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Definition and performance of a threshold-based
regional early warning model for rainfall-induced
landslides

Abstract A process chain for the definition and the performance
assessment of an operational regional warning model for rainfall-
induced landslides, based on rainfall thresholds, is proposed and
tested in a landslide-prone area in the Campania region, southern
Italy. A database of 96 shallow landslides triggered by rainfall in
the period 2003–2010 and rainfall data gathered from 58 rain
gauges are used. First, a set of rainfall threshold equations are
defined applying a well-known frequentist method to all the re-
constructed rainfall conditions responsible for the documented
landslides in the area of analysis. Several thresholds at different
exceedance probabilities (percentiles) are evaluated, and nine dif-
ferent percentile combinations are selected for the activation of
three warning levels. Subsequently, for each combination, the
issuing of warning levels is computed by comparing, over time,
the measured rainfall with the pre-defined warning level thresh-
olds. Finally, the optimal percentile combination to be employed
in the regional early warning system, i.e. the one providing the best
model performance in terms of success and error indicators, is
selected employing the Bevent, duration matrix, performance^
(EDuMaP) method.

Keywords Early warning system . Shallow landslide . Rainfall
threshold . EDuMaPmethod . Campania

Introduction
The literature reports several studies on early warning systems for
the prediction of rainfall-induced landslides. They can be
employed at Blocal^ or Bregional^ scale (ICG 2012; Thiebes et al.
2012; Intrieri et al. 2013; Calvello and Piciullo 2016). Local warning
systems address individual landslides (e.g. Lollino et al. 2002;
Blikra 2008; Iovine et al. 2010; Intrieri et al. 2012; Michoud et al.
2013; Thiebes et al. 2013; Manconi and Giordan 2015), while region-
al warning systems deal with populations of landslides in a region
(e.g. Alfieri et al. 2012; Capparelli and Tiranti 2010; Martelloni et al.
2012; Rossi et al. 2012; Segoni et al. 2014, 2015; Calvello et al. 2015a,
b; Rosi et al. 2012; Stähli et al. 2015).

Regional landslide early warning systems are used to assess the
probability of occurrence of rainfall-induced landslides over large
areas, typically through the prediction and monitoring of meteoro-
logical variables, in order to warn authorities, civil protection per-
sonnel and the population. They can be schematized distinguishing
among warning models and warning management strategies
(Calvello and Piciullo 2016). A regional landslide early warning
model (ReLWaM) includes a regional correlation law (ReCoL) and
a decision algorithm. A ReCoL is defined as a functional relationship
between rainfall and landslides that can lead to the definition of
rainfall thresholds for possible landslide occurrence (Guzzetti et al.
2007). A decisional algorithm contains a set of assumptions for
defining the number of warning levels and of procedures linking

rainfall thresholds to warning levels. ReCoL and warning models
refer to the technical sphere of a regional landslide early warning
system (Calvello et al. 2015b), whereas warning management con-
siders aspects oriented to the social sphere, i.e. warning dissemina-
tion, communication strategy and emergency plan. Once the
procedures to define and operate the ReLWaM are defined, a peri-
odic analysis of the performance and an update of the ReCoL (i.e. of
the rainfall thresholds, Rosi et al. 2015) are needed to improve the
performance of the system and its reliability.

The evaluation of the performance of a ReLWaM is based on
2 × 2 contingency tables computed for the joint frequency distri-
bution of observed and predicted landslides (e.g. Giannecchini
et al. 2012; Martelloni et al. 2012; Peres and Cancelliere 2014;
Staley et al. 2013; Lagomarsino et al. 2015; Greco et al. 2013;
Segoni et al. 2014; Gariano et al. 2015; Rosi et al. 2015; Stähli et al.
2015). Segoni et al. (2015), Lagomarsino et al. (2015) and Gariano
et al. (2015) have proposed similar approaches to evaluate the
reliability of rainfall thresholds for the prediction of rainfall-
induced landslides, using back analyses, contingency tables and
skill scores. However, in these cases, the model performance is
assessed neglecting some important aspects which are peculiar to
ReLWaM, among which (Calvello and Piciullo 2016) (i) the possi-
ble occurrence of multiple landslides in a warning area, (ii) the
duration of the warning, (iii) the level of the warning in relation to
the landslide spatial density in the warning area and (iv) the
relative importance that the system managers attribute to different
types of errors (e.g. false positives and false negatives). Recently,
Sättele et al. (2015, 2016) have proposed a framework for the
evaluation of the effectiveness of an early warning system for all
kinds of natural hazards. The framework starts from the assess-
ment of the technical and the inherent reliability of the system,
evaluated differently for automated and non-automated systems,
and leads to an effectiveness analysis.

The main topic covered by this paper is how to employ rainfall
thresholds into a reliable ReLWaM. To this aim, several questions
need to be answered, such as (i) which rainfall thresholds should
be used in the landslide early warning system? (ii) How the
thresholds should be selected? (iii) What is the optimal number
of warning levels? (iv) To which warning level should correspond a
rainfall threshold?

In an attempt to answer these questions, we propose a method
based on a process chain in order to realize an objective procedure
for the definition and the evaluation of a reliable threshold-based
operational early warning system. First, we adopt a consolidated
approach (Brunetti et al. 2010; Peruccacci et al. 2012; Gariano et al.
2015; Melillo et al. 2015, 2016) to define and validate empirical,
cumulated event rainfall—rainfall duration (ED) thresholds for
possible landslide occurrences. Afterwards, we propose a method
for issuing warning levels, as a result of the comparison between
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measured rainfall and established thresholds. Finally, we assess the
performance of the ReLWaM employing the event, duration ma-
trix, performance (EDuMaP) method, proposed by Calvello and
Piciullo (2016). We test the process chain into an area of 1619 km2

in the Campania region, southern Italy.

A process chain method

Warning model: from rainfall thresholds to warning levels
The technical procedures of a reliable ReLWaM necessary to define
and issue a certain warning level (WL) can be schematically
resumed into five steps (Fig. 1). Step 1 consists of defining and
validating a set of rainfall thresholds with different exceedance
probabilities (BDefinition and validation of empirical rainfall
thresholds^ section). Step 2 refers to the selection of rainfall
thresholds for the activation of increasing WLs in the ReLWaM.
The higher is the WL, the larger is the probability of landslide
occurrence. In step 3, cumulated rainfall on different time intervals
is calculated starting from rainfall measurements and compared
with the rainfall thresholds associated to pre-identified WLs, to
issue the appropriate WL, in step 4. Finally, in step 5, an evaluation
of the ReLWaM performance (BPerformance evaluation of the
warning model^ section) in order to increase the reliability of
the model through a periodical update of the WLs is strictly
necessary.

Figure 2 shows a hypothetical application of the procedure for
issuing a WL. Hyetographs in the figure show the measured hourly

Fig. 1 Steps of the procedure proposed to define and to issue warning levels
within a regional early warning model for rainfall-induced landslides

Fig. 2 Example of the algorithm adopted to determine warning levels (WLs) using
rainfall thresholds. a Cumulated rainfall (blue bars) for the antecedent period of 6
h before the evaluation time t = 0 and related WL (blue dot in the inset graph). b
Cumulated rainfall (blue bars) for the antecedent periods of 6 and 12 h before the
evaluation time t = 0 and related WL (blue dots in the inset graph). c Cumulated
rainfall (blue bars) for the antecedent periods of 6, 12, 24, 36 and 48 h before the
evaluation time t = 0 and related WL (blue dots in the inset graph). d Maximum
warning level in c for the period ti − ti + 6 h. e Cumulated rainfall (blue bars) for
the antecedent periods of 6, 12, 24, 36 and 48 h before the new evaluation time t = 0,
6 h later and related WL (blue dots in the inset graph). fMaximum warning level in e
for the period ti + 6 h − ti + 12 h
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rainfall, while inset graphs display three ED thresholds (black
lines) that identify four increasing WLs. The areas in green, yellow,
orange and red represent the combinations of cumulated rainfall,
E, and duration, D, which belong to each WL. Starting from the
time t = 0 (starting evaluation time), the cumulated rainfall E is
calculated for fixed antecedent intervals: 6 (Fig. 2a), 12 (Fig. 2b), 24,
36 and 48 h (Fig. 2c). The resulting E,D condition of each anteced-
ent interval (blue dot) belongs to a certain WL area in the inset
graph. The maximum WL reached is emitted in the next 6 h (e.g.
orange in Fig. 2d). The procedure is repeated after 6 h, with a new
reference time t = 0 (Fig. 2e). Again, the highest WL resulting from
the antecedent rainfall conditions is issued for the following 6 h
(e.g. red in Fig. 2f). The procedure applied herein is based, as
shown in Fig. 2d–f, on 6-h-long steps, thus allowing an evaluation
of the landslide WL four times per day.

Definition and validation of empirical rainfall thresholds
Empirical rainfall thresholds for possible landslide occurrence are
defined through statistical analyses of past rainfall events that have
resulted in landslides in a given study area. To obtain reliable
thresholds, a large number of landslides for which the location
and the time (or period) of the failure are known and sufficiently
accurate information on the rainfall responsible for landslide are
needed. The geographical location and the occurrence time of the
failure are usually affected by uncertainty. Thus, a class of geo-
graphical and of temporal accuracy is assigned to each landslide.
Adopting a consolidated approach, three classes of geographic
accuracy, G, are adopted, where the accuracy depends on the type
and quality of the available information (Gariano et al. 2012). The
first class (G1) is attributed to landslides mapped with a geographic
accuracy of 1 km2 or less. The second (G10) and the third (G100)
classes are attributed to landslides that are located with an accu-
racy of less than 10 km2 and less than 100 km2, respectively.
Moreover, three classes of temporal accuracy, T, are defined. The
first class (T1) includes landslides for which the exact time of
occurrence is known. The second and the third classes include
landslides for which the part of the day (T2) or the day of occur-
rence (T3) was inferred, respectively.

To reconstruct the rainfall conditions responsible for land-
slides, the procedure proposed by Melillo et al. (2015, 2016) is
applied to hourly rainfall measurements. First, starting from a
rainfall record and considering a minimum dry period (i.e. a
period without rainfall or with a negligible amount of rainfall)
between two consecutive rainfall periods, all the rainfall events are
singled out. A minimum dry period of 96 h to distinguish the
rainfall events in the wet season (from November to March) and of
48 h to separate the rainfall events in the dry season (from April to
October) is considered. The rainfall conditions responsible for
each landslide are automatically calculated using rainfall record
from a representative rain gauge located in a buffer of 12 km from
the landslide location. Criteria to select the rain gauge include
proximity, the elevation difference between the rain gauge and
the landslide and the local morphological setting. The procedure
calculates single or multiple rainfall conditions responsible for
each landslide listed in the catalogue (Melillo et al. 2016).

To determine empirical rainfall thresholds, the frequentist
method proposed by Brunetti et al. (2010) and modified by
Peruccacci et al. (2012) is applied to all the reconstructed rainfall
conditions responsible for the landslides. In this approach, the

threshold curve is a power law equation linking the cumulated
event rainfall E (in mm) to the rainfall duration D (in h),

E ¼ α� Δαð Þ⋅D γ�Δγð Þ ð1Þ

whereα is a scaling constant (the intercept), γ is the shape parameter
(defining the slope of the power law curve), and Δα and Δγ are the
uncertainties of α and γ calculated using a Bbootstrap^ non-
parametric statistical technique. The uncertainties associated with
the thresholds depend on the number and on the distribution of the
empirical data points and decrease as the number of the empirical
data increase in the dataset (Vennari et al. 2014).

To validate the thresholds, the method proposed by Gariano et al.
(2015) that exploits a contingency table (Wilks 1995), a receiver oper-
ating characteristic (ROC) analysis (Fawcett 2006) and the related skill
scores is adopted. In the contingency table, a Btrue positive^ (TP) is an
empirical (D,E) pair located above the threshold that has resulted in
(at least) one landslide, and a Btrue negative^ (TN) is an empirical
(D,E) point below the threshold that has not resulted in known
landslides. BFalse positives^ (FP) occur when the (D,E) rainfall con-
ditions exceeded the threshold and landslides did not occur (or where
not reported). A Bfalse negative^ (FN) occurs when the (D,E) rainfall
conditions were below the threshold and landslides occurred. The
four contingencies are affected by biases caused by the lack of infor-
mation on rainfall and/or landslide data (Gariano et al. 2015). Using
the total number of TP, TN, FP and FN, four skill scores are calculated,
namely (i) the probability of detection score, POD ¼ TP

TPþFN, (ii) the

probability of false detection score, POFD ¼ FP
FPþTN, (iii) the probabil-

ity of false alarm score, POFA ¼ FP
TPþFP, and the Hanssen and Kuipers

(1965) skill score, HK ¼ TP
TPþFN−

FP
FPþTN ¼ POD−POFD. The ROC anal-

ysis is usually performed constructing a ROC plot that shows the
probability of detection (POD) against the probability of false detec-
tion (POFD). In the ROC plane, the ROC curve is obtained varying
the exceedance probability of the rainfall threshold, and each
point represents the prediction capability of the single threshold.
For each rainfall threshold, the Euclidean distance δ between the
point representing the threshold on the ROC curve and the upper
left corner of the ROC plot—known as Bperfect classification^
(neither FN nor FP)—is calculated. The shorter the distance δ, the
more suitable is the threshold and, consequently, the model
prediction skill.

To establish the optimal, Bbest-performing^ threshold that
maximizes and/or minimizes the skill scores, the index Λ is de-
fined as a linear combination of HK, POFA and δ:

Λ ¼ λ1⋅HK−λ2⋅POFA−λ3⋅δ ð2Þ

where λ 1 , λ2 and λ3 are positive scalar coefficients
representing the weights of the individual skill scores and
λ1 + λ2 + λ3 = 1. The combination of the skill scores that
maximizes Λ represents the optimal compromise between the
minimization of incorrect landslide predictions and the max-
imization of the correct predictions.

Performance evaluation of the warning model
To evaluate the performance of the ReLWaM adopted within a
regional landslide early warning system, the Bevent, duration ma-
trix, performance^ (EDuMaP) method proposed by Calvello and
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Piciullo (2016) is applied. EDuMaP comprises the following three
successive steps:

& The analysis of the landslide (LE) and warning (WE) events

& The definition and computation of a Bduration matrix^ that
lists the time intervals associated with the occurrence of land-
slide events in relation to the emission of warning events

& The evaluation of the performance of the early warning model
using an established set of performance indicators

In the first step, the values of the following ten input parame-
ters need to be specified:

1. Number of WL used by the model
2. Thresholds used to differentiate among the k classes of LE on

the basis of their spatial characteristics, Lden(k)
3. Value of the time interval between the sending out of the first

WL identified within a WE and the assumed beginning of the
WE, tLEAD

4. Type of landslides addressed by the warning model, Ltyp
5. Time quantifying the maximum temporal gap among land-

slides included within a single LE, ΔtLE
6. Time interval between the last landslide identified within a

LE and the assumed ending of the LE, tOVER
7. Area of analysis for which both landslides and warnings data

are available, A
8. Subdivision of the area of analysis inm classes on the basis of

the spatial criteria adopted to issue the warnings, ΔA
9. Temporal length of the databases for which both landslides

and warnings data are available, ΔT
10. Minimum unit of time used to identify LE and WE, Δt (see

also Appendix).

The assessment of the model performance requires the prelim-
inary identification of the LE and WE from analyses carried out on
the landslide and warning databases. A LE is retrieved from the
landslide database according to data, classification, spatial and
temporal characteristics of the landslide records. In particular, a
LE is obtained by grouping the collected landslides as a function of
the following (Calvello and Piciullo 2016): the landslide types
(Ltyp), the minimum interval between successive landslide events
(ΔtLE), the temporal discretization of the analysis (Δt) and the
over time (tOVER) (Appendix). A WE is defined as a set of WLs
issued within a given warning zone (ΔA), grouped considering
their temporal characteristics (Δt).

Concerning the second step, the number of rows and columns
in the duration matrix is equal to the number of classes and levels
defined for the LE and the WE, respectively. Figure 3 portrays a
4 × 4 duration matrix related to four levels of WE (no warning,
WL0; moderate warning, WL1; high warning, WL2; very high warn-
ing, WL3) and four classes of LE (no landslides, no; few landslides,
small event, S; several landslides, intermediate event, I; many
landslides, large event, L). Each element dij of the duration matrix
is computed, within the time frame of the analysis ΔT, as follows:

dij ¼
X

ΔT

tij
� � ð3Þ

where i identifies the WE level, j identifies the LE class, and tij is the
time during which a WE of level i is concurrent with a LE of class j.

In the final step, two performance criteria (Fig. 4) are applied to
assign a meaning to the elements of the duration matrix and to
carry out the performance analysis. The Balert classification^ cri-
terion (Fig. 4a) employs an alert classification scheme derived

Fig. 3 Structure of the duration matrix with four levels of WE (key: no, no warning;
M, moderate warning; H, high warning; VH, very high warning) and four classes of
LE (key: no, no landslides; few landslides, small event, S; several landslides,
intermediate event, I; many landslides, large event, L). Modified from Calvello and
Piciullo (2016)

Fig. 4 Alert classification (a) and grade of accuracy (b) performance criteria used
for the analysis of the duration matrix with four classes of WE (key: no, no warning;
M, moderate warning; H, high warning; VH, very high warning) and four classes of
LE (key: no, no landslides; few landslides, small event, S; several landslides,
intermediate event, I; many landslides, large event, L). Modified from Calvello and
Piciullo (2016)
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from a standard contingency table, and it identifies correct pre-
dictions (CP), false alerts (FAs), missed alerts (MAs) and true
negatives (TNs). The issuing of the two highest levels of warning
(WL2 and WL3) concurrently with the occurrence of the greatest
classes of LE (I and L) is assumed as CP of the ReLWaM. It is the
same for the issuing of the two lowest levels of warning (WL0 and
WL1) and the simultaneous occurrence of the smallest classes of
LE (no and S). FA and MA are incorrect predictions of the system,
and TN represents the absence of both warning and landslide
occurrences. The Bgrade of accuracy^ criterion (Fig. 4b) assigns a
colour code to the components of the duration matrix in relation
to the agreement between a given WE and a given LE. For instance,
if the maximum WL is issued (i.e. WL3) and only few landslides
occur (i.e. the LE class is S), this should be considered a significant
error of the warning model. Using this criterion, the elements are
classified in four colour-coded classes, as follows: green (Gre) for
the elements which are assumed to be representative of the best
model response, yellow (Yel) for elements representative of minor
model errors, red (Red) for elements representative of a significant
model error and purple (Pur) for elements representative of a
severe model error. Starting from the two performance criteria,
several performance indicators can be derived (Calvello and
Piciullo 2016). Table 1 lists the indicators considered in this work.

Case study

Landslide early warning system in Campania
The Campania region extends for 13,671 km2 in southern Italy.
The southern Apennines mountain range dominates the orog-
raphy, exceeding 2000 m of elevation. A hilly landscape char-
acterizes the eastern side of the region, whereas large plains
separating isolated limestone and volcanic reliefs are present in
the western part of the region. In the region, the mean annual
rainfall ranges from 1000 to 2000 mm (Longobardi et al. 2016).
Due to the rugged orography, severe storms are frequent in the
region and result in abundant flash floods, debris flows and
shallow landslides (Cascini et al. 2008; Vennari et al. 2016, and
references therein) that cause casualties and serious damage to
urban areas and infrastructures. In the 50-year period 1950–
2014, 286 persons were killed or went missing, 406 were in-
jured, and more than 23,000 people were evacuated due to
landslides in the region (http://polaris.irpi.cnr.it).

In Campania, a regional landslide early warning system exists
as a part of the regional warning system developed and managed
by the regional civil protection agency to deal with Bhydraulic and
geo-hydrological risks^ (DPGR 299/2005). The system includes
two phases: wheatear forecast and environmental monitoring.
The first phase consists in issuing warnings based on numerical
rainfall forecasts. For the purpose, the Campania region is
subdivided into eight alert zones (AZ, Fig. 5) for weather forecast
and early warning purposes, according to homogeneity criteria,
which consider the following factors: hydrography, morphology,
rainfall, geology, land use and hydraulic and hydrogeological and
administrative boundaries. The monitoring phase includes (i) the
evaluation of meteorological and hydrological events and (ii) the
hydrological and weather forecast at steps of 6 h, through now-
casting techniques and rainfall-runoff modelling using real-time
parameters. The rainfall monitoring network encompasses 154 rain
gauges and a meteorological radar.

The test area
Our test area is the Camp-3 AZ (marked with number 3 in Fig. 5),
extending for 1619 km2 and encompassing 109 municipalities, 58 rain
gauges. It includes the Lattarimountains, the Pizzo d’Alvanomassif and
the Picentini mountains (Fig. 5). Due to the presence of pyroclastic soil
deposits mantling the carbonatic bedrock, the area is highly susceptible
to rainfall-induced shallow landslides and debris flows (Calcaterra et al.
2003; Di Crescenzo and Santo 2005; Cascini et al. 2008; Terranova et al.
2015; Napolitano et al. 2015). Indeed, it suffered some of the most
catastrophic rainfall-induced landslide events in Europe. The most
damaging events occurred on 25 October 1954 and caused, in the area
of the Sorrentino-Amalfitana peninsula, 482 casualties, including 318
deaths and more than 12,000 evacuees (http://polaris.irpi.cnr.it). The
most recent catastrophic event is dated 4–5 May 1998. In those days,
more than 100 slope failures occurred over the slopes of the Pizzo
d’Alvano massif and about 2 million m3 of material was mobilized,
causing 159 deaths, more than 6400 evacuees and€500million damage
to buildings and infrastructure (Cascini 2004).

Catalogue of landslides
A catalogue of 305 rainfall-induced shallow landslides was
compiled between January 2003 and December 2013 (11-year
period) for the Campania region. Information on landslide
occurrences was gathered from newspapers, internet and

Table 1 Performance indicators used for the analysis

Performance indicator Symbol Formula Criterion Range Best value

Efficiency index Ieff (CP)/ Σijdij (excluding d11) a [0, 1] 1

Hit rate HRL CP/(CP + MA) a [0, 1] 1

Predictive power PPW CP/(CP + FA) a [0, 1] 1

Odds ratio OR (CP)/(MA + FA) a [0, +∞[ 1

Missed alert rate RMA MA/(CP + MA) a [0, 1] 0

False alert rate RFA FA/(CP + FA) a [0, 1] 0

Error rate ER (Red + Pur)/ Σijdij (excluding d11) b [0, 1] 0

Probability of serious mistakes PSM Pur/Σijdij (excluding d11) b [0, 1] 0

Criteria a and b refer to Fig. 4. Modified from Calvello and Piciullo (2016)
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technical reports provided by local Fire Brigades and Civil
Protection agency. The authors are aware that additional
landslides may have occurred in the area in the analyzed time
frame, although they may have not been reported; thus, they
are not included in the catalogue, due to lack of information.

Regarding the Camp-3 alert zone, 140 rainfall-induced land-
slides were collected in the period from 2003 to 2013. The
landslides archived in the catalogue occurred almost exclu-
sively from September to March (129 out of 140) and were
most abundant in January (32 landslides). The years with
greatest number of recorded landslides (25) were 2009 and
2010. More than half of the landslides in the area (82 out of
140, 59 %) were localized with a high geographic accuracy
(G1), 53 failures (38 %) with a medium accuracy (G10) and
only 5 landslides (3 %) with a low accuracy (G100). The exact
time of occurrence (T1) is known for 86 landslides (61 % of
the total); on the contrary, it was inferred (T2) for 32 land-
slides (23 %). For the remaining 22 landslides (16 %) in the
catalogue, only the day of occurrence is known (T3).
Information on the landslide type is not available for about
half of the documented failures in the catalogue (67 out of
140). The remaining landslides were classified as rock falls
(38), earth flows (12), debris flows (13) and mudflows (10)
(sensu Hungr et al. 2014). The catalogue of 140 rainfall-
induced landslides occurred in the Camp-3 AZ was divided
into two subsets: (i) a calibration set, listing 96 landslides
occurred between January 2003 and December 2010, used to
define the rainfall thresholds, and (ii) a validation set, listing
44 landslides occurred between January 2011 and December
2013, used to validate the thresholds.

Results and discussion

Rainfall thresholds
Adopting the procedure presented in BDefinition and validation of
empirical rainfall thresholds^ section and using information on 96
landslides occurred in the Camp-3 AZ between January 2003 and
December 2010 (calibration set) and rainfall data recorded by 58
rain gauges, empirical rainfall thresholds for several exceedance
probabilities (percentiles) were determined. Following Melillo
et al. (2015, 2016), 201 multiple (D,E) rainfall combinations respon-
sible for the 96 documented landslides were reconstructed.
Figure 6 shows, in log-log coordinates, the 201 multiple combina-
tions (blue points, calibration set) and the related rainfall thresh-
olds at 1 % (T1,AZ3) and 5 % (T5,AZ3) exceedance probability levels.
Multiple combinations associated to the landslides cover the range
of duration 1 ≤ D ≤ 650 h, which is the range of validity for the
threshold, and the range of cumulated rainfall 5.6 ≤ E ≤ 249.5 mm.
Threshold parameters α, γ, Δα and Δγ (Eq. 1) for different
exceedance probabilities (from 1 to 90 %) are reported in
Table 2. The table lists also the parameters for the thresholds at
5 % exceedance probability level (T5,Cam, α = 10.1, γ = 0.25,
Δα = 1.1, Δγ = 0.02) calculated using the dataset for the whole
Campania region: 627 multiple conditions responsible for 305
landslides in the period 2003–2013. This threshold is reported in
order to make a comparison with thresholds defined for other
regions in southern Italy for similar periods (Calabria, Vennari
et al. 2014; Sicily, Gariano et al. 2015). In particular, the T5,Cam is
very similar to the one defined for Sicily for the period 2002–2011,
whose parameters are α = 10.4, γ = 0.27, Δα = 1.4 and Δγ = 0.03.
On the other hand, T5,Cam is steeper (i.e. is characterized by a lower

Fig. 5 Map of the Camp-3 alert zone (Sorrentino-Amalfitana peninsula, Pizzo d’Alvano massif, Picentini mountains) showing shaded relief, classes of altitude (m
a.s.l.), 58 rain gauges used in this study (blue triangles) and 140 rainfall-induced landslides (red circles). The main toponyms are also indicated. The insets show the
location of Campania region in Italy and the subdivision of the region into eight alert zones for civil protection purposes
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value of the γ parameter) than the threshold defined for Calabria
for the period 1996–2011, whose parameters are α = 8.6, γ = 0.41,
Δα = 1.1 and Δγ = 0.03.

The thresholds defined for the Camp-3 AZwere validated using 43
triggering rainfall conditions (red points in Fig. 7, validation set)
responsible for 44 landslides occurred in the analyzed alert zone
between January 2011 and December 2013. Two landslides were
associated to the same rainfall condition. For validation purposes,
only one rainfall condition is associated with each landslide for the
calculation of the values in the contingency table, as made by
Gariano et al. (2015). The 43 rainfall conditions are in the range of
duration 2 ≤ D ≤ 274 h and in the range of cumulated rainfall

17.4 ≤ E ≤ 142.6 mm. In addition, 3995 rainfall events were recon-
structed in the same period (green points in Fig. 7). These rainfall
events are in the ranges of 1 ≤ D ≤ 274 h and 1.2 ≤ E ≤ 190.2 mm.

Table 3 summarizes the four contingencies (TP, FP, FN, TN) and
the four skill scores (TPR, FPR, FAR, HK) for ten thresholds, at
different exceedance probabilities or percentiles (from 1 to 90 %).
The largest values for the HK, δ and Λ indices were obtained by

Table 2 Parameters α and γ of ED thresholds at the 5 % exceedance probability level and related uncertainties Δα and Δγ determined using different subsets of data

Label Percentile
(%)

Area Period Number of
landslides

Number of
multiple
conditions

Threshold parameters
α Δα γ Δγ

T5,Cam 5 Campania
region

2003–2013 305 627 10.1 1.1 0.25 0.02

T1,AZ3 1 Camp-3 AZ 2003–2010 96 201 8.9 2.2 0.26 0.04

T3,AZ3 3 11.2 2.5 0.26 0.04

T5,AZ3 5 12.6 2.7 0.26 0.04

T10,AZ3 10 15.2 3.1 0.26 0.04

T20,AZ3 20 19.0 3.5 0.26 0.04

T35,AZ3 35 24.1 4.1 0.26 0.04

T50,AZ3 50 29.4 4.7 0.26 0.04

T65,AZ3 65 37.4 4.1 0.26 0.04

T80,AZ3 80 39.7 3.5 0.26 0.04

T90,AZ3 90 43.5 3.1 0.26 0.04

T5,AZ3,03-11 5 Camp-3 AZ 2003–2011 106 217 11.8 2.4 0.27 0.04

T5,AZ3,03-12 5 2003–2012 123 255 11.5 2.1 0.26 0.04

T5,AZ3,03-13 5 2003–2013 140 297 11.9 2.0 0.25 0.03

Fig. 7 Rainfall duration vs. cumulated event rainfall conditions in Camp-3 AZ in
the period 2011–2013, compared with thresholds (blue solid lines) at 1, 5, 10,
20 and 50 % exceedance probability levels (indicated by the numbers in the
labels), determined using the calibration set. Red points are 43 ED rainfall
conditions associated with the triggering of shallow landslides in the validation
period. Green points are 3995 rainfall events for which information on triggered
landslides is not available. Gray points are 159 rainfall events with duration
exceeding the range of validity of the thresholds (D > 650 h). Data are in log-log
coordinates

Fig. 6 Multiple ED rainfall conditions (multiple combinations) responsible for 96
landslides in the Camp-3 AZ and related rainfall thresholds at 1 % (T1,AZ3) and 5 %
(T5,AZ3) exceedance probability levels. Shaded areas portray uncertainty associ-
ated with the threshold curves. Data are in log-log coordinates
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T10,AZ3 that can be considered the optimal threshold, representing
the best compromise between the minimum number of incorrect
landslide predictions (FP, FN) and the maximum number of cor-
rect predictions (TP, TN).

From rainfall thresholds to warning levels
The method proposed in BWarning model: from rainfall thresholds
to warning levels^ section was applied to the case study of Camp-3
AZ for the period 2003–2013. Nine combinations, P, of thresholds at
different exceedance probabilities (i.e. threshold percentiles, Table 3)
were considered for the issuing of the WLs, as reported in Fig. 8. The
first warning level (WL0) can be defined by ED conditions not
exceeding the lowest threshold in the combination. Then, ED condi-
tions included between the first and the second thresholds activate
the second warning level (WL1). Consequently, ED conditions, ex-
ceeding the second threshold and remaining below the third one,
activate the WL2. Finally, ED conditions exceeding the third thresh-
old determine the issuing of the highest warning level (WL3).

Starting from the 1 January 2003, at 00:00, considering steps of
6 h, the antecedent rainfall conditions at time intervals of 6, 12, 24,
36 and 48 h, for each rain gauge of the Camp-3 AZ, were evaluated.
The values obtained were compared with the percentile combina-
tions associated with the four WLs. The highest WL threshold
exceeded in at least one rain gauge defined the WL to be issued
for the following 6-h period to the entire Camp-3 AZ. The proce-
dure was employed at 6-h steps for the whole period of the
analysis, obtaining nine different sets of warnings, each set related
to each combination of percentiles considered.

Table 4 lists the hours of activations per WL for each combina-
tion of percentiles (P) in the period 2003–2013. As expected, the
higher the percentile employed for a single WL, the lower the
number of hours of alert (defined as the hours of WL1, WL2 and
WL3). Evidently, raising the percentile associated to WLi, with
i ≠ 0, and keeping the others unchanged, a decrease of hours for
WLi and an increase of WLi − 1 are obtained.

Landslide and warning event analysis
As described in BPerformance evaluation of the warning model^
section, the definition of a set of ten parameters is necessary to carry
on the first step of the EDuMaP method, i.e. the event analysis. The
parameters used to define and characterize the LE were kept

constant for all the considered percentile combinations. The record-
ed landslides were grouped into LE considering all rainfall-induced
landslide, a minimum interval between successive landslide events
ΔtLE = 24 h, a temporal discretization for the analysisΔt= 1 h and no
over time (tOVER = 0). Taking into account these parameters, 89
landslide events were defined in the Camp-3 AZ (parameter A and
ΔA) in the period 2003–2010 (parameter ΔT), derived by the 140
landslides collected in the catalogue. Table 5 lists the number of
reconstructed LE per number of landslides. Most of the LEs (62)
report only one landslide (i.e. preceded and followed by 24 h without
landslides). The highest number of landslides composing a LE is
seven. LEs were grouped into four classes, based on the number of
landslides belonging to each event (Lden). LEs with up to two land-
slides were classified as small events (S). LEs with a number of
landslides between 3 and 9 were classified as intermediate events
(I), and LEs having more than nine landslides were considered large
events (L). In the considered period, 75 LEs were classified as small
and 14 LEs as intermediate, and no LE was classified as large
(Table 6). Regarding the WE, nine different datasets were obtained
from the nine combinations of the percentiles (Table 4), which
produced a different duration matrix and, consequently, different
values of performance indicators. For all the combinations, the lead
time (tLEAD = 0) was always set to zero.

Table 3 Contingencies (TP, FP, FN, TN) and skill scores (POD, POFD, POFA, HK, δ, Λ) calculated for thresholds at different exceedance probabilities

Label Percentile
(%)

TP FN FP TN POD POFD POFA HK δ Λ

T1,ZA3 1 42 1 1695 2300 0.98 0.42 0.98 0.55 0.42 −0.28

T3,ZA3 3 41 2 1329 2666 0.95 0.33 0.97 0.62 0.34 −0.23

T5,ZA3 5 39 4 1141 2854 0.91 0.29 0.97 0.62 0.30 −0.21

T10,ZA3 10 37 6 870 3125 0.86 0.22 0.96 0.64 0.26 −0.19

T20,ZA3 20 30 13 562 3433 0.70 0.14 0.95 0.56 0.33 −0.24

T35,ZA3 35 20 23 351 3644 0.47 0.09 0.95 0.38 0.54 −0.37

T50,ZA3 50 14 29 186 3809 0.33 0.05 0.93 0.28 0.68 −0.44

T65,ZA3 65 4 39 100 3895 0.09 0.03 0.95 0.07 0.91 −0.59

T80,ZA3 80 3 40 42 3953 0.07 0.01 0.93 0.06 0.93 −0.60

T90,ZA3 90 1 42 21 3974 0.02 0.01 0.95 0.02 0.98 −0.63

Best scores are shown in italics

Fig. 8 Extents of the four warning levels (WL0, WL1, WL2, WL3) for the nine
combinations of threshold percentiles (P)
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Performance evaluation with EDuMaP
In order to define the optimal percentile combination to be
employed as WL in a reliable ReLWaM, i.e. the combination that
provides the best ReLWaM performance, the EDuMaP method was
applied (Piciullo et al. 2016) as last step of the process chain
proposed (Step 5 of Fig. 1).

Table 7 and Fig. 9 show the results obtained for the nine percentile
combinations considering the element of the durationmatrix in terms
of alert classification (Fig. 4a) and grade of accuracy (Fig. 4b) criteria.
The two pairs of percentile combinations P3,10,50-P1,10,50 and P3,35,50-
P1,35,50 differ for the percentile used as threshold for WL1. In terms of
hours (Table 7), this affects CP and TN (alert classification criterion)
and Yel and Gre (grade of accuracy criterion), due to the way that the
elements of the duration matrix were defined for each criteria. Higher
values of CP and Yel were obtained for lower percentiles considered as
WL1 (e.g. comparing P3,10,50 to P1,10,50 and P3,35,50 to P1,35,50, Table 7,
Fig. 9). This behaviour is due to a relocation of tij durations (see Eq. 3)
from the first to the second row of the matrix. The combinations
P1,10,50-P1,35,50, P3,10,50-P3,35,50 and P1,50,90-P1,65,90-P1,80,90 have different
thresholds for WL2 (Fig. 8). An increase of the threshold considered
as WL2 resulted, in terms of hours, in a reduction of FA and Red, an
increase of CP and Yel and a slight variation of MA and Gre (Table 7,
Fig. 9). The combinations P1,50,65-P1,50,90 and P1,65,80-P1,65,90 differ for
the percentile considered as WL3 (Fig. 8). An increase of WL3 thresh-
old implied a slight variation in terms of hours for CP, FA, Gre and Yel.
On the contrary, a substantial difference, of one order of magnitude, is

obtained for Red and Pur errors, with a reduction of the number of
hours for severe model errors.

The evaluation of performance indicators was conducted
neglecting the element d11 of the duration matrix that represents
the number of hours without either landslides or warnings.
Typically, the value of this element is orders of magnitude higher
than the other elements of the matrix because it also includes all
the hours without rainfall, for which a ReLWaM is not designed to
deal with, specifically. Thus, d11 element is neglected in our analysis
in order to avoid an overestimation of the performance. Table 8
and Figs. 10 and 11 show the results in terms of performance
indicators for the nine different percentile combinations. Success
(Fig. 10) and error (Fig. 11) performance indicators are plotted
separately. Concerning the success indicators and, in particular,
the efficiency index (Ieff), raising the percentile of WL2, a general
increase is observed, as it is evident comparing P3,10,50-P3,35,50,
P1,10,50-P1,35,50 and P1,50,90-P1,65,90-P1,80,90 (Fig. 8). In particular, a
25 % increment in the percentile related to the activation of the
second WL, passing from P3,10,50 to P3,35,50 or from P1,10,50 to P1,35,50,
corresponds to about 35 % of increase of Ieff. Raising the percentile
of 15 %, from P1,50,90 to P1,65,90 and from P1,65,90 to P1,80,90, the Ieff
shows an increment of about 5 % (Table 8, Fig. 10). The percentile
of WL3 does not influence the Ieff (i.e. P1,50,65-P1,50,90 and P1,65,80-
P1,65,90) because CP and FA are subjected to a very small variation
and the MA value is orders of magnitude lower than the first.
Regarding WL1, if its percentile is reduced, a positive effect can be
observed on the Ieff, because CP increases.

The hit rate (HRL) is very high for all the percentile combinations
(Fig. 10), slightly lower than 100 % (Table 8), due to a minor number

Table 4 Number of hours (and related percentages) of activation for the four warning levels per each combination of threshold percentiles

P WL0 WL1 WL2 WL3
h % h % h % h %

P3,10,50 69,883 68.3 5802 6.0 13,104 13.6 7596 7.9

P1,10,50 65,851 68.3 9834 10.2 13,104 13.6 7596 7.9

P3,35,50 69,883 72.5 15,390 16.0 3516 3.6 7596 7.9

P1,35,50 65,851 68.3 19,422 20.2 3516 3.6 7596 7.9

P1,50,65 65,851 68.3 22,938 23.8 2334 2.4 5262 5.5

P1,50,90 65,851 68.3 22,938 23.8 4878 5.1 2718 2.8

P1,65,80 65,851 68.3 25,272 26.2 1512 1.6 3750 3.9

P1,65,90 65,851 68.3 25,272 26.2 2544 2.6 2718 2.8

P1,80,90 65,851 68.3 26,784 27.8 1032 1.1 2718 2.8

Table 5 Number of landslide events (LEs) as a function of the number of landslides

Number of landslide events Number of landslides

62 1

13 2

9 3

2 4

2 5

1 7

Table 6 Number of landslide events (LEs) pertaining to the four classes

LE class Number of landslides Number of LE

No 0 –

Small [1, 2] 75

Intermediate [3, 9] 14

Large >9 0
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of hours of MA compared to those of CP (Table 7). The positive
predictive power (PPw) shows variations similar to the Ieff, because
they just differ in the calculation for the MA, which, in this case, are
very low compared to the other elements of the duration matrix
(Fig. 10). The odds ratio (OR), which can be considered as a rate
between correct and predictions, increases as a function of the
reduction of FA and MA and the increment of CP (Fig. 11).

Among the error indicators, the missed alert rate (RMA)
and the false alert rate (RFA) are dependent, respectively, by
the hours of MA and FA. The first is very low, probably also
dependent by the low number of LE of class intermediate and
large. The FA substantially decreases, in terms of hours, as the
percentiles increase (Table 8, Fig. 11). The error rate (ER) and
the probability of serious mistakes (PSM) are evaluated exclud-
ing the element d11 in order to exclusively evaluate the errors
due to the functioning of the system, avoiding underestima-
tion. For this case study, these indicators are principally
dependent by the value assumed by FA, which show high
value of Red and Pur errors for low percentile combinations
of WL2 and WL3 (Figs. 9 and 11). It is important to point out
that, for our case study, in the period of analysis, d4,1 is the
only contribution to Pur errors, because components d1,4 and
d2,4 are null for all the nine percentile combinations (Table 7)
since they are not LE classified as large.

Among the nine combinations of percentiles, P1,80,90 provides
the best results in terms of both success and error performance
indicators (Table 8). However, the performance analysis was con-
ducted with a database of landslides of an 11-year period, during
which no large LE and few intermediate LE occurred. Thus, the
performance analysis was oriented, basically, on defining the per-
centile combinations with both low FA and high CP. The aim is
obtained raising the percentiles for WL2 and WL3 (i.e. reducing
FA) and decreasing the percentile of WL1 (i.e. increasing CP).

Conclusions
As a general goal, this paper focuses on the definition of an opera-
tional and reliable regional landslide early warning model (ReLWaM):
Boperational^ in terms of considering all the assumptions and proce-
dures needed to technically operate a regional early warning system,
including (i) the definition of rainfall thresholds and WLs, (ii) the
evaluation of monitored rainfall, (iii) the comparison between rainfall
and thresholds and (iv) the production and issuing of warnings and
Breliable^ since it is based on an optimal definition of WL thresholds,

resulting in the best early warning performance. To deal with these
issues, a process chain in five steps, for the definition and the perfor-
mance assessment of an operational regional warning system for
rainfall-induced landslides, based on rainfall thresholds, is proposed.
Themethod defined in BA process chainmethod^ section can be used
to issue a certain level of warning at 6-h steps, by comparing the
monitored rainfall with WL thresholds. The highest threshold
exceeded defines theWL to be issued for the following 6 h in a certain
warning zone. This work does not address some important warning
management issues, e.g. risk perception, policy adopted to communi-
cate with the people at risk, evacuation procedures and monitoring
network and instruments used to issue the warnings.

As a specific target, an operational and reliable ReLWaM for
rainfall-induced landslides was conceived for the Camp-3 AZ, in
the Campania region, southern Italy, through the application of
the process chain herein proposed. Empirical rainfall thresholds at
different exceedance probabilities (percentiles) were defined ap-
plying a well-known frequentist method and validated using ROC
analysis and skill scores. The optimal threshold (i.e. the one with
exceedance probability equal to 10 %) defined with the ROC
analysis cannot employed by itself in a ReLWaM, due to the high
probability of FAs. For this reason, nine percentile combinations
were separately considered as thresholds for the activation of three
WLs. Each percentile combination resulted in a distinct WE data-
base. Finally, to define the optimal percentile combination, i.e. the

Table 7 Values in hours of the duration matrix elements in terms of Balert classification^ (criterion a, Fig. 4a) and the Bgrade of accuracy^ (criterion b, Fig. 4b) criteria

Element Criterion P3,10,50 P1,10,50 P3,35,50 P1,35,50 P1,50,65 P1,50,90 P1,65,80 P1,65,90 P1,80,90

CP a 6132 10,163 15,673 19,704 23,188 23,219 25,442 25,453 26,925

TN a 69,873 65,842 69,873 65,842 65,842 65,842 65,842 65,842 65,842

MA a 1 1 9 9 21 21 54 54 64

FA a 20,379 20,379 10,830 10,830 7334 7303 5047 5036 3554

Gre b 69,894 65,864 69,917 65,887 65,950 66,013 65,961 66,014 66,024

Yel b 6111 10,141 15,629 19,659 23,080 23,048 25,323 25,281 26,743

Red b 13,155 13,155 3614 3614 2397 4816 1625 2582 1110

Pur b 7225 7225 7225 7225 4958 2508 3476 2508 2508

Fig. 9 Percentage of CA, MA, FA and TN (criterion A) and of Pur, Red, Yel and Gre
(criterion B) obtained for the nine considered percentile combinations
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one that provides the best ReLWaM performance, the EDuMaP
method was applied. The performance analysis carried out for
different percentile combinations highlights a high influence of
percentile related to the activation of WL2 on the Ieff index. The OR
index probably represents the most effective indicator to describe
the results, as it relates CP and incorrect ones. The percentile
combination P1,80,90 resulted to be the best solution for the
ReLWaM employed in the Camp-3 AZ, because it yields good
results both in terms of success and error performance indicators
and the highest value of OR. It is worth highlighting that the
database, for the period of analysis, has a low number of interme-
diate LE and no large LE; thus, the choice of the best performance
was principally oriented on the FA reduction and CP increment.
The high number of hours of FA can be justified by the way that
the WLs are defined. In fact, a certain WL is issued if the related
threshold is exceeded in at least one rain gauge in the area of
analysis. This approach can be considered conservative, as it leads
to a high number of FA but results in fewer MA. Moreover, in the
analyses herein proposed, only the monitored rainfall was com-
pared with WL thresholds. More generally, other variables could
be considered as relevant for triggering landslides and could be

taken into account in the process of landslide forecasting and
performance analysis. The best percentile combination obtained
represents the optimal solution for the database available at the
time that the performance analysis was carried out. Therefore, a
continuous collection of data, an update of the thresholds and a
periodic performance assessment are necessary to maintain a high
reliability of the ReLWaM.

In conclusion, our work provides the following important insights:

& The definition of a set of rainfall thresholds at different ex-
ceedance probabilities (percentiles) is a fundamental issue.

& A decisional algorithm is needed for passing from rainfall
thresholds to WL to be issued in a certain warning zone.

& A percentile combination, without a performance evaluation,
is not sufficient to obtain a reliable and performative ReLWaM.

& The definition of a single threshold is not the most reliable
solution to be employed in ReLWaM;

& The performance evaluation revealed the importance of OR in
selecting the optimal combination of percentiles to be
employed as WLs in a ReLWaM.

Table 8 Performance indicators obtained for each percentile combination

Indicator Criterion P3,10,50 P1,10,50 P3,35,50 P1,35,50 P1,50,65 P1,50,90 P1,65,80 P1,65,90 P1,80,90

Ieff a 0.23 0.33 0.59 0.65 0.76 0.76 0.83 0.83 0.88

HRL a 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

PPW a 0.23 0.33 0.59 0.65 0.76 0.76 0.83 0.83 0.88

OR a 0.30 0.50 1.45 1.82 3.15 3.17 4.99 5.00 7.44

RMA a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

RFA a 0.77 0.67 0.41 0.35 0.24 0.24 0.17 0.17 0.12

ER b 0.77 0.67 0.41 0.35 0.24 0.24 0.17 0.17 0.12

PSM b 0.27 0.24 0.27 0.24 0.16 0.08 0.11 0.08 0.08

Best values are shown in italics

Fig. 10 Bar chart showing the values of success indicators for each percentile
combination. Efficiency index (Ieff), hit rate (HRL), predictive power (PPW) and
threat score (TS) values are shown as percentages (green bars). The absolute
values for the odds ratio (OR) are also reported (brown bars, on secondary vertical
axes in inverse order)

Fig. 11 Bar chart showing the percentage values of error indicators for each
percentile combination: misclassification rate (MR), missed alert rate (RMA), false
alert rate (RFA), error rate (ER) and probability of serious errors (PSM)
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& A performance evaluation is strictly connected to the availabil-
ity of a landslide catalogue and to the accuracy of the infor-
mation included in it.

Acknowledgments
This work was financially supported by the PhD programme of the
Civil Engineering Department of the University of Salerno, for LP, and
by a grant from the Italian National Department for Civil Protection,
for SLG and MM. G. Iovine and O. Terranova (CNR IRPI), and G.
Pecoraro (University of Salerno) contributed to find information on
landslide occurrences. We are grateful to the Regional Functional
Centre of Civil Protection of Campania for providing rainfall data
and to the fire brigades of Avellino, Benevento, Caserta, Napoli and
Salerno for providing information on landslide occurrences.We thank
the two anonymous reviewers for their criticisms and comments that
have helped us to improve the paper.

Appendix

Table 9 Variables and acronyms used in text

Acronym Description

A Area of analysis

AZ Alert zone

CA Correct alert

D Rainfall duration (h)

E Cumulated event rainfall (mm)

EDuMaP Event, duration matrix, performance

ER Error rate

FA False alert

FN False negative

FP False positive

G Geographic accuracy

Gre Green error

HK Hansen and Kuipers skill score

HRL Hit rate

Ieff Efficiency index

Lden(k) Landslide density criterion

LE Landslide event

Ltyp Landslide type

MA Missed alert

MR Misclassification rate

OR Odds ratio

P Percentile combination

POD Probability of detection score

POFA Probability of false alarm score

Table 9 (continued)

Acronym Description

POFD Probability of false detection score

PPW Predictive power

PSM Probability of serious mistakes

Pur Purple error

RE Rainfall event

ReCoL Regional correlation law

Red Red error

ReLWaM Regional landslide warning model

RFA False alert rate

RMA Missed alert rate

ROC Receiver operating characteristic

T Temporal accuracy

T5,Cam Rainfall threshold at 5 % exceedance
probability
for the Campania region 2003–2013

T1,AZ3 Rainfall threshold at 1 % exceedance probability
for the Camp-3 alert zone 2003–2010

T3,AZ3 Rainfall threshold at 3 % exceedance probability
for the Camp-3 alert zone 2003–2010

T5,AZ3 Rainfall threshold at 5 % exceedance probability
for the Camp-3 alert zone 2003–2010

T10,AZ3 Rainfall threshold at 10 % exceedance probability
for the Camp-3 alert zone 2003–2010

T20,AZ3 Rainfall threshold at 20 % exceedance probability
for the Camp-3 alert zone 2003–2010

T35,AZ3 Rainfall threshold at 35 % exceedance probability
for the Camp-3 alert zone 2003–2010

T50,AZ3 Rainfall threshold at 50 % exceedance probability
for the Camp-3 alert zone 2003–2010

T65,AZ3 Rainfall threshold at 65 % exceedance probability
for the Camp-3 alert zone 2003–2010

T80,AZ3 Rainfall threshold at 80 % exceedance probability
for the Camp-3 alert zone 2003–2010

T90,AZ3 Rainfall threshold at 95 % exceedance
probability for the Camp-3 alert zone
2003–2010

T5,AZ3,03–11 Rainfall threshold at 5 % exceedance
probability for the Camp-3 alert zone for
the period 2003–2011

T5,AZ3,03–12 Rainfall threshold at 5 % exceedance probability
for the Camp-3 alert zone for the period
2003–2012

T5,AZ3,03–13 Rainfall threshold at 5 % exceedance probability
for the Camp-3 alert zone for the period
2003–2013

tLEAD Lead time

tOVER Over time

TN True negative

TP True positive

TS Threat score
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