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Abstract. Automatic subdivision of landscapes into ter-
rain units remains a challenge. Slope units are terrain units
bounded by drainage and divide lines, but their use in hydro-
logical and geomorphological studies is limited because of
the lack of reliable software for their automatic delineation.
We present the r.slopeunits software for the automatic
delineation of slope units, given a digital elevation model
and a few input parameters. We further propose an approach
for the selection of optimal parameters controlling the terrain
subdivision for landslide susceptibility modeling. We tested
the software and the optimization approach in central Italy,
where terrain, landslide, and geo-environmental information
was available. The software was capable of capturing the
variability of the landscape and partitioning the study area
into slope units suited for landslide susceptibility modeling
and zonation. We expect r.slopeunits to be used in dif-
ferent physiographical settings for the production of reliable
and reproducible landslide susceptibility zonations.

1 Introduction

The automatic subdivision of large and complex geographi-
cal areas, or even entire landscapes, into reproducible, geo-
morphologically coherent terrain units remains a conceptual
problem and an operational challenge. Terrain units (TUs)
are subdivisions of the terrain that maximize the within-unit
(internal) homogeneity and the between-unit (external) het-
erogeneity across distinct physical or geographical bound-
aries (Guzzetti et al., 1999; Guzzetti, 2006; Komac, 2006,

2012; Saito et al., 2011; Sharma and Mehta, 2012; Fall et al.,
2006; Li et al., 2012; Erener and Düzgün, 2012; Schaetzl
et al., 2013; Mashimbye et al., 2014). A slope unit (SU) is
a type of morphological TU bounded by drainage and di-
vide lines (Carrara, 1988; Carrara et al., 1991, 1995; Guzzetti
et al., 1999), and corresponds to what a geomorphologist or
an hydrologist would recognize as a single slope, a combi-
nation of adjacent slopes, or a small catchment. This makes
SUs easily recognizable in the field, and in topographic
base maps. Compared to other terrain subdivisions, includ-
ing grid cells or unique-condition units (Guzzetti et al., 1999;
Guzzetti, 2006), SUs are related to the hydrological and ge-
omorphological conditions and processes that shape natural
landscapes. For this reason, SUs are well suited for hydro-
logical and geomorphological studies, and for landslide sus-
ceptibility (LS) modeling and zonation (Carrara et al., 1991,
1995; Guzzetti et al., 1999; Guzzetti, 2006).

SUs can be drawn manually from topographic maps of ad-
equate scale and quality (Carrara, 1988). However, the man-
ual delineation of SUs is time-consuming and error-prone,
limiting the applicability to very small areas. Manual delin-
eation of SUs is also intrinsically subjective. This reduces the
reproducibility – and hence the usefulness – of the terrain
subdivision. Alternatively, SUs can be delineated automati-
cally using specialized software. The latter exploits digital
representations of the terrain, typically in the form of a digi-
tal elevation model (DEM) (Carrara, 1988), or adopts image
segmentation approaches (Flanders et al., 2003; Dragut and
Blaschke, 2006; Aplin and Smith, 2008; Zhao et al., 2012).
In both cases, the result is a geomorphological subdivision of
the terrain into mapping units bounded by drainage and di-
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vide lines, which can be represented by polygons (in vector
format) or groups of grid cells (in raster format).

Large and complex geographical areas or landscapes can
be partitioned by different SU subdivisions. Unique (i.e., uni-
versal) subdivisions do not exist, and optimal (best) terrain
subdivisions depend on multiple factors, including the size
and complexity of the study area, the quality and resolu-
tion of the available terrain elevation data, and – most im-
portantly – the purpose of the terrain subdivision (e.g., geo-
morphological or hydrological modeling, landslide detection
from remote-sensing images, landslide susceptibility, hazard
or risk modeling). An open problem is that an optimal SU
subdivision for LS modeling cannot be decided unequivo-
cally, a priori, or in an objective way, and the quality and
usefulness of a LS zonation depends on the SU subdivision
(Carrara et al., 1995).

In this work, we propose an innovative modeling frame-
work to determine an optimal terrain subdivision based on
SUs best suited for LS modeling. For the purpose, we also
present the r.slopeunits software for the automatic de-
lineation of SUs, and we propose a method to optimize
the terrain subdivision in SUs performed by the software.
The r.slopeunits software is written in Python for the
GRASS GIS (Neteler and Mitasova, 2007), and automates
the delineation of SUs, given a DEM and a set of user-defined
input parameters. We tested the r.slopeunits software
and the proposed optimization procedure for LS modeling in
a large area in central Italy, where sufficient landslide and
thematic information was available to us (Cardinali et al.,
2001, 2002).

The paper is organized as follows. First, we present the
proposed approach for the delineation of an optimal terrain
subdivision into SUs best suited for LS modeling, based on
an optimization method (Sect. 2). Next (Sect. 3), we present
the method for the automatic delineation of SUs, which we
have implemented in the r.slopeunits software for the
GRASS GIS, and (in Sect. 4) we describe a segmentation
metric useful for the evaluation of the SU internal homo-
geneity. Next, we introduce landslide susceptibility model-
ing (Sect. 5) and our optimization approach to the SU par-
titioning (Sect. 6). This is followed (in Sect. 7) by a de-
scription of the study area, in central Italy, and of the data
used for LS modeling. In Sect. 8, we present the results ob-
tained in our study area in central Italy; then we summarize
the obtained results (Sect. 9), and outline possible uses of
the r.slopeunits software and of the optimization pro-
cedure (Sect. 10).

2 Modeling framework

We propose a new modeling framework for the parametric
delineation of SUs and their optimization, as a function of a
few input parameters, for the specific purpose of determin-
ing landslide susceptibility (LS) adopting statistically based

classification methods (Guzzetti et al., 1999, 2005, 2006;
Guzzetti, 2006; Rossi et al., 2010). The framework is exem-
plified in Fig. 1, and consists of the following steps:

1. First, the r.slopeunits SU delineation software –
described in Sect. 3, and whose flowchart is shown in
Fig. 2 – is run multiple times with different combina-
tions of the input modeling parameters. Each software
run results in a different subdivision of the landscape
into a different set of SUs. In each run, the number and
size of the SUs depend on the input modeling parame-
ters.

2a. Second, the internal homogeneity and external inhomo-
geneity of each SU subdivision – required by any mean-
ingful terrain subdivision – are defined in terms of ter-
rain aspect, measured by the circular variance of the
unit vectors perpendicular to the local topography rep-
resented by all grid cells in a slope unit. For each set
of SUs obtained in step 1 using different input param-
eters, the quality of the aspect segmentation is evalu-
ated adopting a general-purpose segmentation objective
function, presented in Sect. 4.

2b. At the same time, for each set of SUs obtained in step 1,
a LS model is calibrated adopting a logistic regression
model (LRM) for SU classification (Sect. 5). In the
LRM, each SU is classified as stable (i.e., free of land-
slides) or unstable (i.e., having landslides) depending on
a (in our case, linear) combination of the local terrain
conditions (i.e., the geo-environmental variables). The
performance of the model calibration is evaluated using
the area under the curve (AUC) of receiver operating
characteristic (ROC), referred to as the AUCROC met-
ric, a standard and objective metric commonly adopted
in the literature to evaluate the performance of LS mod-
els (Rossi et al., 2010).

3. Lastly, an overall (combined) objective function is de-
fined by properly combining the segmentation (step 2a)
and the AUCROC (step 2b) objective functions, as de-
scribed in Sect. 6. Maximization of this quantity allows
to single out the optimal set of SUs (i.e., the optimal
terrain subdivision) that, simultaneously, (i) provides a
good aspect segmentation and (ii) results in an effective
calibration of the LS model.

4. Maximization of the combined objective function al-
lows selecting objectively the optimal combination of
the input terrain modeling parameters best suited for LS
modeling (step 4 in Fig. 1) and the corresponding SU
subdivision.

In summary, the proposed modelling framework relies on
an optimization procedure that maximizes a proper, specific
function that contains information on (i) the morphology of
the study area, represented by the aspect segmentation metric
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Figure 1. Logical framework for the proposed method for (1) the
parametric delineation of SUs, (2a) the assessment of the quality
of terrain aspect segmentation using of a proper segmentation ob-
jective function, (2b) the calculation and assessment of the quality
of the LS modeling using a standard AUCROC metric, and (3) the
definition and maximization of a combined objective function for
(4) the determination of optimal parameters for the delineations of
SUs best suited for LS modeling and zonation.

(step 2a), and on (ii) the specific landslide processes under
investigation (in our case, slow- to very slow-moving shal-
low slides, deep-seated slides, and earth flows), represented
by the LS model performance and the associated AUCROC
metric (step 2b). The optimization approach removes sub-
jectivity from the SU delineation algorithm, and produces a
result that is objective and completely reproducible. This is a
significant advantage over manual methods (Carrara, 1988),
or specialized software that needs multiple parameters and
specific calibration procedures.

3 Automatic delineation of slope units

Automatic delineation of SUs can be performed adopting two
strategies. The first strategy defines a large number of small
homogeneous areas, and enlarges or aggregates them pro-
gressively, maximizing the aspect homogeneity of the SUs
(Zhao et al., 2012). Following this approach, the size of the
initial polygons representing the small homogeneous areas is
significantly smaller than the size of the desired (final) SUs,
which results from the aggregation of multiple areas per-

formed maximizing an objective function (Espindola et al.,
2006). The second strategy defines an initial small number
of large or very large areas, and progressively reduces their
size until a satisfactory result is obtained (Carrara, 1988; Car-
rara et al., 1991, 1995). In the second strategy, the study area
is subdivided into large subcatchments, which can be further
subdivided into left and right sides (looking downstream with
respect to the main drainage), with the resulting two sides
named half basins (HBs). The size of the initial HB is much
larger than the desired size for the SUs.

For both strategies, the final subdivision of the landscape
into SUs does not maintain memory of the terrain partition-
ing represented by the initial areas or HBs. In both strategies,
deciding when to stop the aggregation or the partitioning to
obtain a terrain subdivision suitable for a specific use (in
our case, LS modeling) is critical. Both strategies are subject
to the selection of user-defined modeling parameters, which
introduce subjectivity and reduce the reproducibility of the
results. These are conceptual and operational problems that
hamper the design and the implementation of an automatic
procedure for the effective delineation of terrain subdivisions
based on SUs (Carrara et al., 1995; Espindola et al., 2006;
Dragut et al., 2010, 2014).

3.1 Slope unit delineation algorithm

For the delineation of the SUs, we adopt the second strategy
outlined above, i.e., we start from a relatively small number
of large HBs, and we gradually reduce their size by subdi-
viding the HBs into smaller TUs. Hydrological conditions
and terrain aspect requirements control the subdivision of
the large HBs into smaller TUs. The approach is adaptive,
and it results in a geomorphological subdivision of the ter-
rain based on SUs of different shapes and sizes that capture
the real (natural) subdivisions of the landscape.

We implemented the approach to the delineation of SUs in
a specific algorithm, coded in the r.slopeunits software
(Fig. 2). The algorithm (and the software) uses the hydrolog-
ical module r.watershed (Metz et al., 2011) available in
the GRASS GIS. Using a DEM to represent terrain morphol-
ogy, r.watershed produces a map of HBs adopting an
advanced flow accumulation (FA) area analysis. Each grid
cell in the DEM is attributed the total contributing area FA,
based on the number of cells that drain into it. The FA values
are low along the divides and increase downstream along the
drainage lines. This information is used to single out streams
and divides, i.e., the main elements bounding a SU (Carrara,
1988). The r.watershed module can use single flow di-
rection (SFD) or multiple flow direction (MFD) strategies.
In the SFD strategy, water is routed to the single neighboring
cell with the lowest elevation, and in the MFD strategy water
is distributed to all the cells lower in elevation, proportionally
to the terrain slope in each direction. The r.slopeunits
software adopts the MFD strategy to distribute water to the
neighboring cells.
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Figure 2. Flowchart for the r.slopeunits software. (a) Input
data and parameters. AP, (input parameter name: plainsmap)
map showing plain areas to be excluded from the processing; DEM,
(demmap) digital elevation model; t , (thresh) initial FA thresh-
old area; a, (areamin) minimum area; c, (cvmin) circular vari-
ance; r , (rf) reduction factor; maxarea, maximum SU area;
cleansize, size of candidate SU to be removed; see text for de-
tailed explanation. (b) r.watershed processing in GRASS GIS
(Neteler and Mitasova, 2007). (c) Tests if the produced HBs are
in a plain area. (d) The average area of each new HBchild in each
HBparent is checked against a. (e) HBchild is individually checked
against a and c requirements. (f) The process proceeds to iteration
i+ 1 for each and every HBchild that still does not meet the re-
quirements, with an updated ti+1 = ti−ti/r FA threshold. (g) Small
polygons are removed from the candidate SU set.

The r.slopeunits software requires a DEM,
demmap, accepts an optional layer showing alluvial plains
(APs), plainsmap, and the following user-defined nu-
merical parameters (Fig. 2a): (i) the flow accumulation area
(FA) threshold, thresh; (ii) the minimum surface area for
the SU, areamin (in square meters); (iii) the minimum

circular variance (Nichols, 2009) of terrain aspect within
a slope unit, cvmin; (iv) a reduction factor, rf; (v) the
maximum surface area for the SU, maxarea (in square
meters, optional); and (vi) a threshold value for the cleaning
procedures, cleansize (in square meters, optional; see
Sect. 3.2). For simplicity, in the following we refer to the
numerical values of thresh, areamin, cvmin, and rf
as t , a, c, and r , respectively.

The software adopts an iterative approach to partition a
landscape into SUs. In the first iteration, r.watershed
uses the threshold t for controlling the partitioning into HBs.
The parameter t has to be smaller than the maximum surface
accumulation area (FA) for the study area to allow for the
delineation of at least two HBs that are large enough to be
further subdivided. Grid cells with FA> t are recognized as
drainage lines (i.e., streams), and used to delineate the river
network by r.watershed, grouping all grid cells in the
DEM that drain into a given stream segment. These cells col-
lectively represent the catchment drained by the stream seg-
ment, which can be further subdivided into left and right HBs
(Fig. 2b). A low value of the contributing (FA) area t results
in a dense hydrological network draining a large number of
small HBs, and a large value of t results in a reduced number
of streams draining a smaller number of relatively large HBs.

At each iteration, where a GIS layer showing APs is avail-
able, r.slopeunits identifies the grid cells in the APs
and excludes them from the analysis (Fig. 2c). When the SUs
are exploited for the analysis of the processes causing slope
instability, the exclusion is justified by the empirical obser-
vation that landslides do not occur in plain areas. The value
of the areamin parameter a defines the smallest possible
(planimetric) area for a SU. The circular variance is defined
as 1− |R|/Nv , in the range between 0 and 1, where Nv is
the number of grid cells in each HB and |R| is the mag-
nitude of the vector R that results from the sum of all unit
vectors describing the orientation of each grid cell. As an ex-
ample, Fig. 3a shows that a group of unit vectors dispersed
23◦ apart, on average, is characterized by a circular variance
of 0.1, and Fig. 3b shows that a group of unit vectors dis-
persed 62◦ apart, on average, is characterized by a circular
variance of 0.6. Thus, a value of 0.1 of the circular variance
represents grid cells all facing nearly in the same direction,
whereas a value of 0.6 represents more dispersed grid cells.
In the algorithm, the circular variance is controlled by the
value of the cvmin parameter c, affecting the homogeneity
of terrain aspect in the HBs. Small values of c result in more
uniform HBs, and large values of c in less uniform HBs, in
terms of terrain aspect.

At each iteration, r.watershed splits each existing par-
ent half basin, HBparent (Fig. 2d) into nested child half basins,
HBchild. The average area of the HBchild defined for each
HBparent is checked against a. When the average area is
smaller than a, the subdivision is rejected and the HBparent is
selected as a candidate SU. When the average area is larger
than a, the procedure keeps the HBchild for the next step
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Figure 3. Graphical representation of the circular variance of terrain aspect, 1− |R|/Nv . Two groups of unit vectors are shown. The unit
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Figure 3. Graphical representation of the circular variance of terrain
aspect, 1−|R|/Nv . Two groups of unit vectors are shown. The unit
vectors represent the local direction of terrain aspect for each grid
cell, resulting in circular variance (a) of 0.1 and (b) of 0.6. Unit
vectors are perpendicular to the local topography, represented by
the grid cell.

of the analysis. The rejection procedure prevents very small
HBs from being selected as a candidate SU.

The next step of the procedure consists in comparing the
size and circular variance of each HBchild with the user-
defined values a and c. Where the circular variance is smaller
than c, or the size is smaller than a, the HBchild is taken
as a candidate SU (Fig. 2e). If the user defines the op-
tional input parameter maxarea, the control on the circu-
lar variance is not performed for the HBchild having a size
larger than maxarea. This imposes a constraint on the max-
imum size of the candidate SU (not shown in Fig. 2e). Each
and every remaining HBchild is fed to the next iteration of
r.watershed, which is initialized using a smaller value of
t . At the ith iteration, the value of t depends on the value of
the reduction factor r , according to ti+1 = ti − ti/r (Fig. 2f).
The decrease of ti is faster for small values of r ≥ 2. We
checked empirically that values of r > 10 lead to visually
better results, at least in our study area. This is due to the fact
that a slow decrease of ti allows for a better (finer) control
on the subdivision of the parent half basin, HBparent. On the
other hand, a fast decrease obtained with r = 2 prevents the
algorithm from checking if intermediate values of ti produce
a candidate SU. Thus, a slow decrease in ti results in a larger
number of iterations, which produce better results at the ex-
penses of a longer computing time required to complete the
iterations.

At each iteration, each HBchild is processed again by
r.watershed as HBparent. The iterative procedure ends
when the entire study area is subdivided into candidate SUs
that match the user requirements, in terms of minimum area
(a) and circular variance (c). In the resulting map, the size
and shape of the candidate SUs can be determined by the
constraint of minimum surface area, or by the constraint of
the minimum circular variance of the terrain aspect. The final
terrain subdivision contains candidate SUs whose minimum
size approximates a.

The final SU partitioning is obtained after an additional
(cleaning) step intended to identify and process candidate
SUs exhibiting unrealistic or unacceptable size or shape
(Fig. 2g). This is discussed in the next section.

3.2 Slope units cleaning procedure

The r.slopeunits software may produce locally unreal-
istic candidate SUs which are too small, too large, or oddly
shaped. As an example, in large open valleys where terrain is
flat or multiple channels join in a small area, unrealistically
small subdivisions can be produced. Another example is rep-
resented by unrealistically elongated or large candidate SUs
found along regular and planar slopes. These terrain subdivi-
sions, although legitimate from the algorithm hydrological
perspective, are problematic for practical applications and
should be revised and removed eventually. Very small can-
didate SUs consisting of a few grid cells are often the result
of artifacts (errors) in the DEM. These candidate SUs should
also be removed. To remove candidate SUs with unrealis-
tic or unwanted sizes (Fig. 2g), we have implemented three
distinct software tools based on three different methods. The
three methods require the user to set the cleansize param-
eter that imposes a strict constraint on the minimum possible
size (planimetric area) for a slope unit.

The first method simply removes all candidate SUs smaller
than cleansize. The adjacent candidate SUs are enlarged
to fill the area left by the removed units, using the r.grow
GRASS GIS module. The second method, in addition to re-
moving all candidate SUs smaller than cleansize, also
removes odd-shaped polygons from the set of the candi-
date SUs. Enabled via the -m flag in combination with
cleansize, the second method removes markedly elon-
gated candidate SUs with a width smaller than two grid cells.
The third method merges small candidate SUs with neighbor-
ing ones based on the average terrain aspect. Enabled via the
-n flag in combination with cleansize, the third method
calculates the average terrain aspect of all the grid cells in
each small candidate SU. The average aspects of the neigh-
boring SUs are compared, and the two adjacent units ex-
hibiting the smallest difference in average terrain aspect are
merged, provided that the SU that is removed shares a signif-
icant part of its boundary with the neighboring unit. The final
result is a terrain subdivision in which the vast majority of the
SU has an area larger than cleansize. A drawback of the
third method is that it is significantly more computer inten-
sive than the other two methods, requiring longer processing
times.

4 Segmentation metric

To evaluate the terrain partitioning into SUs, we use a sim-
ple metric originally proposed for the evaluation of the qual-
ity of a segmentation result (Espindola et al., 2006). In dig-
ital image processing, segmentation consists in the process
of partitioning an image into sets of pixels, such that pix-
els within the same set share certain common characteristics.
Here, we consider the terrain aspect grid map as an image to
be segmented, and we assume that the segmentation metric
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proposed by Espindola et al. (2006) is appropriate to evaluate
the terrain partition into SUs. We base the assumption on the
observation that the metric makes a straightforward evalua-
tion of the internal homogeneity of the SUs using the local
aspect variance V , and the external heterogeneity of the SUs
using the autocorrelation index, I . The two quantities are de-
fined as follows:

V =

∑
n sn cn∑
n sn

, (1)

and

I =
N
∑
n,lwnl (αn − α)(αl − α)(∑
n (αn − α)

2
) (∑

n,lwnl
) , (2)

where n labels all the N SUs in a given partition, sn is the
surface area of the nth SU, cn is the circular variance of the
aspect in the nth SU, αn is the average aspect of the nth SU,
α is the average aspect of the entire terrain aspect map, and
wnl is an indicator for spatial proximity, equal to unity if SU
n and l are adjacent, zero otherwise. The local variance V ,
defined in Eq. (1), assigns more importance to large SUs,
avoiding numerical instabilities produced by small SUs. The
autocorrelation index I of Eq. (2) has minima for partitions
that exhibit well-defined boundaries between different SUs.

The optimal selection of the input parameters is the one
that combines small V and small I . This is quantified by the
following objective function (Espindola et al., 2006):

F(V,I)=
Vmax−V

Vmax−Vmin
+

Imax− I

Imax− Imin
, (3)

where Vmin(max) and Imin(max) are the minimum (maximum)
values of the quantities in Eqs. (1) and (2) as a function of
the input parameters. To calculate I , we rewrite Eq. (2) to
make it consistent with the terrain aspect map. The aspect
map contains values in degrees, and the average values and
products cannot be taken straightforwardly, and the follow-
ing definitions have to be considered. The average values of
the angles are a vectorial sum of unit vectors, so that

ᾱ = Arctan

(∑
j sinαj∑
j cosαj

)
, (4)

where the index j runs over all the grid cells in the terrain
aspect map. A similar definition holds for αi , the average
aspect inside the ith slope unit, if the sum in Eq. (4) is limited
to the grid cells belonging to the ith SU. The difference (αi−
ᾱ) should also be intended vectorially, as follows:

αi − ᾱ = Arctan

(
sinαi − sin ᾱ
cosαi − cos ᾱ

)
. (5)

Lastly, the product at the numerator of Eq. (2) is taken as the
scalar product of the vectors (αi−ᾱ) and (αj−ᾱ), as follows:

(αi − ᾱ) · (αj − ᾱ)= cosθi cosθj + sinθi sinθj , (6)

where

θi = Arctan
(

sinαi − sin ᾱ
cosαi − cos ᾱ

)
, (7)

θj = Arctan
(

sinαj − sin ᾱ
cosαj − cos ᾱ

)
. (8)

Care must be taken in expressing angles and arcs consistently
in degrees or radians.

The segmentation metric F(V,I) is a measure of the
degree of fulfillment of the SU internal homogeneity re-
quirement, and it is related only to the SU geometrical
and morphological delineation. The metric can be used
to define the optimal (best) partition of the territory in
terms of aspect segmentation by maximization of F(V,I)=
F(V (a,c),I (a,c)) as a function of the a and c user-defined
modeling parameters.

5 Landslide susceptibility modeling

Landslide susceptibility (LS) is the likelihood of landslide
occurrence in an area, given the local terrain conditions, in-
cluding topography, morphology, hydrology, lithology, and
land use (Brabb, 1984; Guzzetti et al., 1999; Guzzetti, 2006).
Various types of LS modeling approaches are available in
the literature. The approaches differ – among other things –
on the type of the TU used to partition the landscape and
to ascertain LS (Guzzetti et al., 1999; Huabin et al., 2005;
Guzzetti, 2006; Pardeshi et al., 2013). Interestingly, instead
of trying to define where landslides are not expected, (e.g.,
Marchesini et al., 2014), over the last decades a lot of efforts
have been spent on the prediction of the spatial probability
of the slope failures. Among the many available types of TUs
(Guzzetti, 2006), SUs have proved to be effective terrain sub-
divisions for LS modeling.

To model LS, we considered slow- to very slow-moving
shallow slides, deep-seated slides, and earth flows, and we
excluded rapid to fast-moving landslides, including debris
flows and rock falls. The r.slopeunits software per-
forms the delineation of the SUs, and does not perform the
LS modeling. For the latter, we exploit specific modeling
software (Rossi et al., 2010; Rossi and Reichenbach, 2016).

In this work, we prepare LS models adopting a single mul-
tivariate statistical classification model. For the purpose, we
use a logistic regression model (LRM) to quantify the re-
lationship between dependent (landslide presence/absence)
and independent (geo-environmental) variables. We use the
presence/absence of landslides in each SU as the grouping
(i.e., dependent) variable. Adopting a consolidated approach
in our study area (Carrara et al., 1991, 1995; Guzzetti et al.,
1999), SUs with 2 % or more of their area occupied by land-
slides are considered unstable (having landslides), and SUs
with less than 2 % of the area occupied by landslides are con-
sidered stable (free of landslides). The 2 % threshold value
depends on the accuracy of a typical landslide inventory map
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(Carrara et al., 1991, 1995; Guzzetti et al., 1999; Santangelo
et al., 2015). Users of the r.slopeunits software may
select a different value for the landslide presence/absence
threshold in the LRM (or any other classification model,
where considered more appropriate, in different study areas,
and with different input data. Numerical (i.e., terrain eleva-
tion, slope, curvature, and other variables derived from the
DEM), and categorical (i.e., lithology and land use) variables
are used as explanatory (i.e., independent) variables in the
LS modeling. Each SU is characterized by (i) statistics cal-
culated for all the numerical variables, and (ii) percentages
of all classes for the categorical variables.

The LS evaluation is repeated many times using dif-
ferent SU terrain subdivisions obtained changing the
r.slopeunits (a,c) modeling parameters, and cleaned
from small areas using the first (and simplest) method de-
scribed in Sect. 3.2. We evaluate the performance skills of
the different LS models calculating the AUCROC (Rossi et al.,
2010). ROC curves show the performance of a binary classi-
fier system when different discrimination probability thresh-
olds are chosen (Fawcett, 2006). A ROC curve plots the
true positive rate (TPR) against the false positive rate (FPR)
for the different thresholds. The area under the ROC curve,
AUCROC, ranging from 0 to 1, is used to measure the perfor-
mance of a model classifier that, in our case, corresponds to
the LS model.

Hereafter, we quantify the AUCROC metric with the
R(a,c) function, for each value of the a (surface area) and c
(circular variance) input parameters of the r.slopeunits
software. We stress that we use the AUCROC metric to evalu-
ate the fitting performance of the LS model, i.e., to evaluate
the ability of the LS model to fit the same landslide set used
to construct the LS model (the landslide training set), and
not an independent landslide validation set (Guzzetti et al.,
2006; Rossi et al., 2010). This is done purposely, because the
purpose of the procedure is not to evaluate the performance
of the LS classification but to help determine an optimal ter-
rain subdivision for LS modeling, and thus before any LS
model is available for proper validation. When an optimal
SU subdivision is obtained (see Sect. 6), and a corresponding
LS model is prepared, the prediction skills of the model can
be evaluated using independent landslide information (where
this is available) (Guzzetti et al., 2006; Rossi et al., 2010).

In addition to the AUCROC, which is a direct measure of
the fitting/prediction performance of a binary classifier, the
performance of the LRM model can be analyzed in terms of
how the different input variables (both numerical and cate-
gorical) contribute to the final result (Budimir et al., 2015).
In the model, a p value can be associated to each variable,
and used to establish the significance of the variable in the
LRM. The fraction of significant variables used by the LRM
can be used to qualitatively understand the behavior of the
classification model as a function of the r.slopeunits
software input parameters or, in turn, as a function of the av-
erage size of the SUs.

6 Optimization of SU partitioning for LS zonation

Once, for all the SU sets computed using different model-
ing parameters (i.e., different a (surface area) and c (circular
variance) values), (i) the SU terrain aspect segmentation met-
ric F(a,c) – that assesses how well the requirements of in-
ternal homogeneity/external heterogeneity are fulfilled – has
been established (2a in Fig. 1 and Sect. 4; Espindola et al.,
2006); and (ii) the performance of the individual LS mod-
els are estimated using the AUCROC metric R(a,c) – that as-
sesses the calibration skills of the LRM used for LS modeling
– has also been established (2b in Fig. 1 and Sect. 5; Rossi
et al., 2010), a proper objective function S that combines
the aspect segmentation metric (F(a,c)) and the AUCROC
calibration metric (R(a,c)) is established. Maximization of
S(a,c) as a function of the a (the minimum surface area of
the slope unit) and c (the slope unit circular variance) mod-
eling parameters allows to single out the optimal SU terrain
subdivision for LS modeling in the given study area.

The reason for proposing a combination of the aspect seg-
mentation and the AUCROC metrics in the search for an op-
timal terrain subdivision for LS modeling is the following.
The single segmentation metric F(a,c) is a measure of the
degree of fulfillment of inter-unit homogeneity and intra-unit
heterogeneity for a SU delineation obtained with given (a,
c) values. As such, F(a,c) is related only to the geometri-
cal delineation of the SUs, and does not consider the sub-
sequent application of a LS model, the presence/absence of
landslides, or any quantity other than terrain aspect.

To combine the two functions R(a,c) and F(a,c) into a
single objective function, we normalized them to [0,1] as
follows:

Ro(a,c)=
R(a,c)−Rmin(a,c)

Rmax(a,c)−Rmin(a,c)
(9)

Fo(a,c)=
F(a,c)−Fmin(a,c)

Fmax(a,c)−Fmin(a,c)
. (10)

The functions Ro(a,c) and Fo(a,c) are then multiplied to
obtain the final objective function S(a,c):

S(a,c)= Ro(a,c)Fo(a,c), (11)

which embodies information on the quality of the terrain as-
pect map segmentation and on the performance of the LS
model in a consistent, objective, and reproducible way. The
function S(a,c) assumes values in the range [0,1]: the larger
the value the better the SU partitioning in terms of (i) SU in-
ternal homogeneity and external heterogeneity, and (ii) suit-
ability of the subdivision for LS zonation in our study area.

7 Test area

We tested our proposed modeling framework for the delin-
eation of SUs, and for the selection of the optimal model-
ing parameters for LS assessment, in a portion of the upper
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Figure 4. (a) Shaded relief image of the study area located on the upper Tiber River basin, Umbria, central Italy. Shades of green to brown
show increasing elevation. Inset shows location of the study area in Italy. (b) Landslide inventory map (Cardinali et al., 2001). Inset shows
the detail of the landslide mapping. Landslides (shown in red) were used to prepare the landslide susceptibility zonations shown in Fig. 10.
The maps are in the UTM zone 32, datum ED50 (EPSG:23032) reference system.

Tiber River basin, central Italy (Fig. 4a). In the 2000 km2

area, elevation ranges from 175 to 1571 m, and terrain gra-
dient from almost zero along the river plains, to more than
70◦ in the mountains and the steepest hills. Four litholog-
ical complexes, or groups of rock units (Cardinali et al.,
2001), crop out in the area, including: (i) sedimentary rocks
pertaining to the Umbria–Marche sequence, Lias to lower
Miocene in age; (ii) rocks pertaining to the Umbria turbidites
sequence, Miocene in age; (iii) continental, post-orogenic de-
posits, Pliocene to Pleistocene in age; and (iv) alluvial de-
posits, recent in age. Each lithological complex comprises
different sedimentary rock types varying in strength from
hard to weak and soft rocks. Hard rocks are massive lime-
stone, cherty limestone, sandstone, travertine, and conglom-
erate. Weak rocks are marl, rock-shale, sand, silty clay, and
stiff over-consolidated clay. Soft rocks are clay, silty clay,
and shale. Rocks are mostly layered and locally structurally
complex. Soils in the area reflect the lithological types, and
range in thickness from less than 20 cm where limestone and
sandstone crop out along steep slopes, to more than 1.5 m in
karst depressions and in large open valleys.

To model LS, we use a digital representation of the ter-
rain elevation, an inventory of known landslides, and rele-
vant geo-environmental information. We use a DEM with
a ground resolution of 25 m× 25 m obtained through lin-
ear interpolation of elevation data along contour lines shown
on 1 : 25 000 topographic base maps (Cardinali et al., 2001)
(Fig. 4a). The landslide inventory (Fig. 4b) was obtained
from the visual interpretation of multiple sets of aerial pho-

tographs flown between 1954 and 1977, aided by field sur-
veys, review of historical and bibliographical data, and ge-
ological, geomorphological, and other available landslide
maps (Cardinali et al., 2001; Galli et al., 2008; Guzzetti et al.,
2008; Alvioli et al., 2014). To prepare the LS model, we con-
sidered only the shallow slides, the deep-seated slides, and
the earth flows. These landslides are (i) slow- to very slow-
moving failures, and (ii) they typically remain in the slope
(i.e., the slope unit) where they occur. For the deep-seated
landslides and the earth flows, the landslide source (deple-
tion) area and the deposit were considered together. This is
a standard approach in modeling LS for these types of land-
slides. We excluded from the LS modeling all the rapid to
fast-moving landslides, including debris flows and rock falls
that may travel outside the slope (i.e., the slope unit) where
they form.

We obtained lithological information (Fig. 5a) from avail-
able geological maps, at 1 : 10 000 scale (Regione Umbria,
1995–2015), prepared in the framework of the Italian na-
tional geological mapping project CARG and in other re-
gional geological mapping projects. The original maps, in
vector format, were edited to eliminate and reclassify poly-
gons coded as landslide deposits or debris flow deposits, and
to reclassify the original 186 geologic formations and 20
cover types in five lithological complexes or lithological do-
mains (Table 1). Definition of the five lithological complexes
was made on the basis of the characteristics of the rock types
(carbonate, terrigenous, volcanic, post-orogenic sediments)
and the degree of competence or composition of the differ-
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Figure 5. (a) Lithological map of upper Tiber River basin, Umbria, central Italy (Regione Umbria, 1995–2015). Details of the lithological
types are given in Table 1. (b) Land use map of the study area. Legend: AE: urban area, AN: bare soil, AQ: water, BO: forest, CA: orchard,
CO: olive grove, CV: vineyard, LP: poplar trees, NN/NX: unclassified, PA: meadow/pasture, SA: treed seminative, SS: simple seminative.
The maps are in the UTM zone 32, datum ED50 (EPSG:23032) reference system.

ent geological units (massive, laminated sandstone/pelitic-
rock ratio). Applying these criteria, the original 206 geo-
logical units were grouped in 17 lithological units. We ob-
tained information on land cover from a map, at 1 : 10 000
scale (Regione Umbria, 1995–2015), prepared through the
visual interpretation of color aerial photography at 1 : 13 000
scale, acquired in 1977 (Fig. 5b). The map contains 13 land
cover classes, of which the most common are forest (42 %),
arable land (31 %), meadow and pasture (10 %), built up ar-
eas (10 %), and vineyards, live trees, and orchards (6 %).

The study area (Fig. 4) corresponds to an alert zone used
by the Italian National Department for Civil Protection to is-
sue landslide (and flood) regional warnings. The boundary
of the alert zone is partly administrative, and does not corre-
spond locally to drainage and divides lines. As a result, our
SU partitioning intersects locally the boundary of the alert
zone. For convenience, for our analysis we considered only
SUs that fall entirely within the alert zone. As a drawback,
the extent of the study area varies slightly depending on the
combination of the selected a and c parameters. We maintain
that this has a negligible effect on the final modeling results.

8 Results

8.1 Slope units delineation

In the study area, we ran the r.slopeunits software for
99 different combinations of user-defined input parameters,
resulting in 99 different terrain subdivisions. In the itera-

Table 1. Lithological codes used in Fig. 5. SD is sandstone, P is
pelitic rock, CO is conglomerate, S is sand, G is clay (Regione Um-
bria, 1995–2015).

Complex Code

Carbonate Massive layers CC1
Thin layers CC2

Marl, calcareous marl CC3

Terrigenous Massive sandstone CT1
Variable SD/P fraction Thick layers CT21

Medium layers CT22
Thin layers CT23

Marly, SD/P� 1 Stratified CT31

Post-orogenic Conglomerate, gravel, pebble CPO2
Sand CPO3

Silt and clay CPO4
Variable CO/S/G fraction CPO24

Others Olistostrome OLI

Quaternary deposit Alluvial deposit A
Debris cone QDF

Red soil in karstic landscape TRDC
Travertine T

tive procedure (Fig. 2), the initial FA threshold (t) area and
the reduction factor (r) control the numerical convergence,
and do not have an explicit geomorphological meaning. On
the other hand, the minimum area (a) and the circular vari-
ance (c) determine the size and control the aspect of the
SUs. For the analysis, we selected a large value for the FA
area (t = 5× 106 m2) keeping it constant for all the different
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Figure 6. A group of 9 (out of 99) SU terrain subdivisions for a
portion of the study area. The SUs were obtained changing the a and
c parameters used by the r.slopeunit software. The maps are
in the UTM zone 32, datum ED50 (EPSG:23032) reference system.

model runs. The large value was chosen to obtain large ini-
tial HBs that could be further subdivided into smaller SUs
by the iterative procedure (see Sect. 4). The value is also
consistent with (i.e., substantially larger than) (i) the size of
the average SU used to partition the same area in a differ-
ent LS modeling effort (Cardinali et al., 2001, 2002), and
(ii) the average area of the considered landslides (shallow
slides, the deep-seated slides, and the earth flows) in the
study area (Guzzetti et al., 2008). Selection of the reduc-
tion factor (r = 10) was heuristic and motivated by the fact
that this figure provided stable results compared to those ob-
tained using larger values. The two most relevant parameters,
the minimum area a and the circular variance c, were se-
lected from broad ranges: a= 10 000, 25 000, 50 000, 75 000,
100 000, 125 000, 150 000, 200 000, and 300 000 m2, and
0.1<c< 0.6, at evenly spaced values with an increment of
0.05. For all the r.slopeunits model runs, we used the
same value for cleansize= 20 000 m2, to remove candi-
date SUs with area< 20 000 m2 using the first (and simplest)
of the three methods described in Sect. 3.2.

Figure 6 shows 9 of the 99 results of the terrain subdi-
visions obtained using different combinations of the a and
c modeling parameters. The map in the upper left (lower
right) corner shows the finest (coarsest) SU partitioning, de-
termined using small (large) values of a and c. The map in
the center was obtained using intermediate values for the
two user-defined modeling parameters. For a limited por-
tion of the study area, Fig. 7 shows different partitioning

Figure 7. Example of subdivisions into SUs for a portion of the
study area. Legend: blue, red, and green lines show boundaries of
SUs of increasing density and corresponding decreasing average
size. Yellow areas are landslides. The five maps show the same area
in plan view (a) and in perspective view (b, c, d, e).

results. In particular, Fig. 7a and b show the overlay of the
three different partitions with the landslide inventory map
(Fig. 4), using a two- and three-dimensional visualization, re-
spectively, and a shaded image relief of the terrain, whereas
Fig. 7c, d, and e show separately the same partitions us-
ing a three-dimensional representation. Visual inspection of
Fig. 7a, b, and c reveals that the coarser subdivision (c= 0.60
and a= 0.3 km2), shown in blue, defines large SUs char-
acterized by heterogeneous orientation (aspect) values. On
the other hand, the finest SU subdivision (shown in green in
Fig. 7a, b and e) obtained using c= 0.10 and a= 0.01 km2,
is too small to completely include many of the landslides
(shown in yellow). The combination that uses intermediate
values c= 0.35 and a= 0.15 km2 resulted in the SU subdivi-
sion shown in red in Fig. 7a, b, and d.

Figure 8 shows the effect of different combinations of a
and c on the average SU size. The average area of the SU
increases significantly with c (less homogeneous, more ir-
regular slope), and it is less sensitive to the increment of a
(Fig. 8a). The effect of c becomes predominant in Fig. 8b.
The standard deviation of the area of the SU varies signif-
icantly with c, highlighting that larger values of c increase
the average and the variability of the SU size (Fig. 8a and b,
respectively).

8.2 Segmentation metric

For each of the 99 terrain subdivisions obtained using the
procedure described above, we calculated the segmentation
objective function value given by Eq. (3). The segmentation
metric F(a,c) (Fig. 9) is a measure of the performance of our
SU delineation algorithm, and an assessment of how well the
requirements of internal homogeneity/external heterogeneity
are fulfilled by the procedure, as a function of a and c (2a in
Fig. 1, Sect. 4). Where the SUs are relatively small, their de-
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Figure 8. (a) Average and (b) standard deviation of the size of the
SUs, for different combinations of a and c parameters. The mini-
mum size of the SUs is fixed by the a parameter, and the maximum
size of the SUs is independent of a.

gree of internal homogeneity is large, but the requested het-
erogeneity between adjacent units is not completely fulfilled.
Where the SUs are large, the requested internal homogeneity
is not fulfilled entirely, because in each SU the aspect vari-
ability is large. The analysis of the F(a,c) values in Fig. 9
suggests that SU subdivisions obtained using c smaller than
about 0.2 and a smaller than about 50 000 m2, or c larger than
about 0.5, should not be considered in the analysis because
they are too small or too large to satisfy the aspect variability
requirement.

8.3 Landslide susceptibility modeling

For each of the 99 SU delineations, we prepared a differ-
ent LS zonation using a LRM (Sect. 6) adopting the model-
ing scheme described by Rossi et al. (2010); Rossi and Re-
ichenbach (2016). Figure 10 shows the results obtained for 9
(out of 99) combinations of the a and c parameters. For each
of the 99 susceptibility assessments, we evaluated the fitting
(calibration) performance of the models computing AUCROC
(Rossi et al., 2010), and Fig. 11 shows the obtained AUCROC
as a function of the a and c parameters (Sect. 5).

The larger values of AUCROC were obtained for LS zona-
tions based on SU partitions resulting from large values of
c and a. Such combinations may locally result in SUs with
extremely large internal heterogeneity. Signatures of the het-
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Figure 9. Segmentation objective function values (Eq. 3) calculated
for 99 SU partitions obtained using different combinations of the a
and c parameters.

erogeneity within very large slope units can be found both
in the segmentation metric and in the LRM model results.
In the segmentation metric case, this is very straightforward
since the values of F(a,c), which is a direct measure of the
slope aspect homogeneity within SUs, clearly decrease with
increasing values of a and c, as shown in Fig. 9. Very large
SUs, however, are not only heterogeneous in terms of ter-
rain aspect, but also in terms of the morphometric and the-
matic variables used as input of the LRM. This is reflected in
the number of input variables that significantly contribute to
the susceptibility model results as a function of a and c. We
computed the number of statistically significant variables in
each realization of the LRM (i.e., the variables with a p value
< 0.05). Figure 12 shows that the number of significant vari-
ables ranges from 5 % (of the 50 morphometric and thematic
variables) for large SUs, to 35 % for small SUs. From this
analysis we observe that for very large slope units, only very
few variables are effectively used by the LRM. A more de-
tailed analysis reveals that, in our test case, lithological vari-
ables significantly control the results, whereas other local set-
tings (e.g., terrain slope) are neglected. The relevant variables
are typically the terrigenous sediments and carbonate litho-
logical complexes, where landslides are expected and not ex-
pected, respectively. As a result, in the region of large (a,c)
parameters, even if we obtain high values of AUCROC, the
LRM can be replaced by a simple heuristic analysis of the
lithological map. The fine details of the remaining input vari-
ables are lost and a multivariate statistical approach is of little
use. We clarify that to evaluate the model performance, any
statistical metric based on the comparison of observed and
predicted data (e.g., confusion matrices and derived indexes),
would exhibit the same or similar trend as the AUCROC as a
function of the SU size.
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Figure 10. The group of 9 (out of 99) LS maps obtained with dif-
ferent SU partitions resulting from different combinations of the a
and c parameters. The maps are in the UTM zone 32, datum ED50
(EPSG:23032) reference system.

9 Discussion

We have run the r.slopeunits software with a signifi-
cant number of combinations (99) of the (a, c) input param-
eters, and a corresponding number of realizations of the LS
model. Results showed that new r.slopeunits software
was capable of capturing the morphological variability of the
landscape and partitioning the study area into SU subdivi-
sions of different shapes and sizes well suited for LS model-
ing and zonation. As a matter of fact, depending on the type
of landslides, the scale of the available DEM, the morpho-
logical variability of the landscape, and the purpose of the
zonation, the detail of the terrain subdivision may vary. A de-
tailed terrain partitioning, with many small SUs, is required
to capture the complex morphology of badlands, or to model
the susceptibility to small and very small landslides (i.e., soil
slips). A coarse terrain subdivision is best suited for model-
ing the susceptibility of very old and very large, deep-seated,
complex and compound landslides. Coarse subdivisions can
also be used to model the susceptibility to channeled debris
flows that travel long distances from the source areas to the
depositional areas. Subdivisions of intermediate size may be
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using SU partitions derived for different combination of the a and c
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defined modeling parameters. Combination of a and c are the same
used to prepare Fig. 11. Note that the direction of the axes is re-
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required for medium to large slides and earth flows (Carrara
et al., 1995). By tuning the set of user-defined model param-
eters, r.slopeunits can prepare SU terrain subdivisions
for LS modeling in different geomorphological settings.

Concerning the LS model, we acknowledge that our selec-
tion of the 2 % presence/absence threshold may influence the
production of the appropriate SU subdivision, and may af-
fect the results of the LS zonation. Examination of different
thresholds is not investigated in the present work, because it
is not an input parameter of the r.slopeunits software
and does not change the logic of the approach or the rationale
behind our optimization procedure.

We clarify that the subdivisions produced by
r.slopeunits using different (a,c) parameters are
nested, i.e., the boundaries of a coarse resolution subdivision
encompass the boundaries of intermediate and finer subdi-
visions (see Fig. 7c, d, e). This is a significant operational
advantage where landslides of different sizes and types
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by Eqs. (9) and (10). (b) So(a,c) function defined by Eq. (11). The
functions were interpolated on a denser mesh for improved visual
representation.

coexist, posing different threats and requiring multiple and
combined susceptibility assessments, each characterized by
a different terrain subdivision (Carrara et al., 1995). Optimal
values of the (a,c) parameters have to be determined to
obtain the best SU subdivision for a particular goal, in our
case, LS modeling. We defined a custom objective function
S(a,c) to determine such optimal values. S(a,c) is the
product of a segmentation quality measure, F(a,c), and
LS model performance in calibration, R(a,c). If only the
F(a,c) metric is used to select a particular set of modeling
parameters, the resulting optimal (best) set of SUs has the
only meaning of “best partition of the territory in terms
of aspect segmentation”. Similarly, the R(a,c) metric
considers solely the classification results of the LS model
and not the geometry of the single SU, some of which may
be inadequate (e.g., too large, too irregular, too small) for the
scope of the terrain zonation. Values of F(a,c) indicate that
there are combinations of the c and a parameters that result
in SU subdivisions that do not satisfy the user requirements
in terms of SU internal homogeneity and external hetero-
geneity (Fig. 8) (Sect. 8.2). On the other hand, the AUCROC
metric increases with the average size of the SU (Fig. 11)
(Sect. 8.3). To select the optimal terrain partitioning for

Figure 14. The SU subdivision corresponding to the best parame-
ters selected by our optimization procedure. The values of the pa-
rameters are a= 150 000 m2, a= 0.35. The associated LS result is
shown in Fig. 10, in the central box, corresponding to the optimal
parameters values.

LS zonation in our study area, we exploit the objective
function S(a,c), which simultaneously quantifies (Sect. 6):
(i) the SU internal homogeneity and external heterogeneity
(Fig. 13a), and (ii) the (fitting) performance of the LS model
(Fig. 13a). Maximization of S(a,c) (Fig. 13b) provides the
best combination of the (a,c) modeling parameters for a
terrain subdivision optimal for LS modeling in our study
area.

In addition to the AUCROC, we have analyzed the perfor-
mance of the LRM model by studying the fraction of signif-
icant variables used by the LRM, to qualitatively understand
the behavior of the classification model as a function of the
r.slopeunits software input parameters or, in turn, as
a function of the average size of the SU. The LRM is ex-
pected to use the input data less efficiently when the aver-
age SU size grows, resulting in a smaller number of signifi-
cant input variables, which is indeed what we observed. This
is due to the LRM inability to discriminate between input
variables when the SUs are too large, since each unit usu-
ally contains all the possible values of the variables. Using
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less data makes it easier for the LRM model to produce a
high AUCROC result, which does not necessarily correspond
to the optimal SU set. The complication is removed using
the S(a,c)= Fo(a,c)Ro(a,c) function, whose F(a,c) com-
ponent prevents unrealistic SU sets (both large and small) to
have a high overall score.

The function S(a,c) (Fig. 13b), calculated in our test case
for different combinations of the a and c modeling parame-
ters, has a maximum value at a= 150 000 m2 and c= 0.35.
The set of SUs that corresponds to the optimal combination
of the modeling parameters can be singled out as our opti-
mal (best) result. The LS results corresponding to the opti-
mal combination were already shown in the central box of
Fig. 10, and the optimal SU map is presented in Fig. 14.

10 Conclusions

Despite the clear advantages of SUs over competing mapping
units for LS modeling (Guzzetti, 2006), inspection of the lit-
erature reveals that only a small proportion (8 %) of the LS
zonations prepared in the last three decades worldwide was
performed using SUs (Malamud et al., 2014). The limited
use of SUs for LS modeling and zonation is due to (among
other factors) the unavailability of readily available, easy-to-
use software for the accurate and automatic delineation of
SUs, and to the intrinsic difficulty in selecting a priori the
appropriate size of the SUs for proper terrain partitioning in
a given area.

To contribute to filling this gap, we developed new soft-
ware for the automatic delineation of SUs in large and com-
plex geographical areas based on terrain elevation data (i.e.,
a DEM) and a small number of user-defined parameters. We
further proposed and tested a procedure for the optimal se-
lection of the user parameters in a 2000 km2 area in Umbria,
central Italy.

We expect that the r.slopeunits software will be used
to prepare terrain subdivisions in different morphological set-
tings, contributing to the preparation of reliable and robust

LS models and associated zonations. We acknowledge that
further work is required to investigate the optimization of
SU partitions for different statistically based tools used in
the literature for LS modeling and zonation (e.g., discrim-
inant analysis, neural network). Guzzetti et al. (2012) have
argued that lack of standards hampers landslide studies. This
is also the case for the production of landslide susceptibility
models and associated maps. We expect that systematic use
of the modeling framework proposed in this work (Fig. 1,
Sect. 2) and of the r.slopeunits software for the objec-
tive selection of the user-defined modeling parameters, will
contribute to the production of more reliable landslide sus-
ceptibility models. It will also facilitate the meaningful com-
parison of landslide susceptibility models produced, e.g., in
the same area using different modeling tools, or in different
and distant areas using the same or different modeling tools.

Finally, we argue that the proposed modeling framework
and the r.slopeunits software are general and not site-
or process-specific, and can be used to prepare terrain sub-
divisions for scopes different from landslide susceptibility
mapping, including, e.g., definition of rainfall thresholds for
possible landslide initiation, distributed hydrological mod-
elling, statistically based inundation mapping, and the detec-
tion and mapping of landslides and other instability processes
from satellite imagery.

11 Code availability

The code r.slopeunits is a free software under the
GNU General Public License (v2 and higher). Details about
the use and redistribution of the software can be found in
the file https://grass.osgeo.org/home/copyright/ that comes
with GRASS GIS. The software and a short user manual
can be downloaded at http://geomorphology.irpi.cnr.it/tools/
slope-units (Geomorphology Research Group, 2016).
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Appendix A: Notation

In Table A1, we list the main variables and the acronyms used
in the text.

Table A1. Main variables and acronyms used in the text.

Variable Explanation First introduced Dimensions

a minimum surface area for the SUs Sect. 3.1 m2

c minimum circular variance Sect. 3.1 –
r reduction factor Sect. 3.1 –
t flow accumulation threshold Sect. 3.1 m2

I Autocorrelation index Eq. (1) –
V Local aspect variance Eq. (2) –
F(V,I) Aspect segmentation metric, also F(a,c) Eq. (3) –
R(a,c) AUCROC metric for LRM calibration Sect. 3.1 –
S(a,c) Combined segmentation & AUCROC metric Eq. (11) –

Acronym Explanation

AP Alluvial plain
AUC Area under the curve
DEM Digital elevation model
FA Flow accumulation
FPR False positive rate
GIS Geographical information system
HB Half basin (left and right portion of a slope unit)
LRM Logistic regression model
LS Landslide susceptibility
MFD Multiple flow direction
ROC Receiver operating characteristic
SFD Single flow direction
SU Slope unit, a morphological terrain unit

bounded by drainage and divide lines
TPR True positive rate
TU Terrain unit, a subdivision of the terrain
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The Supplement related to this article is available online
at doi:10.5194/gmd-9-3975-2016-supplement.
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