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Nucleon momentum distributions, their spin-isospin dependence, and short-range correlations
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The nucleon momentum distribution nA(k) for A = 2, 3, 4, 16, and 40 nuclei is systematically analyzed in
terms of wave functions resulting from advanced solutions of the nonrelativistic Schrödinger equation, obtained
within different many-body approaches based upon different realistic bare nucleon-nucleon (NN ) interactions
featuring similar short-range repulsion and tensor interactions. Particular attention is paid to the separation of
the momentum distributions into the mean-field and short-range correlation (SRC) contributions. It is shown that
although at high values of the momentum k different approaches lead to some quantitative differences, these do
not hinder the general conclusion that the high-momentum behavior (k � 1.5–2 fm−1) of all nuclei considered
are very similar, exhibiting the well-known scaling behavior with the mass number A, independently of the
used many-body approach and the details of the bare NN interaction. To analyze and understand the frequently
addressed question concerning the relationships between the nucleus, nA(k), and the deuteron, nD(k), momentum
distributions, the spin (S)-isospin (T ) structure of few-nucleon systems and complex nuclei is analyzed in terms of
realistic NN interactions and many-body approaches. To this end, the number of NN pairs in a given (ST ) state,
viz., (ST ) = (10), (00), (01), and (11), and the contribution of these states to the nucleon momentum distributions
are calculated. It is shown that, apart from the (00) state, which has very small effects, all other spin-isospin states
contribute to the momentum distribution in a wide range of momenta. It is shown that for all nuclei considered the
momentum distributions in the states T = 0 and T = 1 exhibit at k � 1.5–2 fm−1 very similar behaviors, which
represents strong evidence of the A-independent character of SRCs. The ratio nA(k)/nD(k) is analyzed in detail,
stressing that in the SRC region it always increases with the momentum and the origin of such an increase is
discussed and elucidated. The relationships between the one- and two-body momentum distributions, considered
in a previous paper, are discussed and clarified, pointing out the relevant role played by the center-of-mass
motion of a correlated pair in the (10) state. Eventually, the values of the the probability of high-momentum
components in nuclei and the per nucleon probability a2 of deuteronlike configurations in nuclei are calculated,
and the relationship of the present approach with the many-body methods based upon low-momentum effective
interactions is briefly discussed.
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I. INTRODUCTION

Recent experiments on two-nucleon knockout reactions at
high values of the four-momentum transfer on carbon using
protons, A(p, ppN )X [1], and electrons, A(e, e′pN )X [2], as
well as experiments on inclusive quasielastic (q.e.) electron
scattering A(e, e′)X [3–5], have provided robust evidence on
the long-hunted ground-state nucleon-nucleon (NN ) short-
range correlations (SRCs), demonstrating that in both types
of processes the projectile had interacted with a nucleon
belonging to a correlated NN pair [6].

*Present address: CNR-IRPI, Istituto di Ricerca per la Protezione
Idrogeologica, Via Madonna Alta 126, I-06128 Perugia, Italy.

†Supported through the program “Rientro dei Cervelli” of the Italian
Ministry of University and Research.

In exclusive experiments, where the knowledge of both
the three-momentum transfer q and the momentum of a fast
detected proton p allows one to reconstruct the momentum
k1 = p − q ≡ −pmiss that the struck proton had before the
interaction [provided the final-state interaction (FSI) could
be disregarded], it has been found [1] that in the region
1.4 < |pmiss| < 2.8 fm−1 the removal of a proton was almost
always accompanied by the emission of a nucleon N (mostly
a neutron) carrying a momentum roughly equal to −k1. At
the same time, in the q.e. inclusive experiment A(e, e′)X,
the ratio of the cross section off a nucleus A to the cross
section off the deuteron or 3He in the region of the Bjorken
scaling variable 1.5 � xBj � 2 (the region of xBj where q.e.
scattering off a correlated NN pair is expected to occur),
exhibits a constant behavior, indicating that, in agreement with
theoretical predictions [7], the virtual photon interacted with
a nucleon of a correlated NN pair. The exclusive experiment,
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moreover, provided evidence not only on SRCs in general, but
also, in particular, of the dominance of proton-neutron (pn)
deuteronlike tensor correlations occurring in states (ST ) =
(10), where spin is given as (S) and isospin as (T ), as predicted
by several realistic calculations [8–11]; the experimental data
[1] have also provided information on the center-of-mass
(c.m.) momentum distribution of the correlated NN pair,
finding agreement with predictions made long ago [12].

Recent reviews on experiments providing information on
SRCs and their theoretical interpretations can be found in
Refs. [13,14]. A detailed picture of SRC is, however, still
limited to the 12C nucleus, so that extension to other nuclei
is necessary to have a general quantitative picture of SRC
through the periodic table. In a systematic study of SRC,
particular attention should be given to the experimental and
theoretical investigations of: (i) the relative and c.m. momen-
tum dependencies of SRC, (ii) their spin-isospin structure,
(iii) the relative role of two-nucleon (2N ) and three-nucleon
(3N ) correlations. We discuss 3N SRCs in a separate paper;
here we concentrate on 2N SRCs.

In configuration space these can be defined as those
deviations from the independent motion of two nucleons,
moving in a mean field, when they approach relative distances
r12 = |r1 − r2| ≡ r � 1.2–1.5 fm; according to theoretical
calculations, in this region, owing to the very nature of
the NN interaction [in particular to its central short-range
repulsion and the tensor attraction in (ST ) = (10) state], the
two-body mean-field density is strongly suppressed and 2N
correlated motion dominates. The details of 2N SRC depend
upon the spin-isospin state of the correlated NN pair, as
well as upon the region of the nucleus one is considering,
i.e., upon the c.m. motion of the pair R = (r1 + r2)/2. To
investigate these details, one has to take advantage of the
high-momentum components generated by SRCs that lead
to peculiar configurations of the nuclear wave function in
momentum space [7]. As a matter of fact, if nucleons “1”
and “2” become strongly correlated at short distances, the
momentum configurations, in the nucleus c.m. frame, are
characterized by k2 � −k1, kA−2 = ∑A

i=3 ki � 0, and not
by the mean-field configuration

∑A
i=2 ki � −k1, i.e., when

the high momentum nucleon is balanced by the entire A − 1
nucleons, each of them carrying an average momentum of
the order � k/(A − 1). Thus, if a correlated nucleon with
momentum k1 acquires a momentum q from an external
probe, and is removed from the nucleus and detected with
momentum p = k1 + q, the partner nucleon should be emitted
with momentum k2 � −k1 = q − p = pmiss.

Such a qualitative picture is, however, strictly valid only
if the c.m. momentum of the correlated pair was zero before
nucleon removal and, moreover, if the two correlated nucleons
leave the nucleus without interacting between themselves
and with the nucleus (A − 2). These effects have to be
carefully evaluated when attempting to extract the momentum
distribution from experimental cross sections. Within a
mean-field many-body approach, the main effect of SRCs
is to deplete the occupancy of single-particle shell-model
states and to make the occupation of levels above the Fermi
sea different from zero; this leads to a decrease of the
momentum distribution at values of |k| roughly less than the

Fermi momentum kF and to an increase of it, by orders of
magnitude, with respect to the mean-field distribution [15]. In
this context, it has been pointed out that even a low-resolution
measurement of the one-body momentum distribution at
|k| � 2–3 fm−1, where mean-field effects are negligible, may
provide precious information on SRCs [16].

Though the most direct way to investigate SRCs would be
via experiments that detect a pair of back-to-back nucleons
in the final state, also experiments which are sensitive to
the one-body momentum distributions could be very useful.
We have analyzed two-nucleon momentum distributions in
two previous papers [10,11]; here we concentrate on the
one-nucleon momentum distribution nA(k), with the aim of
clarifying some points concerning, particularly, its SRCs and
spin-isospin structures. We quantitatively clarify to what extent
the high-momentum part of nA(k) can be associated to the
deuteron momentum distribution nD(k). To this end we show
that such an association, which is only qualitatively correct,
has been motivated either from the results of approximate
many-body approaches [17–20], or from just assuming it as
an input in pioneering Monte Carlo many-body calculations
of nA(k) [21].

Recently, the momentum distributions of few-nucleon
systems and complex nuclei have been calculated within
sophisticated many-body approaches [10,11,22–34], using
modern realistic interactions [35–39]. For this reason it seems
to us appropriate to update the situation concerning the
relationship between the momentum distributions of a nucleus
A, where all 2N spin-isospin states may contribute, and the
momentum distribution of the deuteron, where only the state
(ST ) = (10) is present.

Our paper is organized as follows. Our formalism, based
upon proper spin-isospin dependent one- and two-body density
matrices, which allows one to calculate the various spin-
isospin components of the nucleon momentum distribution
nA(k), is presented in Sec. II. In Sec. III we (i) provide some
general definitions of the one- and two-body momentum distri-
butions, (ii) illustrate the way SRCs influence the momentum
distribution, (iii) critically analyze the way the probability of
SRCs can be defined, and (iv) present a systematic comparison
of the momentum distributions of A = 2, 3, 4, 16, and 40,
nuclei resulting from different many-body calculations and
NN interactions. The values of the calculated number of
pairs in different spin-isospin states in a nucleus A and the
momentum distributions in these states are given in Sec. IV.
The comparison between the momentum distributions of
complex nuclei and the deuteron momentum distributions is
illustrated in Sec. V. In this section the result of calculation of
the probability of 2N correlations in nuclei is also presented.
Finally, the Summary and Conclusions are given in Sec. VI.

II. SPIN-ISOSPIN DEPENDENT DENSITY MATRICES,
MOMENTUM DISTRIBUTIONS, AND SHORT-RANGE

CORRELATIONS

A. Nuclear ground-state wave function and spin-isospin
dependent density matrices

In this paper we consider the nuclear wave function of a nu-
cleus with Z protons and N neutrons (Z + N = A), resulting
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from the nonrelativistic Schrödinger equation containing two-
and three-body interactions, viz.,⎡

⎣− h̄2

2 mN

∑
i=1

∇̂2
i +

∑
i<j

v̂2(i, j ) +
∑

i<j<k

v̂3(i, j, k)

⎤
⎦

×ψA
f ({xi}A) = Ef ψA

f ({xi}A). (1)

In Eq. (1) mN is the nucleon mass, and f and {xi}A stand,
respectively, for the set of quantum numbers of the state f ,
and the set of A generalized coordinates xi ≡ {ri , si , ti}, with
si and ti denoting the nucleon spin and isospin and ri denoting
the position coordinates measured from the c.m. of the nucleus
(
∑A

i=1 ri = 0). Once ψA
f ({xi}A) is known, various density

matrices pertaining to the nuclear ground state ψA
f =0 ≡ ψA

JMJ

can be calculated. For ease of presentation we consider in what
follows complex nuclei with zero total momentum J = 0 in
the ground state and use the notation ψA

00 ≡ ψA
0 . In this paper

we investigate the number of pairs in various spin-isospin
states and the spin-isospin dependent two-body and one-
body densities and momentum distributions. This requires the
knowledge of two-body and one-body spin-isospin dependent
density matrices, which can be obtained by introducing the
spin-isospin projector operators P̂ T =1

ij = (3 + τ i · τ j )/4 and

P̂ T =0
ij = (1 − τ i · τ j )/4, (with the same form for the spin

operators). A list of the density matrices that we need in our
calculations is given below:
1. The nondiagonal spin-isospin dependent two-body density
matrix, viz.,

ρ
N1N2
(ST ) (r1, r2; r′

1, r′
2)

=
∫

ψA∗
0 (̃x1, x̃2 . . . , x̃A)

∑
i<j

ρ̂
(ST )
ij (r1, r2; r′

1, r′
2)ψA

0

× (̃x′
1, x̃′

2, . . . , x̃′
A)

A∏
i=1

dx̃idx̃′
i , (2)

where the nondiagonal two-body spin-isospin dependent
density matrix operator is

ρ̂
(ST )
ij (r1, r2; r′

1, r′
2)

= P̂ S
ij P̂ T

ij δ(̃ri − r1)δ(̃rj − r2)δ(r′
i − r̃′

1)δ(̃r′
j − r′

2)

×
A∏

k �={i,j}
δ(̃rk − r̃′

k)
A∏

n=1

δs3n s ′
3n

δt3n t ′3n
; (3)

2. the half-diagonal two-body spin-isospin dependent density
matrix, viz.,

ρ
N1N2
(ST ) (r1, r2; r′

1)

=
∫

ψA∗
0 (̃x1, x̃2 . . . , x̃A)

∑
i<j

ρ̂
(ST )
ij (r1, r2; r′

1)ψA
0

× (̃x′
1, x̃′

2, . . . , x̃′
A)

A∏
i=1

dx̃i dx̃′
i , (4)

where

ρ̂
(ST )
ij (r1, r2; r′

1) = P̂ S
ij P̂ T

ij δ(̃ri − r1)δ(̃rj − r2)δ(̃r′
i − r̃′

1)

×
A∏

k �=i

δ(̃rk − r̃′
k)

A∏
n=1

δs3n s ′
3n

δt3n t ′3n
; (5)

3. the diagonal two-body spin-isospin dependent density
matrix, viz.,

ρ
N1N2
(ST ) (r1, r2) =

∫
ψA∗

0 (̃x1, x̃2 . . . , x̃A)
∑
i<j

ρ̂
(ST )
ij (r1, r2)ψA

0

× (̃x′
1, x̃′

2, . . . , x̃′
A)

A∏
k=1

dx̃k dx̃′
k, (6)

where

ρ̂
(ST )
ij (r1, r2) = P̂ S

ij P̂ T
ij δ(̃ri − r1)δ(̃rj − r2)

×
A∏

k=1

δ(̃rk − r̃′
k)δs3k

s ′
3k
δt3k

t ′3k
. (7)

The following relations between the various density matrices
and their normalization should be stressed:∫

ρ
N1N2
(ST ) (r1, r2; r′

1, r′
2)δ(r1 − r′

1)δ(r2 − r′
2) dr′

1, dr′
2

= ρ
N1N2
(ST ) (r1, r2, ) (8)∫

ρ
N1N2
(ST ) (r1, r2) dr1 dr2 = NA

(ST ), (9)

where N(ST ) is the number of nucleon pairs in state (ST ), so
that ∑

(ST )

NA
(ST ) = A(A − 1)

2
≡ NA. (10)

As for the spin-isospin independent density matrices,
they are normalized in the usual way, namely∫

ρA(r1, r2) dr1 dr2 = A(A − 1)/2,
∫

ρA(r1, r2; r′
1) dr2 =

[(A − 1)/2)] ρA(r1, r′
1), and

∫
ρA(r1)d r1 = A. Note that

because the two-body state has to be antisymmetric, the
possible ST states are (ST ) = (10), (01), L = even and
(ST ) = (11), (00), L = odd, where L is the relative orbital
momentum of the pair.

B. The spin-isospin independent and spin-isospin dependent
two- and one-nucleon momentum distributions

Having defined the spin-isospin dependent density matri-
ces, we can introduce the two-body spin-isospin dependent
momentum distribution of a pair of nucleons in state (ST ),
namely

n
N1N2
(ST ) (k1, k2) = 1

(2π )6

∫
d r1 d r2 d r1

′ d r2
′ ei k1·(r1−r ′

1)

× ei k2·(r2−r ′
2) ρ

N1N2
(ST ) (r1, r2; r ′

1, r ′
2). (11)
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By summing Eq. (11) over T and S, the spin-isospin averaged
two-nucleon momentum distribution is obtained1

nA(k1, k2) =
∑
(ST )

n
N1N2
(ST ) (k1, k2)

= 1

(2π )6

∫
d r1 d r ′

1 d r2 d r ′
2e

i k1·(r1−r ′
1)

× ei k2·(r2−r ′
2) ρA(r1, r2; r ′

1, r ′
2), (12)

where

ρA(r1, r2; r ′
1, r ′

2) =
∑
(ST )

ρ
N1N2
(ST ) (r1, r2; r ′

1, r ′
2). (13)

The two-body momentum distributions obey the following
normalization:∫

n
N1N2
(ST ) (k1, k2) dk1 dk2 =

∫
ρ

N1N2
(ST ) (r1, r2) d r1 d r2 = NA

(ST )

(14)

and∫
nA(k1, k2) dk1 dk2 =

∫
ρA(r1, r2) d r1 d r2 = A(A − 1)

2
.

(15)

In this paper we are interested in the various spin-isospin
components n

N1
(ST )(k1) of the one-body momentum distribution

of nucleon N1,

n
N1
A (k1) = 1

(2π )3

1

A

∫
d r1 d r ′

1e
i k1·(r1−r ′

1) ρA(r1, r ′
1), (16)

with normalization∫
n

N1
A (k1) dk1 =

∫
ρ

N1
A (r1) d r1 = 1, (17)

where ρ
N1
A = ρA/A. More specifically, we have to find the

spin-isospin dependent momentum distribution of a nucleon
N1 that belongs to all possible N1N2 pairs with given value
of S and T . To this end, we need the two-nucleon momentum
distribution of all pairs which contains nucleon N1. Because
the isotopic spin, unlike the spin, which is mixed by the tensor
force, is a conserved quantity, we first consider the two-body
momentum distribution corresponding to a fixed value of
T , i.e., the spin-isospin two-body momentum distribution,
Eq. (11), summed over the spin S = 0, 1; this quantity is
denoted by n

N1N2
T (k1, k1), and, according to Pauli principle,

we have

n
N1N2
T =0 (k1, k2) = [

n
N1N2
(00) (k1, k2) + n

N1N2
(10) (k1, k2)

]
(18)

and

n
N1N2
T =1 (k1, k2) = [

n
N1N2
(01) (k1, k2) + n

N1N2
(11) (k1, k2)

]
, (19)

where each of the four quantities n
N1N2
(ST ) (k1, k2) is defined by

Eq. (11).

1In case of nonisoscalar nuclei, interference between different spin-
isospin states may occur. Such a contribution in case of the three
nucleon systems is negligible and is omitted in the presentation.

By integrating the two-body momentum distribution in
isospin state T , we find the one-body momentum distribution
of a nucleon N1 belonging to a pair with isospin T ,

n
(N1N2)
T (k1) = 1

NA
T

∫
n

N1N2
T (k1, k2) dk2

= 1

NA
T

1

(2π )3

∫
ei k1·(r1−r ′

1)

×
[ ∫

ρ
N1,N2
T (r1, r2; r ′)d r2

]
d r1 d r ′

1, (20)

with normalization∫
n

(N1N2)
T (k1) dk1 = 1

NA
T

∫
n

N1N2
T (k1, k2) dk1 dk2 = 1,

(21)

where NA
T is the number of pairs N1N2 with isospin T .

In Eq. (20) ρ
N1,N2
T (r1, r ′

1; r2) is the half-diagonal two-body
density matrix, Eq. (4), summed over the spin; it is the
central quantity necessary to calculate one-body momentum
distributions. The analogs of Eqs. (18) and (19) for the
T -dependent one-body momentum distribution readily follow,
namely

n
(N1N2)
T =0 (k1) = [

n
N1N2
(00) (k1) + n

N1N2
(10) (k1)

]
, (22)

n
(N1N2)
T =1 (k1) = [

n
N1N2
(01) (k1) + n

N1N2
(11) (k1)

]
. (23)

To obtain an explicit equation for the momentum distribution
we have to know the weights of a given isospin state in
nucleus A. Let us consider the proton distribution, which gets
contributions from pn and pp pairs; the former can be in T = 0
and T = 1 states, whereas the latter can only be in T = 1 state.
We have therefore to find the weight of T = 0 and T = 1 pn
pairs in nucleus A, because the weight of pp pairs in T = 1
state is one. The total number of pn pair in T = 0 state in
nucleus A with isospin TA is (see Ref. [40])

NA
T =0 = NA

00 + NA
10 = 1

8 [A(A + 2) − 4TA(TA + 1)]. (24)

Dividing Eq. (24) by the total number of pn pairs, NZ, we
find the weight w

pn
T =0 of a pn pair in nucleus A, namely

w
pn
T =0 = 1

8ZN
[A(A + 2) − 4TA(TA + 1)] , (25)

with the weight of a pn pair in T = 1 given by w
pn
T =1 = 1 −

w
pn
T =0. Thus, we obtain the momentum distribution of nucleon

N1 in terms of the explicit T = 0, 1 contributions

n
N1
A (k1) = 1

A − 1

{
Z

[
w

pn
T =0 n

(pn)
T =0(k1) + w

pn
T =1 n

(pn)
T =1(k1)

]
+ (Z − 1)n(pp)

T =1(k1)
}
, (26)

which is correctly normalized to one because w
pn
T =0 + w

pn
T =1 =

1 and all n
(N1N2)
T (k1) are normalized to one∫

n
pn
T =0(k1) dk1 =

∫
n

pn
T =1(k1) dk1 =

∫
n

pp
T =1(k1) dk1 = 1.

(27)
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Note that using Eq. (25) in Eq. (26) an even simpler equation
is obtained for isoscalar nuclei, namely

n
N1
A (k1) = 1

A − 1

[
A + 2

4
n

pn
T =0(k1) + 3

A − 2

4
n

pn
T =1(k1)

]
.

(28)

Using Eqs. (22) and (23) we can write

n
N1
A (k1) = n

(10)
A (k1) + n

(00)
A (k1) + n

(01)
A (k1) + n

(11)
A (k1),

(29)

where all A-dependent coefficients are incorporated in the
proper n

(ST )
A .

The calculation of the quantities n
(ST )
A (k1) are presented in

Sec. IV.

III. N N INTERACTIONS, MANY-BODY APPROACHES,
NUCLEON MOMENTUM DISTRIBUTIONS, AND SRCs

We now address the question concerning the content of
SRCs in the nuclear wave function, in particular the question
concerning the definition of the probability of two-nucleon
SRC, for, here, a certain degree of ambiguity may easily
arise. The ground-state wave function ψA

J MJ
is the solution

of the many-body Schrödinger equation and it describes both
mean-field and correlated motions. The latter includes both
long- and short-range correlations; long-range correlations
manifest themselves mostly in open-shell nuclei, making
partially occupied states which are empty in a simple inde-
pendent particle model, with small effects on high momentum
components; SRCs, however, generate high virtual particle-
hole excitations even in closed-shell nuclei and strongly affect
the high momentum content of the wave function. Therefore,
assuming that the momentum distributions could be extracted
from some experimental data, we have to figure out a clear-cut
way to disentangle the momentum content generated by the
mean-field from the one arising from SRCs. To this end
let us use the following procedure [41]. If we denote by
{|ψA−1

f >} the complete set of plane waves and eigenfunctions
of the (A − 1) Hamiltonian of the (A − 1) nucleus, containing
the same interaction as the Hamiltonian which generated the
ground-state wave function ψA

0 , and use the completeness
relation

∞∑
f =0

∣∣ψA−1
f

〉〈
ψA−1

f

∣∣ = 1 (30)

in Eq. (16), it is easy to see that the one-nucleon momentum
distribution becomes [41]

n
N1
A (k1) = nN1

gr (k1) + nN1
ex (k1), (31)

where

nN1
gr (k1) = 1

(2π )3

∑
f =0,σ1

∣∣∣∣
∫

ei k1·r1d r1

∫
χ
†
1
2 σ1

ψ
(A−1) ∗
f =0

× (r2, . . . , rA)ψA
0 (r1, r2, . . . , rA)

A∏
i=2

d r i

∣∣∣∣2

(32)

and

nN1
ex (k1) = 1

(2π )3

∑
f �=0,σ1

∣∣∣∣
∫

ei k1·r1d r1

∫
χ
†
1
2 σ1

ψ
(A−1) ∗
f �=0

× (r2, . . . , rA)ψA
0 (r1, r2, . . . , rA)

A∏
i=2

d r i

∣∣∣∣2

. (33)

In the last equation the sum over “f ” stands also for an integral
over the continuum energy states, which are present in Eq. (30).
We see that the momentum distribution can be expressed
through the overlap integrals between the ground-state wave
function ψA

0 of nucleus A and the wave function ψ
(A−1)
f of the

state f of nucleus (A − 1). The squared modulus of the overlap
integral represents the weight of the ground and excited states
of (A − 1) in the ground state of A, so that the quantities

PN1
gr =

∫
nN1

gr (k1) d k1 (34)

and

PN1
ex =

∫
nN1

ex (k1) d k1, (35)

with

PN1
gr + PN1

ex = 1, (36)

can be associated to the lack of ground-state correlations (PN1
gr )

and to the presence of them (PN1
ex ). The separation of the

momentum distributions in nN1
gr and nN1

ex is particularly useful
in the case of A = 3, 4 systems, i.e., when the excited states
of (A − 1) are in the continuum. In the case of a complex
nucleus, where many discrete hole excited states are present,
it is more convenient to use another representation where the
particle-hole structure of the realistic solutions of Eq. (1) is
explicitly exhibited, namely

ψA
0 (r1, r2, . . . , rA) = c0	

A
0p 0h(r1, r2, . . . , rA)

+ c2	
A
2p 2h(r1, r2, . . . , rA) + · · · .

(37)

In Eq. (37), 	A
0p 0h is a Slater determinant describing the mean

field motion of A nucleons occupying all states below the
Fermi level, 	A

2p 2h describes 2p-2h excitations owing to SRC,
and the dots include higher order p-h excitations. The modulus
squared of the various expansion coefficients ci is nothing
but the probability to have np-nh excitations in the ground-
state wave function. In particular |c2|2 ≡ a2 will determine the
amount of ground-state SRCs. Within such a representation,
one can write [42]

n
N1
A (k1) = n

N1
0 (k1) + n

N1
1 (k1), (38)

where

n
N1
0 (k1) = 1

(2π )3

∑
f �F ,σ1

∣∣∣∣
∫

ei k1·r1d r1

∫
χ
†
1
2 σ1

ψ
(A−1) ∗
f

× (r2, . . . , rA)ψA
0 (r1, r2, . . . , rA)

A∏
i=2

d r i

∣∣∣∣2

(39)
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and

n
N1
1 (k1) = 1

(2π )3

∑
f >F,σ1

∣∣∣∣
∫

ei k1·r1d r1

∫
χ
†
1
2 σ1

ψ
(A−1) ∗
f

× (r2, . . . , rA)ψA
0 (r1, r2, . . . , rA)

A∏
i=2

d r i

∣∣∣∣2

, (40)

where the summation over f in Eq. (39) includes all the
discrete shell-model levels below the Fermi level (F ) in
(A − 1) (“hole states” of A), and in Eq. (40) it includes all
the discrete and continuum states above the Fermi sea created
by SRCs. In a fully uncorrelated mean-field approach, we have

n
N1
A (k1) = n

N1
0 (k1) =

∑
α�F

|φα(k1)|2 ; n
N1
1 (k1) = 0, (41)

and the the analogs of Eqs. (34) and (35) are

PN1
0 =

∫
n

N1
0 (k1) d k1, (42)

PN1
1 =

∫
n

N1
1 (k1) d k1, (43)

with

PN1
0 + PN1

1 = 1. (44)

The quantities PN1
0 and PN1

0 yield, respectively, the probability
to find a mean-field and a correlated nucleon in the range
0 � k1 � ∞. Therefore, they can be assumed as the mean-
field and SRC total probabilities. It is clear that both low-
and high-momentum components contribute to mean-field
and correlated momentum distributions, but we shall see, as
expected, that n

N1
0 (nN1

1 ) gets contribution mainly from low-
(high-) momentum components. Assuming that n

N1
0 and n

N1
1

could experimentally be obtained, it might well be that only a
limited range of momenta is available experimentally, in which
case it is useful to define the partial probabilities

PN1
0(1)(k

±
1 ) = 4 π

∫ k+
1

k−
1

n
N1
0(1)(k1)k2

1 d k1, (45)

i.e., the probability to observe a mean-field (correlated)
nucleon with momentum in the range k−

1 � k1 � k+
1 . Although

we do not discuss in this paper how the momentum distribution
could, in principle, be extracted from the experimental data,
we would like nevertheless to briefly comment on this point. It
is clear from the very definition of the momentum distribution
that to obtain information on it one has to figure out an
experiment in which a nucleon is struck from a nucleus A
and the nucleus (A − 1) is left in a well-defined energy state.
To fully understand the point, it is useful to introduce the
nucleon spectral function, i.e., the following quantity:

S
N1
A (k1, E) = 〈

ψA
0

∣∣a†
k1,σ1

δ(E − Ĥ + EA)ak1,σ1

∣∣ψA
0

〉
(46)

=
∑
f,σ1

∣∣∣∣
∫

eik1·r1d r1

∫
χ
†
1
2 σ1

ψ
(A−1) ∗
f (r2, . . . , rA)ψA

0 (r1, r2, . . . , rA)
A∏

i=2

d r i

∣∣∣∣2

δ
[
E − E

f
A−1 − EA

]
(47)

= S
N1
0 (k1, E0) + S

N1
1 (k1, E), (48)

where Eq. (48) has been obtained from Eq. (47) using the
completeness relation [Eq. (30)], a†

k1
(ak1 ) is a creation (annihi-

lation) operator, EA = MA − MA−1 − mN , E = EA + E
f
A−1

is the nucleon removal energy, and

S
N1
0 (k1, E) =

∑
f �F

∣∣∣∣
∫

eik1·r1d r1

∫
χ
†
1
2 σ1

ψ
(A−1) ∗
f (r2, . . . , rA)

×ψA
0 (r1, r2, . . . , rA)

A∏
i=2

d r i

∣∣∣∣2

× δ
(
E − E

f
A−1 − EA

)
, (49)

S
N1
1 (k1, E) =

∑
f >0

∣∣∣∣
∫

eik1·r1d r1

∫
χ
†
1
2 σ1

ψ
(A−1) ∗
f (r2, . . . , rA)

×ψA
0 (r1, r2, . . . , rA)

A∏
i=2

d r i

∣∣∣∣2

× δ
(
E − E

f
A−1 − EA

)
. (50)

The spectral function represents the probability that, after
particle “1” is adiabatically removed from the bound state

and placed in the continuum, the nucleus (A − 1) remains in
the state E

f
A−1. The relation between the spectral function and

the momentum distribution is given by the momentum sum
rule ∫

S
N1
A (k1, E) d E = n

N1
A (k1). (51)

The partial and full momentum distributions can therefore
be obtained, in principle, by detecting the final nuclear
system (A − 1) in correspondence of f � F and f > F . The
exclusive processes A(e, e′N )(A − 1)f in plane wave impulse
approximation (PWIA) depends directly upon S(k1, E). Thus,
by performing these types of experiments in a wide range
of excitation energies of the final (A − 1) nucleus and by
performing the integration over E the momentum distributions
can be obtained. FSIs make the cross section deviate from the
PWIA, and, moreover, for a complex nucleus, the sum over
the entire continuum spectrum of (A − 1) is difficult, if not
impossible, to perform. In the case of few-body systems this
difficulty can be overcome, because the number of possible
final states is strongly reduced and, as a matter of fact,
experimental information of ngr and nex for 3He and 4He is
already available [43,44].
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FIG. 1. (Color online) Deuteron momentum distributions in logarithmic (a) and linear (b) scales corresponding to various NN interactions:
RSC [35], Paris [36], AV8′ [37], AV14 [38], and AV18 [39]. Unless otherwise stated, here and in the other figures, the normalization is
4π

∫
k2 d k nA(k) = 1. In this and the following figures |k1| ≡ k and nA(k) ≡ n

N1
A (k) [Eq. (16)].

We reiterate that the aim of this paper is the theoreti-
cal investigation of some general properties of momentum
distributions, concerning in particular their SRC and spin-
isospin structures. To this end for A = 3 and 4 “exact”
wave functions obtained, either by a direct solution of the
Schrödinger equation or by variational procedures, are used,
whereas for complex nuclei momentum distributions obtained
from various methods, ranging from the Brueckner-Bethe-
Goldstone approach to the cluster expansion techniques, are
adopted. In the next section the momentum distributions of
several nuclei are presented and the values of the quantity
PN1

0(1)(k
±
1 ) [Eq. (45)] are given.

A. The momentum distributions of few-nucleon systems and
complex nuclei

In this section the momentum distributions of 2H, 3H, 3He,
4He, 16O, and 40Ca, calculated within different approaches
and using various two-nucleon interactions, will be presented.
The full momentum distributions are shown in Figs. 1–6,
whereas their separation into the mean-field and correlation
contributions, according to Eqs. (32), (33), (39), and (40), are
presented in Figs. 7–10. Note that from now on the notation
k ≡ k1 and k ≡ |k1| is used.

1. The momentum distributions of 2H

The momentum distributions of 2H obtained by solving
exactly the Schrödinger equation is crucial for our analysis. It
is presented in Fig. 1, where it can be seen that, apart from the
RSC interaction [35], the Paris interaction [36] and the family
of Argonne interactions AV8′ [37], AV14 [38], and AV18 [39]
provide essentially the same result. All these potentials exhibit
a strong short-range repulsion which gives rise to a strong
suppression of the deuteron wave function at internucleon
separation r = |r1 − r2| � 1.5 fm. This, together with the
effects from the tensor force, generate high- momentum
components in the momentum distribution.

2. The momentum distributions of 3H and 3He

As already stated in Sec. III, the three- and four-nucleon
systems 3H, 3He, and 4He are very important in that ngr and
nex have been explicitly calculated within accurate few-body
techniques. Moreover, being 3He and 3H nonisoscalar nuclei,
their proton and neutron distributions are different. As a matter
of fact, in 3He the proton momentum distribution is given by

n
p
3 (k) = np

gr(k) + np
ex(k) (52)

FIG. 2. (Color online) The proton and neutron momentum distributions of 3He in logarithmic (a) and linear (b) scales. Three-nucleon wave
functions from Ref. [26]. The full curve represents the deuteron momentum distribution. Both 3He and deuteron wave functions correspond to
the AV18 interaction [39].
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FIG. 3. (Color online) The nucleon momentum distributions of 4He in logarithmic (a) and linear (b) scales corresponding to different
four-body wave functions and NN interactions. Dashed curve, Ref. [24]; dot-dashed curve, Ref. [25]; dotted curve, Ref. [22]. The full curve
represents the deuteron momentum distribution corresponding to the AV18 interaction.

and the neutron distribution, owing to the absence of a two-
body bound state in the final state [cf. Eq. (33)], is given by

nn
3(k) = nn

ex(k). (53)

In the above equations, n
p
gr(k) is the Fourier transform of

the overlap between the ground-state wave functions of 3He
and 2H [cf. Eq. (32)] and n

p
ex(k) is the Fourier transform of

the overlap between the ground-state wave function of 3He
and the continuum state of pn pair [cf. Eq. (33)]. Thanks to
isospin invariance, Eqs. (52) and (53) represent, respectively,
the neutrons and protons momentum distributions in 3H. The
proton and neutron momentum distributions in 3He resulting
from Faddeev and variational calculations in correspondence
of the AV18 interaction are shown in Fig. 2. It can indeed be
seen that they are different, with the former strongly differing
from the deuteron momentum distributions. The origin of such
a difference is discussed in detail in Sec. IV.

3. The momentum distributions of 4He

The nucleus 4He is the lightest isoscalar nucleus, with
identical proton and neutron momentum distributions. These
have been calculated in Ref. [25] within the approach of
Ref. [24] using the AV8′ interaction. They are compared in

Fig. 3 with the results of the variational Monte Carlo method
performed with the AV14 interaction [22].

4. The momentum distributions of 16O and 40Ca

The momentum distributions of complex nuclei is by far
more complicated to calculate with the same accuracy attained
in the case of three- and four-nucleon systems. Nonetheless,
several calculations for 16O have been performed within
different approaches and using various NN interactions,
namely with the RSC potential [35], in Refs. [17–20],
with the AV8′ potential [37], in Refs. [28] and [31], and
with the AV14 potential [38] in Ref. [22]; the various methods
that have been used are the unitary operator approach [17],
the Brueckner-Bethe-Goldstone approach [18,20], the cluster
expansion approach truncated at different orders [19,31], the
fermion-hypernetted-chain method [28], and the variational
Monte Carlo correlated approach [22]. The various results are
compared in Fig. 4. As for 40Ca, two available results obtained
with the V8′ interactions are shown in Fig. 5.

5. The A-dependence of the momentum distributions

The momentum distributions of the considered nuclei
obtained with the V8′ interaction (the AV18 in the 2H and

FIG. 4. (Color online) The momentum distribution of 16O in logarithmic (a) and linear (b) scales, corresponding to different wave functions
and NN interactions: Dashed curve, Ref. [17]; dotted curve, Ref. [22]; dot-dashed curve, Ref. [31]. The parametrization of Ref. [12] is also
shown by the short-dashed curve (CS). The full curve represents the deuteron momentum distribution corresponding to the AV18 interaction.
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FIG. 5. (Color online) The momentum distribution of 40Ca in logarithmic (a) and linear (b) scales, corresponding to the AV8′ NN interaction
calculated within two different many-body approaches. Dashed curve, cluster expansion (FHNC) up to FHNC/SOC order [28]; dotted curve,
cluster expansion (CE) at second order [31]. The full curve represents the deuteron momentum distribution corresponding to the AV18
interaction.

3He cases) are compared in Fig. 6. The general features that
emerge from such a comparison can be summarized as follows.
(i) At low values of the momentum k = |k1| the shape of nA(k)
is determined by the asymptotic behavior of the wave function
of the least bound nucleon, and therefore it is very different
for different nuclei. (ii) In the high-momentum region (k �
1.5–2 fm−1) a qualitative similarity between the momentum
distributions of deuteron and heavier nuclei can be observed. In
what follows we show that in this region nA(k) is dominated by
the correlated part of the distributions, namely nex and n1, and
that the similarity between deuteron and complex nuclei is only
a qualitative one, with the high-momentum behavior of nA(k)
being governed by the the various spin-isospin components
contributing to nA(k), and not only by the deuteronlike state
(ST ) = (10).

6. The mean-field and SRC contributions
to the momentum distributions

The separation of the momentum distribution according to
Eqs. (31) and (38) is shown in Figs. 7–10. It can be seen that
(i) in the region k � 1.5–2.0 fm−1 SRCs reduce the mean-field
distribution without practically changing its shape, the effect
being attributable to the decrease of the occupation probability

of the shell-model states below the Fermi level; (ii) in the
region k � 2.0 fm−1 the momentum distribution are entirely
exhausted by SRCs. Having at disposal both ngr(k) [n0(k)]
and nex(k) [n1(k)] the probabilities given by Eqs. (34), (35),
(42), and (43) can be calculated. These are listed in Table I,
whereas the partial probabilities defined by Eq. (45) are listed
in Table II.

B. Summary of Sec. II

From what is exhibited in the present section, some general
features of the momentum distributions can be identified,
which are, to a large extent, independent of the many-body
approach and the two-nucleon interaction used in the calcula-
tions, namely: (i) at k � 2 f m−1 the momentum distributions
of both few-nucleon and complex nuclei qualitatively resemble
the deuteron momentum distributions; (ii) in the region
of high momenta, the realistic momentum distributions of
complex nuclei overwhelm the mean-field distributions by
several orders of magnitude; (iii) whereas for few-nucleon
systems the method of calculations is very well established,
for complex nuclei different methods and potentials provide
at high momenta values of the distributions which can differ
up to a factor of two, and it is not yet clear to which extent

FIG. 6. (Color online) The proton momentum distribution of nuclei considered in this work in logarithmic (a) and linear (b) scales, calculated
within different many-body approaches with equivalent NN interactions, namely the AV18 one, in the case of 2H and 3He, and the AV8′ one,
in the case of 4He, 16O, and 40Ca.
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FIG. 7. (Color online) The separate contributions ngr and nex to
the proton momentum distributions of 3He. Wave function from
Ref. [26], AV18 interaction. The values of Pp

gr = 4π
∫

k2 dk np
gr(k)

and Pp
ex = 4π

∫
k2 dk np

ex are listed in Table I, and the values of
Eq. (45) in Table II.

such a difference should be ascribed to the different potentials
or to the different methods. It should be mentioned that the
momentum distributions extracted from A(e, e′p)X and from
the y-scaling analysis of inclusive A(e, e′)X scattering [16]
agree with many-body calculations; although the errors of
the extracted momentum distributions are very large at high
momenta, they are much smaller than the difference between
correlated and mean-field distributions, with the latter being
totally inadequate to predict high-momentum components. In
what follows our analysis of the momentum distributions
continues using the most advanced available calculation
methods and two-nucleon interactions. To understand the
microscopic origin of the correlated part of nA(k), we analyze
in the next section its spin-isospin structure.

IV. THE SPIN-ISOSPIN STRUCTURE OF THE NUCLEON
MOMENTUM DISTRIBUTION AND SRC

The spin-isospin structure of SRCs is a fundamental
quantity because it reflects the details of the NN interaction in
the medium. It is therefore important to investigate how such

FIG. 8. (Color online) The same as in Fig. 7 but for 4He. Wave
function from Ref. [25], AV8′ interaction. The values of Pgr =
4π

∫
k2 dk ngr(k) and Pex = 4π

∫
k2 dk nex(k) are listed in Table I,

and the values of Eq. (45) in Table II.

FIG. 9. (Color online) The same as in Fig. 7 but for 16O.
Wave functions from Ref. [31], AV8′ interaction. The values of
P0 = 4π

∫
k2 dk n0(k) and P1 = 4π

∫
k2 dk n1 are listed in Table I,

and the values of Eq. (45) in Table II.

a structure can affect various quantities which are related to
SRCs, such as, e.g., the nucleon momentum distributions. In
Ref. [23] a detailed analysis pertaining to few-nucleon systems
has been presented of the various (ST ) channel contributions
to the relative momentum distribution n

N1N2
(ST ) (k1, k2), Eq. (11),

integrated over the c.m. momentum, namely,

n
N1N2
(ST ) (krel) =

∫
n

N1N2
(ST ) (k1, k2) dKc.m.

=
∫

n
N1N2
(ST ) (krel, K c.m.) dKc.m., (54)

whereas in Ref. [11] the dependence of the two-body
momentum distribution n

N1N2
(ST ) (k1, k2) = n

N1N2
(ST ) (krel,Kc.m., θ ),

upon the values of krel, Kc.m., and θ has been investigated in
the case of A = 3 and 4.

In this paper we proceed further on into this direction by
analyzing the contribution of various (ST ) channels to the
one-body momentum distribution of a nucleon N1 belonging
to a N1N2 pair in a spin-isospin state (ST ). Our aim is
to understand the quantitative relevance and the momentum
dependence of these contributions, in particular as far as the
deuteronlike state (10) is concerned. In this respect, it should be
stressed that in Ref. [11], it has been shown that in 3He and 4He

FIG. 10. (Color online) The same as in Fig. 7 but for 40Ca.
Wave function from Ref. [31], AV8′ interaction. The values of
S0 = 4π

∫
k2 dk n0(k) and S1 = 4π

∫
k2 dk n1(k) are listed in Table I,

and the values of Eq. (45) in Table II.

034603-10



NUCLEON MOMENTUM DISTRIBUTIONS, THEIR SPIN- . . . PHYSICAL REVIEW C 87, 034603 (2013)

TABLE I. The proton mean-field and correlation probabili-
ties Pp

gr(0) = ∫
d k1 n

p
gr(0)(k1) [Eqs. (34) and (42)] and Pp

ex(1) =∫
d k1 n

p
ex(1)(k1) [Eqs. (35) and (43)].

Nucleus Potential Pgr Pex

3He [26] AV18 [39] 0.677 0.323
4He [21,24] RSC [35] AV8′ [37] 0.85 0.15

P0 P1
16O [22] V8′ [37] 0.8 0.2
40Ca [11] V8′ [37] 0.8 0.2

and for back-to-back nucleons (Kc.m. = 0, the deuteronlike
momentum configuration) the quantity

R
(pn)
(10) (krel,Kc.m. = 0) = n

pn
(10)(krel,Kc.m. = 0)/nD(krel), (55)

i.e., the ratio of the relative momentum distribution of a pn pair
in state (ST ) = (10) to the deuteron momentum distribution,
exhibits a constant behavior starting from krel � 1.5–2 fm−1;
this means that at short relative distances, the motion of a
back-to-back (pn) pair in a nucleus behaves like in a deuteron.
However, a constant behavior is not expected to be observed in
the ratio of the (ST) one-nucleon momentum distribution to the
deuteron distribution, because the former, being the integral of
the two-body momentum distribution, besides the deuteronlike
configuration, includes many other NN configurations. The
separation of various (ST ) contributions to the one-body
momentum distribution is an involved task. The problem
can be solved by considering the half-diagonal spin-isospin
dependent two-body density matrix and its integral over r2.
To this end, it is useful first of all to calculate the number of
nucleon pairs in a given spin-isospin state.

A. The number of N N pairs in various spin-isospin states

The two-body interaction acts differently in states with
different spin, isospin, and relative orbital momentum L,
whose values are fixed by the Pauli principle, namely S +
T + L = odd. To investigate the spin-isospin dependence of
the momentum distributions, it is useful to start counting the
number of pairs N

N1N2
(ST ) in various (ST ) states in a nucleus with

Z protons and N neutrons, with Z + N = A. This quantity
is given by Eq. (9) and satisfies the sum rule Eq. (10). The
value of N

N1N2
(ST ) has been calculated in various papers, e.g.,

in Refs. [40,45] for A � 16, in Ref. [23] for A � 4 and in

Refs. [46,47]. Here our approach to this topic and the results
for A = 3, 4, 16, and 40 and L = even and odd will be
presented.

To start with, let us consider a full independent-particle (IP)
shell model. In the case of s-shell nuclei the number of pairs
in (ST ) states can readily be obtained. As a matter of fact, in
A = 3 and 4 nuclei the relative orbital momentum of all pairs
is zero, so that only two (ST ) states survive, namely (10) and
(01). A pn pair can be either in (10) state, with probability
3/4, or in (01) state, with probability 1/4, whereas a pp(nn)
pair can only be in (01) state, with probability 1. Multiplying
these probabilities by the number of pn, pp, and nn pairs [NZ,
Z(Z − 1)/2, N (N − 1)/2, respectively], the total number of
pairs is obtained

N3(4) = NZ

(
3

4
(10)pn + 1

4
(01)pn

)
+ Z(Z − 1)

2
(01)pp

+ N (N − 1)

2
(01)nn, (56)

with the total number of pairs in a given (ST ) given by

N3
(10) = 3

2 , N3
(01) = 3

2 , (57)

in 3He, and

N4
(10) = 3, N4

(01) = 3, (58)

in 4He (note that the state (10) refers to pn pairs only, whereas
the state (01) includes pp, nn, and pn pairs and it is for this
reason that no nucleon labels appear in N(ST )). In A > 4 nuclei
also the states (11) and (00) contribute. In Ref. [45] a general
approach to calculate, within the IP model, the number of
pairs in various (ST ) states, based upon counting even and
odd pairs in spatial configurations corresponding to a given
Young tableaux, has been given, and explicit formulas can
be found there. In our approach the values of NA

(ST ), for the
three- and four-nucleon systems have been obtained using the
wave functions of Ref. [24–26] corresponding to the AV18 and
AV8′ interaction, respectively, whereas for complex nuclei the
cluster expansion of Ref. [31] which includes two-, three-,
and four-body cluster contributions has been used to calculate
the integral of the diagonal spin-isospin dependent two-body
density matrix [Eq. (6)] yielding

NA
(ST ) =

∫
ρ

N1N2
(ST ) (r1, r2)d r1 d r2 =

∫
n

N1N2
(ST ) (k1, k2)d k1 d k2

=
∫

n
N1N2
(ST ) (krel, kc.m.)d krel d K c.m.. (59)

TABLE II. The values of the partial probability, Eq. (45), for 3He, 4He, 16O, and 40Ca, calculated for different values of the momentum k−
1

with k+
1 = ∞.

k−
1 (fm−1) 2H 3He(n) 3He(p) 4He 16O 40Ca

P P1 P0 P1 P0 P1 P0 P1 P0 P1

0.00 1.000 0.999 0.677 0.323 0.846 21 0.152 85 0.799 99 0.200 16 0.80 0.193 21
0.50 0.3078 0.568 0.277 0.201 0.536 43 0.140 32 0.669 72 0.196 35 0.699 97 0.183 01
1.00 0.081 0.163 0.038 0.0723 0.104 79 0.1045 0.175 88 0.147 94 0.247 06 0.137 71
1.50 0.0366 0.067 0.0049 0.036 0.0079 0.0791 0.007 92 0.094 17 0.010 22 0.101 43
2.00 0.0221 0.041 0.0015 0.024 6.9512 × 10−4 0.061 56 5.9 × 10−5 0.063 44 3.28 × 10−4 0.071 24
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TABLE III. The number of pairs NA
(ST ), Eq. (9) in various spin-

isospin states in the independent particle model (IPM) and taking into
account SRCs within many-body theories with realistic interactions
(in the approach of Ref. [46] pairs in relative L = 0 motion were
identified as those prone to SRCs).

Nucleus (ST )

(10) (01) (00) (11)

2H 1 — — —
3He IPM 1.50 1.50 — —

SRC (Present work) 1.488 1.360 0.013 0.139
SRC [40] 1.50 1.350 0.01 0.14
SRC [23] 1.489 1.361 0.011 0.139

4He IPM 3 3 — —
IPM (0s states) [46] 3 3 — —
SRC (Present work) 2.99 2.57 0.01 0.43

SRC [40] 3.02 2.5 0.01 0.47
SRC [23] 2.992 2.572 0.08 0.428

16O IPM 30 30 6 54
IPM (0s states) [46] 20 18 — —
SRC (Present work) 29.8 27.5 6.075 56.7

SRC [40] 30.05 28.4 6.05 55.5
40Ca IPM 165 165 45 405

IPM (0s states) [46] 90 20 — —
SRC (Present work) 165.18 159.39 45.10 410.34

If IP wave functions are used in Eq. (59), the IP values
of NA

(ST ) have to coincide with the values provided by the
formulas of Ref. [45], as indeed it is the case. When the IP
model picture is released and a full many-body approach with
interacting nucleons is considered, odd values of the relative
orbital momentum appear also in A = 3 and 4 nuclei so that
(i) the states (00) and (11) are generated in 3H, 3He, and 4He;
(ii) the amount of various (ST ) states in complex nuclei is
changed. Thanks to isospin conservation, the number of states
(01) is decreased in favor of states (11) and the number of
deuteronlike states (10) is also decreased in favor of the state
(00). In Ref. [40] N

N1N2
(ST ) has been calculated for 3He, 4He, 6Li,

7Li, and 16O using variational Green’s functions Monte Carlo
wave functions and various Argonne interactions; in Ref. [23]
NA

(ST ) has been obtained for nuclei 3He, 3H, and 4He using
wave functions resulting from the correlated Gaussian basis
approach [32] and the V8′ interaction, finally, in Refs. [46,47]
the number of pairs has been evaluated through the periodic
table using phenomenological correlated wave functions. We
reiterate that in the present paper we have calculated NA

(ST )
for A = 3, 4, 16, 40 using wave functions obtained within
the hyperspherical harmonic variational method [26] and
the AV 18 interaction, for A = 3, the ATMS method of
Refs. [24,25] and the AV8′ interaction, for A = 4, the linked-
cluster expansion of Ref. [31] and the AV8′, for A = 16 and
A = 40. The results of our calculations, which are presented
in Table III, clearly show that (i) there is satisfactory general
agreement between our results and the ones of Ref. [23,40];
(ii) as previously found in those papers, when the IP model
picture is released and NN correlations are taken into account,
the value of N(10) is practically unchanged, whereas the

number of pairs in the (01) state is decreased in favor of
the state (11). The reason for that was nicely explained in
Refs. [23,40]: It is attributable to some kind of many-body
effects induced by tensor correlations between particles “2”
and “3,” generating a spin flip of particle “2” and giving rise
to the state (11) between particles “2” and “1.” These effects
are automatically included in our calculations, because “exact”
wave functions are used in case of few-nucleon systems and
a cluster expansion embodying many-body clusters is adopted
in our approach for complex nuclei.

B. The spin-isospin contributions to
the momentum distributions

We apply here Eq. (26) (with k1 ≡ k), obtaining for the
proton momentum distributions in 3He

n
p
3 (k) = 3

8n
(pn)
T =0(k) + 5

8nT =1(k) (60)

= n
p(10)
3 (k) + n

p(00)
3 (k) + n

p(01)
3 (k) + n

p(11)
3 (k), (61)

because there is only one pp and one pn pair containing proton
“1,” whereas the neutron distribution is given by

nn
3(k) = 3

4n
(pn)
T =0(k) + 1

4nT =1(k) (62)

= n
n(10)
3 (k) + n

n(00)
3 (k) + n

n(01)
3 (k) + n

n(11)
3 (k), (63)

because there are two pn pairs containing neutron “1” and no
pp pairs. The momentum distributions of 4He, 16O, and 40Ca
are given, respectively, by

n4(k) = 1
2n

(pn)
T =0(k) + 1

2nT =1(k) (64)

= n
(10)
4 (k) + n

(00)
4 (k) + n

(01)
4 (k) + n

(11)
4 (k), (65)

n16(k1) = 3
10n

(pn)
T =0(k) + 7

10nT =1(k) (66)

= n
(10)
16 (k) + n

(00)
16 (k) + n

(01)
16 (k) + n

(11)
16 (k), (67)

n40(k) = 7
26n

(pn)
T =0(k) + 19

26nT =1(k) (68)

= n
(10)
40 (k) + n

(00)
40 (k) + n

(01)
40 (k) + n

(11)
40 (k), (69)

where Eqs. (22) and (23) have been used,

n
(pn)
T =1(k) = n

(pp)
T =1(k) ≡ nT =1(k), (70)

and∫
nA(k) dk =

∫
n

pn
T =0(k) dk =

∫
nT =1(k) dk = 1. (71)

The results of calculations of the spin-isospin contributions to
the momentum distribution of 3He, 4He, 16O, and 40Ca, are
presented in Figs. 11–15. The following remarks are in order:
(i) the contribution from the (00) state is negligible in both
few-nucleon systems and complex nuclei; (ii) the (11) state in
3He and 4He is small, both at low and large values of k, but
it plays a relevant role in the region 1.5 � k � 3 fm−1; (iii) in
the proton distribution of 3He (Fig. 11) the (01) contribution is
important everywhere except in the region 1.5 � k � 3 fm−1,
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FIG. 11. (Color online) The various spin-isospin contributions
(ST ) to the proton momentum distribution of 3He. Wave function
from Ref. [26], AV18 interaction. The continuous line without
symbols is the sum of the four contributions [cf. Eq. (61)].

whereas in the neutron distributions (Fig. 12), thanks to
the different weight of the (01) state [1/4 instead of 5/8;
cf. Eqs. (60) and (62)], the contribution from this state is
much smaller; (iv) in complex nuclei the (11) state (odd
relative orbital momenta) plays a dominant role, both in the
independent particle model and in the many-body approach
(cf. Table III and Figs. 14 and 15). Thus, in summary, we
found that all spin-isospin components, except the (00) one,
contribute to the high-momentum content of the momentum
distributions and only in the case of the neutron distribution
in the nonisoscalar nucleus 3He, the deuteronlike state (10) is
the dominant contribution.

To provide further evidence of the A independence of SRC,
we show in Fig. 16 the “elementary” quantities n

(pn)
T =0(k1) and

nT =1(k1) for different nuclei, and it can be seen that, starting
from k ≡ |k1| � 2 fm−1, they follow the same pattern.

V. THE MOMENTUM DISTRIBUTIONS OF NUCLEI VS
THE DEUTERON MOMENTUM DISTRIBUTION

As it clearly appears in Fig. 6, at k � 1.5–2 fm−1 the
momentum distribution of nuclei exhibits a trend similar to

FIG. 12. (Color online) The same as in Fig. 11 but for the neutron
distribution [cf. Eq. (63)].

FIG. 13. (Color online) The various spin-isospin contributions
to the proton momentum distribution of 4He [cf. Eq. (65)]. Wave
function from Ref. [25], AV8′ interaction.

the one of the deuteron.2 However, a quantitative analysis of
the ratio

RA/D(k) = nA(k)

nD(k)
(72)

is in order, because nA(k) is usually interpreted as the
scaled deuteron momentum distribution, i.e., RA/D(k) =
nA(k)/nD(k) � const. Such an interpretation originated long
ago either from the use of pioneering theoretical many-body
calculations [17–20] or by assuming it as an input for the
calculations of nA(k1) at k � kF [21] when variational Monte
Carlo calculations were difficult to perform at high values of
the momentum, or by obtaining the momentum distributions
from an average value of the pn and pp spectral functions
[12]. Having nowadays at disposal advanced many-body
calculations of the momentum distributions performed with
realistic models of the two-nucleon interactions, a quantitative
analysis of Eq. (72) is timing. To this end, we show in Fig. 17
the ratio RA/D(k) calculated with realistic many-body wave
functions. It clearly appears that starting from k � 2 fm−1,
the ratio is not a constant but appreciably increases with k.

2In the rest of the paper we frequently use the notation 2H ≡ D.

FIG. 14. (Color online) The various spin-isospin contributions to
the momentum distribution of 16O [cf. Eq. (67)]. Wave function from
Ref. [31], AV8′ interaction.
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FIG. 15. (Color online) The same as in Fig. 14, but for 40Ca [cf.
Eq. (69)].

Let us discuss the origin of such an increase. A first possible
origin should be sought in the different role played by pn
and pp correlations. As a matter of fact, the proton and
neutron momentum distributions in 3He shown in Fig. 18
exhibit a different rate of increase, which can qualitatively
be understood in terms of SRCs as follows: In 3He the proton
momentum distribution is affected by SRCs acting in one pn
and one pp pairs, in the former pair the deuteronlike state
(10) is three times larger than the (01) state, whereas in the
latter pair the deuteronlike state is totally missing; on the
contrary, the neutron distribution is affected by SRCs acting
in two proton-neutron pairs, with a pronounced dominance
of the deuteronlike state (10); therefore, one expects that
around k � 2 fm−1, where, np SRCs dominate over pp SRC
[10,21], nn

3/nD � 2 and n
p
3 /nD � 1, which indeed seems to

be the case. However, other effects of different origin can
contribute to the deviation of the ratio nA(k)/nD(k) from
a constant. These are attributable to the c.m. motion of a
pn pair in a nucleus, to the different role played by the
states (01) and (11) in different nuclei, and, particularly, to
the fact that, being the one-nucleon momentum distribution
the integral of the two-body distribution over k2, nA(k1) =∫

nA(k1, k2)d k2, it may contain configurations different from
the deuteron one (back-to-back nucleons). To better investigate

FIG. 16. (Color online) The isospin T = 0 and T = 1 contribu-
tions to the proton momentum distributions [Eqs. (22) and (23)].

FIG. 17. (Color online) The ratio of the proton momentum
distribution of nucleus A shown in the previous figures to the deuteron
momentum distributions.

these possibilities, let us consider the spin-isospin ratio

R
(ST )
A/D(k) = n

(ST )
A (k)

nD(k)
, (73)

which is shown in Figs. 19–23 (note that, as stressed in the
caption of the figures, the quantity n

(ST )
A includes the proper

coefficients which multiply the “elementary” quantities n
N1N2
T ).

It can be seen that the behavior of the proton and neutron ratios
for 3He clearly shows that in the region 1.5 � k � 3 fm−1

the former is governed by the (01) state in the pp and pn
pairs; on the contrary, the neutron ratio is fully dominated
by the deuteronlike (10) state in the two pn pairs. The
most interesting ratio is R

(10)
A/D(k) = n

(10)
A (k)/nD(k), because

it provides information on the behavior of the deuteronlike
pairs in nuclei; it can be seen that in the region of SRCs
(k � 2 fm−1) R

(10)
A/D increases with increasing value of k, with

a different rate of increase for different nuclei: it is about 30%
in the neutron momentum distribution of 3He, and of the order
of 100% in other nuclei. As already pointed out, the increase
of the ratio R

(ST )
A/D(k) with k could also be attributable to the

c.m. motion of the pair in the nucleus. To take this into account

FIG. 18. (Color online) The ratio of the neutron, nn
3(k), and

proton, n
p
3 (k), distributions in 3He to the deuteron momentum

distributions, nD(k).
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FIG. 19. (Color online) The various spin-isospin contributions to
the ratio of the proton momentum distributions of 3He [Eq. (61)] to
the deuteron momentum distributions. Wave function from Ref. [26],
AV18 interaction.

is no easy task. As a matter of fact, consider the simple case
when the (10) two-body momentum distribution factorizes in
the following form Ref. [12]:

n
pn
(10)(k1, k2) = n

pn
10 (krel, K c.m.) = n

pn
10 (krel,Kc.m., θ )

� nD(krel)n
A
c.m.(Kc.m.), (74)

where nc.m.(Kc.m.), calculated from a many-body approach in
Ref. [11], can be approximated by a 0S wave function. In
Refs. [11,48], Eq. (74) has indeed been shown to hold, but
only in a restricted region of krel and Kc.m., namely

Kc.m. � 1.0 − 2.0 fm−1, krel � k−
rel = fA(Kc.m.), (75)

where the function fA depends upon Kc.m. and A in such a way
that the value of k−

rel increases with increasing values of Kc.m..
Thanks to momentum conservation k2 = −(k1 + K c.m.), one
can write

n
pn
(10)(k1) �

∫
nD

(∣∣∣∣k1 − K c.m.

2

∣∣∣∣
)

nc.m.(|K c.m.|) d K c.m. (76)

which shows that only in the case of a pn pair at
rest, i.e., nc.m.(K c.m.) = δ(K c.m.), one has n

pn
10 (k1) � nD(k1)

R
(ST )
A/D(k1) � const. The convolution of the deuteron momen-

tum distributions with the c.m. motion leads to an increase of

FIG. 20. (Color online) The same as in Fig. 19, but for the neutron
distribution.

FIG. 21. (Color online) The various spin-isospin contributions
to the ratio of the proton momentum distributions of 4He to the
deuteron momentum distributions. Wave function from Ref. [26],
AV8′ interaction.

n
pn
10 (k1), whose magnitude and rate of increase depend upon the

detailed forms of n
pn
10 (krel) and nc.m.(Kc.m.); moreover, because,

as already stressed, the one-body momentum distribution
is the integral of the two-body momentum distribution,
configurations different from the factorized one [Eq. (74)] can
contribute to the integral [Eq. (76)].

A. On the short-range deuteronlike configurations in nuclei

A particular useful quantity to understand SRC in nuclei
is the one that is obtained by integrating the two-nucleon
momentum distribution of the state (10) in a narrow range
of the c.m. momentum (Kc.m. � 1 − 1.5 fm−1), when the c.m.
and relative motions are decoupled, and Eq. (74) is satisfied
[11], namely,

n
pn
D/A(krel) =

∫
n

pn
(10)(krel,Kc.m., θ ) d K c.m.

� nD(krel) 4π

∫ K+
c.m.

0
nA

c.m.(Kc.m.) K2
c.m.d Kc.m. (77)

FIG. 22. (Color online) The various spin-isospin contributions
to the ratio of the momentum distribution of 16O to the deuteron
momentum distributions. Wave function from Ref. [31], AV8′

interaction.
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FIG. 23. (Color online) The various spin-isospin contributions
to the ratio of the momentum distribution of 40Ca to the deuteron
momentum distributions. Wave function from Ref. [31], AV8′

interaction.

In Ref. [3] the 2N SRC probability in the deuteron has been
defined as the integral of the deuteron momentum distribution
in the range krel � 1.5 fm−1 (cf. Table IV); therefore, we can
consider as the analog in a nucleus the quantity

PD/A = 4π

∫ ∞

1.5
n

pn
D/A(krel)k

2
rel d krel, (78)

where n
pn
D/A is given by Eq. (77). We can also define the

total number of quasideuteron short-range correlated pairs as
follows:

ND/A = NA
(10)PD/A, (79)

where the number of NA
(10) pairs is listed in Table III. The calcu-

lated values of the partial probability PN1 = 4π
∫ ∞

1.5[n0(k) +
n1(k)] k2 dk [Eq. (45)], predicted by different NN interactions,
is shown in Table IV, and the quantities PD/A and ND/A

are given in Table V. Because PN1 includes all spin-isospin
components and momentum configurations, whereas only
deuteronlike configurations [(ST ) = (10) and k1 = −k1] are
included in PD/A, our result PD/A < PN1 is fully justified.
Moreover, the decreasing behavior of PD/A with A can easily
be understood as owing to the increasing importance of higher
c.m. momentum components of the pair, resulting in flatter
c.m. distributions in heavier nuclei (cf., Fig. 24), so that
only a smaller part of the distribution is included in the

TABLE IV. The value of the 2N SRCs partial probability
[Eq. (45)] in the deuteron, 4π

∫ ∞
1.5 nD(k) k2 dk, and in complex nuclei

4π
∫ ∞

1.5[n0(k) + n1(k)] k2 dk (cf. Table II) obtained with momentum
distribution resulting from many-body calculations performed with
different NN interactions. The result (CS) of the phenomenological
model of Ref. [12] is also shown.

NN interaction 2H 3He(n) 3He(p) 4He 16O 40Ca

RSC 0.04 — — 0.09 0.12 —
AV14 0.036 — — 0.11 0.14 —
AV8′ 0.036 — — 0.09 0.10 0.10
AV18 0.037 0.067 0.041 — — —
CS 0.033 0.079 0.046 0.09 0.10 0.14

FIG. 24. (Color online) The c.m. momentum distribution in the
state (10) n(10)

c.m.(Kc.m.) in 3He, 4He, 16O, and 40Ca.

integral over Kc.m.. We have also considered the quantity aD/A,
the per-nucleon probability of deuteronlike configurations in
A with respect to the probability of SRCs in the deuteron
(�0.04). Our values for A < 40 are less than the values of
a2 extracted from the A(e, e′)X experiments [3–5]; however,
such a comparison is a premature one, because, from one
side, nondeuteronlike configurations which occur outside the
factorization region should be considered in the theoretical
calculation (e.g., the c.m. motion of the pair [5,46]) and, from
the other side, a careful investigation of the effects of FSI on
the extraction of a2 from the inclusive A(e, e′)X cross-section
ratio should also be considered. We should also mention, in
this respect, that the values of a2 were also recently calculated
in Ref. [46] within an approach in which only L = 0 pairs
prone to SRCs were considered (cf. Table III), obtaining results
that coincide with the ones obtained in the present paper for
A = 3, 4, and which are lower for A > 4.

VI. SUMMARY AND CONCLUSIONS

Recently, several A-independent features of SRCs in few-
nucleon systems (2H, 3H, 3He, and 4He) have been demon-
strated by calculating the dependence of two-body momentum
distributions upon the relative momentum |krel| ≡ krel of the
correlated pair [23], as well as upon the c.m. momentum
|Kc.m.| ≡ Kc.m. and the angle between Kc.m. and krel [11].
These calculations have been performed with exact wave
functions resulting from the solution of the nonrelativistic
Schrödinger equation, using modern bare NN interactions,
featuring strong short-range repulsion and intermediate-range
tensor attraction, e.g., the Argonne-Urbana models.

In the present paper, using the same many-body approach
and interactions, we have addressed the problem of the
effects of SRCs, and their spin-isospin components, on the
one-nucleon momentum distributions nA(k) of few-nucleon
systems and complex nuclei. The momentum distribution,
besides being per se a relevant quantity in nuclear theory, plays
a relevant role in the interpretation of various experimental
data, in particular in inclusive experiments of lepton scattering
off nuclei at medium and high energies.
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TABLE V. The values of PD/A [Eq. (78)] and ND/A [Eq. (79)] calculated in correspondence of K+
c.m. = 1.5 fm−1. The quantity aD/A =

[(2/A)][ND/A/ND/D] is the per-nucleon probability of deuteronlike [(ST ) = (10)] 2N SRC in A with respect to the deuteron.

K+
c.m. (fm−1) 2H 3He 4He 16O 40Ca

PD/A ND/A aD/A PD/A ND/A aD/A PD/A ND/A aD/A PD/A ND/A aD/A PD/A ND/A aD/A

1.5 0.04 0.04 1 0.04 0.06 1 0.04 0.12 1.5 0.031 0.93 2.9 0.030 4.9 6.1

Using the proper diagonal and nondiagonal one- and two-
body spin- and isospin- dependent density matrices, we have
derived in Sec. II the expression of the momentum distributions
of a nucleon belonging to a NN pair in a state with total
spin S and isospin T . In Sec. III we have presented some
general concepts concerning nucleon momentum distributions
and a clear-cut way to separate them in mean-field and SRC
contributions, and have analyzed the results of the most
recent calculations of the momentum distributions for nuclei
with A = 2, 3, 4, 16, and 40, performed within realistic
many-body approaches and modern NN interactions. The
aim was to ascertain whether some general features of
the momentum distributions could be established within the
solution of the nuclear many-body problem, in terms of
realistic bare NN interactions.

The results of our analysis have shown indeed that, even if
quantitative differences are provided by different interactions
and many-body approaches, the following general features
of the momentum distributions can be singled out, namely:
(i) at k � 1–1.5 fm−1, the mean-field approach dominates
the distributions, with a resulting sizeable A dependence;
(ii) at larger values of k, of the order of 2 fm−1, owing to
the effects of SRCs, the momentum distributions abruptly
change their slope, and, apart from an A-dependent scaling
factor, exhibit a k dependence which is very similar in different
nuclei; (iii) the correlated part of the momentum distribution
is by orders of magnitude larger than the predictions of any
mean-field approach, so that experiments providing even rough
information on high-momentum components would be able to
rule out mean-field predictions.

Similar conclusions, reached in the past by phenomeno-
logical calculations (see, e.g., Refs. [12,15]), are therefore
quantitatively confirmed by the present systematic analy-
sis. After having checked that the evaluation of the high-
momentum part of nA(k) is well under control, we turned
in Sec. IV to the calculation of the spin-isospin structure of
the momentum distributions. First of all, we calculated the
number of NN pairs in various spin-isospin states in different
nuclei, both within the independent particle models and in
many-body approaches embodying SRCs, finding agreement
with calculations performed by different groups, confirming
that SRCs have very small effects on the number of isosinglet
pairs in state (10), unlike what happens with isotriplet pairs in
state (01), whose number is decreased in favor of the pairs in
(11) state.

We have calculated the contribution of the states (ST ) =
(10), (00), (01), and (11) to the momentum distributions,
finding that all of them, except the state (00), have comparable
effects in a wide range of momentum. The contribution of

the isosinglet state T = 0 is almost entirely exhausted by the
(10) state, whereas both states (01) and (11) contribute to the
isotriplet state T = 1. We found that at momentum values
k � 2 fm−1, the contribution of both isosinglet and isotriplet
states follow the same pattern, independently of A, which
represents further evidence of the general scaling behavior of
SRCs.

A systematic and quantitative comparison of nA(k), and its
spin-isospin components nST

A (k), with the deuteron momentum
distribution nD(k), has been presented in Sec. IV, by analyzing
the ratios nST

A (k)/nD(k). We found that in the region of
SRCs, k � 2 fm−1, this ratio does not stay constant but
increases with increasing k, and interpreted such a behavior
as owing to the presence in the momentum distribution of
two-nucleon momentum configurations arising from the c.m.
motion of a pair and differing from the back-to-back nucleons
configuration. Our spin-isospin dependent approach allowed
us to calculate also (i) the relative momentum distribution
of a proton-neutron pair moving with small c.m. momentum
and its integral in the range 1.5 < k < ∞, a quantity which
is assumed to represent the probability of two-nucleon SRCs
in a nucleus, finding similar values (�0.04) in a wide range
of A, namely 2 � A � 40; (ii) the total number of SRCs
pairs in (10) state, interpreting its A dependence in terms
of the A dependence of the c.m. momentum distribution;
(iii) the per-nucleon probability of deuteronlike SRCs in
nuclei, a quantity which is under active experimental inves-
tigation.

In closing this paper, we would like to stress that the
properties of SRCs we have found depend obviously upon
the wave function we have used to calculate the density
matrices and momentum distributions. In case of A = 2, 3,
and 4 systems the ground-state wave functions represent the
ab initio solution of the many-body nonrelativistic Schrödinger
equation given in terms of modern bare NN interactions,
whereas, in the case of complex nuclei, they represent the
variational solution of the same equation. The high-momentum
content of the ground-state wave function will obviously
depend upon the used NN interaction. In this respect it should
be recalled that phase shift data characterizing elastic on-shell
NN scattering do not determine uniquely the details of the
short-range interaction; moreover, in a many-body bound
nuclear systems, two interacting nucleons that experience
interaction with surrounding nucleons are off shell; i.e., their
energy is not related to their relative momentum, with the
resulting complication that the off-shell behavior of the inter-
action cannot be determined uniquely from elastic phase shifts.

As a result, a family of different phase-equivalent potentials
can be derived (see, e.g., [39,49–51]), producing different
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high-momentum contents of the many-body nuclear wave
functions. This fact points to the importance of the investi-
gation of the high momentum part of the nucleon momentum
distributions (see, e.g., [52]). At the same time, it should also
be stressed that the interaction we have used (e.g., the AV18
or/and AV8′ ones) are currently being used in that class of
successful ab initio many-body calculations (e.g., the Unitary
Correlation Operator Method (UCOM) [30] and the no-core
shell model approach [53]) where various renormalization
group (RG) methods [54] are used to soften the short-range
and tensor interactions of the original bare interaction, so
as to improve the convergence of the diagonalization of
the many-body Hamiltonian. As a result, the finally evolved
ground-state wave function exhibits a low degree of SRCs.

It would appear that these methods are in conflict with
the traditional direct solution of the many-body Schrödinger
equation with bare NN interaction, producing ground-state
wave functions containing a large degree of SRCs, arising from
the strong short-range repulsive and the intermediate-range

attractive tensor forces. This, however, is not the case, as
discussed in two recent papers [55,56] (see also Ref. [23]),
stressing the necessity to evolve, together with the NN
interaction, also the momentum distribution operator.

Preliminary results for the two-body system [55], and Fermi
and electron gases [56], show indeed that the high-momentum
content of the momentum distributions, and their scaling
behavior stressed in the present and many other papers can
also be predicted within low-momentum effective theories.
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