown in Table 7.4 was inevitably heuristic, and to some extent 
arbitrary. Where bedrock crops out, and in the source area of rock falls, boulders do not loose 
much energy at impact point and where rolling. To these areas are assigned high values of the 
normal (55-65) and tangential (65-75) energy restitution coefficients, and low values of the 
dynamic rolling friction angle (0.25-0.40). The ranges of values reflect variations in the rock 
types. Massive and thickly layered limestone is assigned very high values of the energy 
restitution coefficients and very small values of the dynamic rolling angle. Thinly bedded 
limestone, marl and clay are assigned intermediate values of the normal and tangential 
restitution coefficients and larger values of the dynamic rolling angle. Field surveys revealed 
that only few boulders reached the areas where alluvial deposits crop out along the valley 
bottoms. Where this occurred, the boulders did not travel far. Based on this finding, alluvial 
deposits are assigned very low values of the normal (15) and tangential (30) energy restitution 
coefficients, and a very high value of the dynamic rolling friction angle (0.80). To the other 
terrain types are assigned intermediate values of the normal and tangential energy restitution 
coefficients and of the dynamic rolling friction angle, based on the hardness and the roughness 
of the topographic surface. 

Table 7.4 – Nera River and the Corno River valleys. Values of the dynamic-rolling friction angle and 
of the normal and tangential energy restitution coefficients assigned to each terrain type. A range of ± 

5% of the value was adopted to account for uncertainty in the coefficients. 

TERRAIN TYPE ROLLING 
FRICTION 

NORMAL 
RESTITUTION 

TANGENTIAL 
RESTITUTION 

 VALUE VALUE VALUE 
Alluvial deposit 0.80 15 30 
Alluvial fan 0.60 25 55 
Debris cone 0.60 30 50 
Debris deposit 0.70 35 55 
Shallow debris deposit 0.70 35 60 
Talus 0.65 35 55 
Landslide deposit 0.40 45 55 
Landslide crown area 0.35 55 65 
Debris flow deposit  0.65 30 55 
Debris flow source area 0.55 35 60 
Massive and thickly layered limestone, and Travertine 0.30 65 75 
Rock fall source area in massive and thickly layered limestone, 
and Travertine deposit 0.25 65 75 

Thinly bedded limestone, cherty limestone 0.35 60 70 
Rock fall source area in thinly bedded, cherty limestone  0.30 60 70 
Marly limestone, marl and clay  0.40 55 65 
Rock fall source area in marly limestone, marl and clay 0.35 55 65 

 

The spatially distributed rock fall model for the Nera River and the Corno River valleys is the 
result of an iterative procedure. A preliminary model was produced by launching a single 
(“virtual”) boulder from each rock fall source cell. The map of the rock fall count was visually 
inspected and checked with the location of known rock falls and the extent of talus, landslide 
and other debris deposits. Model variables were adjusted to avoid unreasonable results. The 
process was repeated a number of times, changing the model parameters and the initial 
conditions (i.e., the starting velocity, the impact and friction coefficients, etc.) until the result 
was judged satisfactory. A second model was then produced by launching 30 boulders from 
each source cell, and by allowing the model variables to vary randomly within five percent of 
the pre-defined average values (Table 7.4). This allowed considering the effects of the 
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variability of the rock fall process and the unpredictability in the modelling variables. Finally, 
the number of rock falls launched from each detachment cell was varied according to the rock 
type of the source area. In particular, where massive or thickly layered limestone and 
travertine deposits crop out, 50 blocks were launched, where thinly bedded limestone and 
cherty limestone crop out 45 boulders were launched, and where thinly bedded marly 
limestone, marl and clay crop out 35 boulders were launched.  

Figure 7.10.A shows the resulting map of the cumulative count of the expected rock fall 
trajectories, and Figure 7.11 shows a 3-dimensional view of a portion of the same map. In the 
two figures, the spread of colours indicates a variable number of expected rock falls, from very 
few (1-10, green) to numerous (> 500, dark violet). 

Figure 7.10 – Rock fall maps produced by STONE for the Nera River and the Corno River valleys. (A) 
cumulative count of rock fall trajectories; 1) 1-10 blocks, 2) 11-100 blocks, 3) 101-250 blocks, 4) 251-
500 blocks, 5) > 500 blocks. (B) map of the maximum rock fall flying height; 1) < 1m, 2) 1-5 m, 3) 5-
10 m, 4) 10-30 m, 5) > 30 m. (C) map of the maximum rock fall velocity; 1) < 1.5-25 km/h, 2) 25-40 

km/h, 3) 40-70 km/h, 4) 70-115 km/h, 5) > 115 km/h. 

As expected, the frequency of rock falls is not the same throughout the study area. Rock falls 
are most abundant along steep channels and drainage lines, confirming the field observation 
that topography locally controls rock fall trajectories. The map of the count of the expected 
rock falls can be compared with the extent of the talus, landslides, and other debris deposits, 
and with the location of rock falls triggered by the 1997 earthquake sequence (§ 3.3.3.3). 
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Comparison with the extent of talus deposits reveals that only at few places the map of the 
rock fall count exceeds down-slope the extent of the talus deposits. In places this occurs where 
the lower limit of the talus corresponds to the flat part of the valley bottom. Comparison with 
the location of the earthquake-induced failures reveals that the extent of the expected rock fall 
areas and the frequency of rock fall trajectories are in good agreement with the available 
information on known rock fall events. Of the 109 known rock fall deposits, 98 (89.9%) are 
located in areas where rock falls are expected, and 11 (10.1%) occur in areas where rock falls 
are not expected. This is an efficient form of model validation. A final model validation was 
performed by randomly inspecting the distribution of the vertical distance of the rock fall 
trajectories (Figure 7.10.B) (flying height, i.e., the distance of the boulder to the ground) and 
of the rock fall maximum velocity (Figure 7.10.C). Results indicate that the computed rock fall 
velocity locally exceeds 250 km·h-1 and the computed rock fall flying height ranges from zero, 
where boulders are rolling, to more that 165 metres above the ground, near high cliffs. 

 

Figure 7.11 – Triponzo area, along the Nera River and the Corno River valleys. Three-dimensional 
view of a portion of the grid map showing the count of rock fall trajectories (Figure 7.10.A). Colours 
indicate increasing number of rock fall trajectories, from few (light blue) to very many (dark violet). 

7.5.3. Rock fall hazard assessment 
The three raster maps produced by STONE and discussed before can be used to ascertain rock 
fall hazard along the Nera River and the Corno River valleys. The map showing the total 
number of rock fall trajectories (Figure 7.10.A) can be considered a convenient proxy for the 
expected frequency of rock fall occurrence. For each grid cell the count of rock fall trajectories 
is a proxy for the probability of being struck by a falling or rolling boulder. The larger the 
number of computed trajectories, the higher the expected frequency of rock fall occurrence. 
Maps of the largest distance to the ground (Figure 7.10.B) and of the highest computed 
velocity (Figure 7.10.C) provide information on the intensity of the expected rock fall, a proxy 
for the maximum kinetic energy at each grid cell (Guzzetti et al., 2002). 
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To determine rock fall hazard, I adopt a heuristic approach. I assume that rock fall hazard, 
HRF, is a linear combination of rock fall count (c), maximum rock fall flying height (h), and 
maximum rock fall velocity (v), or 

HRF = f (cRF, hRF, vRF) (7.6)

Levels of rock fall hazard are attributed using a three-digit positional index, similar to that 
proposed by Cardinali et al. (2002) (§ 8.4.6, § 8.4.8). In the index, the left digit refers to the 
rock fall count (cRF), the central digit to the rock fall flying height (hRF), and the right digit to 
the rock fall velocity (vRF). The index expresses rock fall hazard by keeping the three 
components of the hazard distinct from one another. This facilitates hazard zoning by allowing 
to understand whether the hazard results from a large number of expected rock falls (i.e., high 
frequency), a large intensity (i.e., high flying height or high velocity), or some combination of 
the three. 

Figure 7.12 shows the final rock fall hazard map for the Nera River and the Corno River 
valleys. For display purposes, the original 125 rock fall hazard classes (5 classes of rock fall 
counts × 5 classes of rock fall flying height × 5 classes of rock fall velocity) were reduced into 
a more manageable number of classes (5), adopting a simple scheme. 

 

Figure 7.12 – Rock fall hazard map for the Nera River and the Corno River valleys. Legend: VL, very 
low hazard, L, low hazard, M, intermediate hazard, H, high hazard, VH, very high hazard. 

Analysis of the hazard map reveals that 7.0 km2 (in plan view) of the study area may be 
affected by rock falls. This corresponds to 14.6% of the area, including 2.0 km2 of rock fall 
detachment zones. Correcting for the steep topographic gradient (obtained from the DEM), the 
area affected by rock falls extends for about 9.5 km2. Inspection of Figure 7.12 reveals that 
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rock fall hazard is not distributed uniformly. About 3.4 km2 of the study area (in plan view) 
are subject to low (25.5%) or very low (23.0%) hazard, 1.5 km2 (22.2%) are subject to 
intermediate hazard conditions, and 2.0 km2 are subject to high (15.3%) or very high (14.0%) 
hazard. 

By overlaying the rock fall hazard map with the map of the transportation network in a GIS, 
the sections of the roads potentially subject to rock falls can be identified. Of the 31.8 km of 
paved roads in the study area, 9.0 km (28.5%) are found to be potentially affected by rock fall 
hazard. 

Comparison of the hazard map with the location of the earthquake-induced rock fall events in 
1997 reveals that 72.5% of the seismically induced rock falls occurred in areas where the 
hazard is expected to be moderate to high or very high, and 17.4% in areas where rock fall 
hazard is expected to be low or very low. The remaining 10.1% of the earthquake induced 
failures occurred in areas where rock falls are not forecasted by the model. The latter, are 
largely due to minor inconsistencies in the DEM used to perform the simulation.  

Immediately after the earthquakes of September-October 1997, the Government of Umbria 
and the National Road Company (ANAS) invested considerable resources to install defensive 
measures to mitigate rock fall hazard and risk along the Nera River and the Corno River 
valleys. Four types of defensive measures were installed: (i) passive revetment nets, (ii) elastic 
rock fences, (iii) concrete retaining walls, and (iv) artificial tunnels. The remedial 
measurements were taken without considering the hazard assessment discussed here. Also, the 
rock fall hazard assessment shown in Figure 7.12 does not consider the presence of the 
defensive measures. Hence, the model locally overestimates the hazard and the associated risk. 

To determine the mitigating effects of existing defensive structures, I now perform a set of 
three additional simulations. The first simulation (Model 2, Table 7.5) considers the presence 
of the passive revetment nets. The areas where passive revetment nets were installed were 
mapped in the field using the same base maps at 1:10,000 scale used to identify the rock fall 
source areas. A total of 0.3 km2 of revetment nets were mapped, mostly along or in the vicinity 
of the roads. The revetment nets are assumed fully capable of preventing rock falls, i.e., that 
no boulder could detach or fall where the revetment nets are present. Based on this 
assumption, a new rock fall hazard model is prepared that differed from the previous model 
(shown in Figure 7.12) only in terms of the reduced extent of the rock fall source areas. In this 
new model the total rock fall source areas extend for 1.7 km2 (Table 7.5). According to the 
new model, the area potentially affected by rock falls decreases to 6.5 km2 (13.5%) and the 
length of roads subject to rock fall hazard decreases to 6.5 km (20.5%). The presence of the 
passive revetment nets reduces by 7.4% the extent of the area potentially subject to rock falls, 
and by about 27.9% the total length of roads subject to rock fall hazard. The reduction is larger 
along the roads than in the rest of the hazardous areas. 

In the second simulation (Model 3, Table 7.5) the presence of the other defensive structures, 
namely the elastic rock fences, the concrete barriers, and the artificial tunnels, is considered. 
For simplicity, the possibility of a boulder that breaks through, or flies over an elastic fences 
or a concrete barrier is excluded. Rock fences and concrete barriers are linear features in plan 
view, and for modelling purposes they are transformed into strips of adjacent pixels 5 m × 5 m 
in size. A new rock fall hazard model is prepared taking into account the presence of the 
revetment nets (i.e., reducing the extent of the rock fall source area), the location of the elastic 
rock fall fences and concrete barriers (i.e., the rock fall retaining structures), and the presence 
of the artificial tunnels. The new model reveals that the extent of the area subject to rock fall 
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hazard decreases to 6.3 km2 (13.1%). Correspondingly, the total length of road subject to rock 
fall hazard reduces to 2.9 kilometres, or 9.2% of the considered road network. The analysis 
indicates that the combined effect of all the existing defensive structures reduced by about 
10.4% the extent of the area subject to rock falls, and by about 67.8% the total length of roads 
subject to rock fall hazard. Again, the reduction is larger along the roads than in other areas, 
because of the location of the defensive structures, which were installed chiefly along or in the 
immediate vicinities of the roads. 

Table 7.5 – Nera River and the Corno River valleys. Comparison of different rock fall hazard models 
prepared considering and not considering the presence and efficacy of the rock fall defensive structures 

installed in the area. 

  ROCK FALL 
SOURCE AREA AFFECTED AREA AFFECTED ROADS 

  km2 km2 % km % 

Model 1 Defensive measures not considered 2.0 7.0 14.6 9.0 28.5 

Model 2 Revetment nets considered 1.7 6.5 13.5 6.5 20.5 

Model 3 All defensive measures present in the 
area, considered fully efficient 1.7 6.3 13.1 2.9 9.2 

Model 4 All defensive measures present in the 
area, efficacy is considered 1.7 6.4 8.9 4.1 12.8 

 

The third simulation (Model 4, Table 7.5) consists in the evaluation the efficacy of the rock 
fall retaining structures. This is accomplished in two steps. First, for each grid cell the 
maximum height of the computed rock fall trajectories was compared to the height of the 
retaining structures. The analysis revealed that 20.7% of the retaining structures could be 
“jumped” by high flying rocks. Then, the possibility that a boulder could have enough kinetic 
energy to break through an elastic fence or a concrete wall was considered. For the purpose, it 
was assumed that the retaining structures could absorb up to 2500 kJ, a reasonable value for 
the structures present in the study area. At each grid cell the maximum computed rock fall 
velocity was used to calculate the corresponding boulder maximum kinetic energy, assuming a 
characteristic volume of 2 cubic meters and a unit weight of 2500 kg·m3. The latter spatial 
analysis reveals that 10.2% of the existing retaining structures can be destroyed or damaged by 
falling blocks. The analysis also shows that 21.0% of the rock fall elastic fences or concrete 
walls can be either bypassed by high flying rock falls, or can be damaged or destroyed by fast 
moving boulders. These defensive structures are at least partly ineffective in protecting from 
rock falls. The final step in the analysis consists in preparing a last hazard model not 
considering the presence of the “ineffective” defensive structures. This last model reveals that 
4.1 km of roads in the study area (12.8%) are potentially subject to rock fall hazard. The 
combined effect of all the effective defensive structures reducs by about 8.9% the total extent 
of the area subject to rock falls, and by about 55.1% the total length of roads subject to rock 
fall hazard. The model indicates that, despite the considerable reduction in rock falls risk due 
to the presence of numerous defensive structures, residual risk still exists along roads in the 
Nera River and the Corno River valleys. 
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7.5.4. Discussion 
I now briefly discuss the results obtained in the assessment of rock fall hazard along the Nera 
River and the Corno River valleys. The discussion focuses on the performed experiment, but 
conclusions are applicable to other areas and, more generally, I consider them relevant to the 
application of process-based models for the assessment of landslide susceptibility and hazard 
(§ 6.2.3.5). 

The model of the rock fall process implemented in the computer code STONE is necessarily 
simplified (Guzzetti et al., 2002; Agliardi and Crosta, 2004). Constraints in the model reflect 
into the software outputs and in the hazard assessment. In the shown experiment, selection of 
the input parameters required by STONE was heuristic and to some extent arbitrary. The 
horizontal starting velocity was kept constant (in scale and direction) throughout the study 
area, and was not selected considering the ground movements measured at nearby 
accelerometer stations. Values of the parameters used to simulate the loss of energy where 
boulders are rolling and at the impact points (Table 7.4) were selected heuristically, without 
any field experiment (which however is difficult to perform). The version of the software 
STONE used for the analysis does not consider the volume, shape and mass of the falling 
boulder (i.e., fully kinematic modelling). The simplification may be relevant where the 
boulder is flying at high speeds along ballistic trajectories (air friction is neglected), and at 
impact points, where the shape, volume and mass of the boulder are important to determine the 
energy lost during impact and the velocity and direction of the flying boulder. The 
implemented model does not consider sliding of the boulder, which may be important in the 
early stages of a rock fall (i.e., in the detachment area) and at the impact point. Finally, the 
model does not consider the possibility that at impact points a boulder may brake and rock 
fragments fly in different directions at various velocities. This is a condition that exists in 
nature, and that can result in very hazardous situations.  

The quality of the rock fall simulation depends also on other factors, including the complete 
and accurate identification of rock fall source cells and the quality of the DEM. Over large 
areas the detachment areas of rock falls are not easy to identify and map precisely. Minor rock 
slopes and small road cuts may not be shown in the map of the rock fall source cells. As a 
consequence the model may locally underestimate the spatial extent of the rock fall problem. 
Where terrain is very steep and bedrock crops out, contour lines were not shown in the base 
maps. In these areas the DEM does not accurately represent the topography, and the rock fall 
hazard model may be locally imprecise. 

Values of the adopted rock fall hazard index do not provide an absolute ranking of hazard 
levels. If the extreme values are easy to define, intermediate conditions of rock fall hazard are 
more difficult to rank. A grid cell where rock fall frequency is very low and the flying height 
and velocity are very low (HRF = 111) will have a much lower hazard than a grid cell that 
exhibits very high rock fall frequency, and very large flying height and velocity (HRF = 555). 
Deciding whether a grid cell with very high frequency and light rock fall intensity (HRF = 511) 
has a larger hazard than that of a grid cell with very low expected frequency and very high 
rock fall intensity (HRF = 155) is not straightforward, and may be a matter of opinion or local 
judgment (e.g., Cardinali et al., 2002; Reichenbach et al., 2005).  

The evaluation of the efficacy of the rock fall defensive structures is affected by completeness 
and resolution of the mapping. Identification of revetment nets, elastic rock fences, and rock 
walls was straightforward, but accurate mapping was locally difficult due to the size of the 
structures (locally a few tens of square meters) compared to the scale of the maps (1:10,000). 
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When estimating the mitigating effects of the revetment nets, the assumption was made that 
structures were completely efficient in preventing the detachment of rock falls. The 
assumption may be incorrect where large boulders are expected. The output of the computer 
model provided information only on the maximum values of the rock fall flying height and 
travel velocity. Average, or modal values were not considered and the frequency of the 
extreme values remains unknown. For the identification of the sections of the retaining 
structures that were unable to catch all the high-flying boulders or that could be destroyed by 
fast moving blocks, only the maximum computed values were used. As a result, the extent of 
the potentially ineffective retaining structures may have been overestimated. In addition, the 
estimate of the efficacy of the retaining structures did not consider the presence of multiple 
sets of elastic fences along the slopes. 

As a result of these considerations, the spatial evaluation of the rock fall hazard along the Nera 
River valley and the assessment of the possible associated risk along the roads are 
undoubtedly affected by uncertainties and limitations that must be considered when using the 
model results for mitigation and planning purposes. 

7.6. Summary of achieved results 

In this chapter, I have: 

(a) Proposed a probabilistic model for the assessment of landslide hazard, which fulfils a 
standard definition of landslide hazard. 

(b) Tested the proposed model at the catchment scale, exploiting geomorphological 
information on slope failures obtained from a multi-temporal landslide inventory map. 

(c) Demonstrated that probabilistic landslide hazard assessment can be conducted at the 
national scale. However, verification of the validity of the many assumptions on which the 
model is based was not possible at the synoptic scale. 

 (d) Demonstrated that the proposed probabilistic framework can also be adopted to determine 
the hazard posed by rock falls – a different type of mass movement – exploiting results 
obtained by a 3-dimensional rock fall simulation model. 

This responds to Question # 6 posed in the Introduction (§ 1.2). 


