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ABSTRACT

We describe a semi-automatic procedure for the classification of satellite
imagery into landslide or no landslide categories, aimed at preparing
event landslide inventory maps. The two-steps procedure requires
knowledge of the occurrence of a landslide event, availability of a pre- and
post- event pseudo-stereo pair and a digital elevation model. The first step
consists in the evaluation of a discriminant function, applied to a
combination of well-known change detection indices tuned on landslide
spectral response. The second step is devoted to discriminant function
classification, aimed at distinguishing the only landslide class, through
an improvement of the usual ‘thresholding’ method. We devised a multi-
threshold classification, in which thresholding is applied separately
in small subsets of the scene. We show that using slope units as
topographic-aware subsets produces best classification performance
when compared to the ground truth of a landslide inventory prepared by
visual interpretation. The method proved to be superior to the use of a
single threshold and to any multi-threshold procedure based on
topography-blind subdivisions of the scene, especially in the validation
stage. We argue that the improved classification performance and limited
training requirements represent a step forward towards an automatic,
real-time landslide mapping from satellite imagery.
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1. Introduction

Landslides represent a serious hazard in many areas of the world, and particularly in tropical
regions, where storms trigger every year thousands of them. The most effective source of informa-
tion to document the landslide event extension and magnitude in a region is a landslide inventory
map. Different types of landslide inventories exist, and they are the key input to derive landslide
hazard and risk maps. Knowledge of the extent of landslide events is fundamental for risk manage-
ment, preparedness and recovery actions. Landslides also represent one of the drivers of landscape
evolution in time, whose study requires monitoring with fast and cost-efficient tools. Despite their
importance, landslide inventory maps cover a limited extension of the landslide-prone areas across
the global landmass (Guzzetti et al. 2012), and the completeness, accuracy and relevance of many
existing inventories for landslide hazard studies are difficult to establish (Marchesini et al. 2014).

Landslide inventory maps are best prepared by visual interpretation of stereoscopic aerial images
(Fiorucci et al. 2011). In the last two decades, the images captured by high-resolution (HR) and very
high-resolution (VHR) optical satellites are becoming a viable replacement of aerial photographs,
encouraging research efforts in the direction of developing semi-automatic and automatic
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classification algorithms to distinguish different land covers, including vegetation, urban areas, water
bodies and landslides.

Guzzetti et al. (2012) compiled a review of the advantages and limitations of producing different
kinds of landslide inventory maps using remote sensing data, as compared to conventional methods
based on visual interpretation of stereoscopic images. They concluded that a combination of satel-
lite, aerial and terrestrial remote sensing data represents the optimal solution for landslide detection
and mapping, facilitating the definition and systematic application of standards and increasing the
quality of derivative products of landslide maps.

Casagli et al. (2017) recently reviewed a few different technological options available for landslide
mapping from both terrestrial and spaceborne remote sensing. They concluded that spaceborne
optical and synthetic aperture radar (SAR) data have proved effective tools for post-disaster damage
assessment, landslide detection and rapid mapping, landslide activity and updating of shallow rapid-
and slow-moving landslides. Casagli et al. (2017) also stated that unmanned airborne vehicles
(UAVs) provide ultra-high-resolution data and can be used at a slope-scale in selected test sites; the
combined use of ground-based interferometric SAR, terrestrial laser scanner (TLS) and infrared
thermography (IRT) ground-based methods was applied for the surveying, monitoring and charac-
terization of different kinds of slope instabilities.

Additional works not included in the mentioned reviews investigated further steps forward to
reach full automation of the mapping process.Moosavi et al. (2014) successfully applied the Taguchi
method to find optimized parameters in object-oriented or support vector machine classification
schemes. Mondini et al. (2017) proposed an automatic method to systematically produce inventories
over selected catchments using synthetic generated (Monte Carlo) training samples. Yu and Chen
(2017) used saliency enhancement of potential landslide signatures in Landsat 8 imagery and selec-
tive search for large-scale detection.

A few other recent attempts exist exploiting SAR data as well, using classic measures of phase
changes but considering new missions (Sentinel-1) data (Barra et al. 2016), using measures of
changes of amplitude spatial auto-correlation (Mondini 2017), contouring connection methods
applied to LIDAR (Gaidzik et al. 2017), and change detection in aerial photographs and Marcov
random fields (Li et al. 2016) for landslide detection and mapping in a systematic way. Plank et al.
(2016) combined pre-event HR optical imagery and VHR PolSAR data to mitigate the systematic
lack of pre-event polarimetric SAR data.

Automatic and semi-automatic landslide mapping requires image classification methods, includ-
ing supervised and unsupervised clustering (Borghuis et al. 2007; Martha et al. 2011; Stumpf and
Kerle 2011; Keyport et al. 2018), and index thresholding (Rosin and Herv�as 2005). Supervised classi-
fication calls for a manual training process which can result tough and time-consuming. Reducing
the overall effort required to prepare an event landslide inventory map (eLIM) and the time needed
to complete the mapping procedure while increasing its level of automation, and key issues to obtain
a reliable estimate of the extent and magnitude of a landslide event and, in turn, to quickly prepare
response measures.

Event landslides usually show spectral fingerprints ascribable to a generic bare soil class (Mondini
and Chang 2014). In this work, we focus on a supervised classification method which assigns indi-
vidual pixels to user-defined classes. Existing Bayesian-based maximum likelihood (ML) approaches
typically assign each pixel to a land cover class according to some decision rules applied to discrimi-
nant functions (Richards and Jia 2006) prepared for each land cover class defined in the area. The
simplest decision rule is represented by thresholding, the procedure of defining a proper single
numerical value among the values of an image (threshold) and assigning the pixels with values above
(or below) the threshold to a particular class (Cheng et al. 2004).

The thresholding procedure, applied to the whole image, necessarily implies a compromise
among different spectral responses of the same land cover in different geometric conditions, dictated
by the combination of satellite point of view, sun position and slope orientation and inclination. We
expect that using multiple thresholds, within many sub-areas, allows to overcome this limitation,
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provided that overall geometric conditions are homogeneous within individual sub-areas. A topog-
raphy-driven partition of the study area into small subsets is represented by slope units (SUs)
(Carrara 1993; Guzzetti et al. 1999). SUs are particularly suited in the present context, since they
encompass areas with similar slope-facing direction (aspect).

In this work, we generated SU using the automatic delineation software of Alvioli et al. (2016).
Delineation of SUs can be performed emphasizing a particular morphometric quantity, thus it is
not unique. We adopted a specific landslide mapping performance index (Carrara 1993; Fiorucci
et al. 2018) to fine-tune the SU delineation, and compared the optimization procedure with the met-
ric, used in the original work of Alvioli et al. (2016), which provides optimal segmentation of the
aspect map into different spatial domains. Optimizing SU parameters with respect to aspect segmen-
tation has solid grounds for the purpose of this work, since pixels located in regions homogeneously
facing the same direction likely provide consistent spectral response in satellite imagery. As in
Alvioli et al. (2016), we worked within the open source software GRASS GIS1 (Neteler and Mitasova
2007) for all of the analyses presented in this work, if not otherwise specified.

The proposed method was tested in an area of about 1000 m2 in Myanmar, where torrential rain-
fall triggered extensive landslides in 2015, which made the news due to the occurrence of the massive
Tonzang landslide and the large number of fatalities (Brakenridge et al. 2017). Results of our semi-
automatic mapping were calibrated and validated against a landslide inventory map prepared
through photo-interpretation by expert geomorphologists.

The paper is organized as follows. Section 2 describes a test application of our procedure, includ-
ing a description of the study area, of the available data and preparation of an eLIM by expert
photo-interpretation. Section 3 describes in detail the method devised in this work for semi-
automatic landslide mapping, including the evaluation of a suitable change detection discriminant
function, slope units delineation, calibration of the classification procedure and metrics used to cali-
brate and validate the method. Many technicalities are not included in Section 3, and discussed in
the Appendix sections for the interested reader and to allow full reproducibility of the procedure.
Results are reported in Section 4 and extensively discussed in Section 5. Eventually, conclusions are
drawn in Section 6.

2. Test case

2.1. Study area

The study area corresponds to 1000 km2 in the Chin State (western Myanmar) and its location is
shown in Figure 1. Myanmar is exposed to a range of natural hazards, including floods, cyclones,
earthquakes, tsunamis, and landslides. Natural hazards in Myanmar are accompanied by high eco-
nomic costs and social consequences. The annual expected losses linked to natural hazards are
approximately US$184.8 million, equivalent to 0.9% of the country’s 2008 gross domestic product.

According to the geological map produced and compiled by the Department of Geological
Survey and Mineral Exploration of Myanmar, and obtained from the OnegeologyGlobal2 web por-
tal, a succession of sub-vertical layers of volcaniclastic materials (metasedimentary rocks) and sand-
stones of the Indo-Burman Ranges and the Central Myanmar Basin (Allen et al. 2008; Licht et al.
2013) crop out in the study area. Climate in Myanmar is tropical with three seasons: a monsoon/
rainy season (May–October), a cool season (November–February), and a hot season (March–April).
Rainfall during the monsoon season totals more than 500 cm/year in upper Myanmar and over 250
cm/year in lower Myanmar and Yangon, while Central Myanmar and Mandalay both receive about
76 cm/year.

During summer 2015, Chin State was affected by a major torrential rainfall event which triggered
thousands of landslides. Torrential rain started on 16 July 2015, saturating the soil. On 30 July,
cyclone Komen caused landslides in Bangladesh, due to strong winds and additional torrential rain-
fall in Chin and Rakhine States and Sagaing, Magway, and Bago Regions. In July and August 2015,
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widespread floods and landslides affecting 12 out of 14 states in Myanmar caused 132 fatalities and
left 1,676,086 displaced people (Mondini 2017).

2.2. Available data and pre-processing

We obtained two pre- and two post-event RapidEye satellite images with 5 m resolution, in the
framework of the Commons ESA project.3Images were available with a 3A processing level, aligned
to an UTM/WGS84 map projection, which includes imagery orthorectification with a rigorous cam-
era model and ground control points. The Global Reference 2.0 ground control data set used for the
orthorectification allows for the production of orthorectified imagery with positional accuracy under
10 m root mean square error (RMSE) on a global scale.4 We verified the quality of the relative co-
registration among pre- and post-event images using 20 homologous points and we measured a
RMSE of about 7 meters. We corrected for atmospheric effects using the Fast Line-of-sight Atmo-
spheric Analysis of Hypercubes (FLAASH®) model available in ENVI®, which returns atmospheri-
cally corrected reflectance images.5

We used a portion of DEM with 1 arc second resolution from the ASTER6 initiative, for slope
units delineation and landslide inventory map preparation. Both operations need only be performed
once in a given study area. Using a high-resolution DEM for slope unit delineation does not neces-
sarily produce better results, especially from slope unit-derived quantities, as investigated by

Figure 1. Geographical location of the Chin State, Western Myanmar. The yellow box shows the bounding box our study area,
covering N23.874 –23.431 and E93.7 –93.948 (EPSG:4032).
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Schl€ogel et al. (2018). All the remaining analyses presented in this paper were performed, and output
map were produced, at 5 m resolution.

2.3. Event landslide inventory map

Two of us (F. Fiorucci and M. Cardinali) prepared an eLIM by visual interpretation of satellite
images. The set of images consisted of three derivative types: (i) a pre-event and post-event false col-
our composite (NIR, R and G) image, (ii) a Normalized Difference Vegetation Index (NDVI) pre-
event and post-event image, (iii) a pre-event and post-event pseudo-stereo pair obtained combining
the ASTER DEM with the optical images (Chen and Rau 1993). The three-dimensional pseudo-
stereo pair was visualized using dedicated hardware (Planar stereo mirror screen7) and software
(Image Stereo Analyst). Comparison of pre- and post-event images allowed identifying landslides
triggered by the considered event, mapped as vector polygons. The analysis of the distribution of
patterns and tones, supported by morphological information provided by the pseudo-stereo pair,
allowed identifying different landslide types, including flows, shallow and deep-seated slides. Multi-
ple activations were identified within a few of the larger landslide bodies; all of them were related to
the same event and therefore included in the landslide inventory, eventually used as ground truth
for this work.

3. Method

Our method to semi-automatically map landslides or, equivalently, to identify the pixels belonging
to the landslide land cover class, relies on the concept of a change detection (CD) function. Here,
we denoted the CD function as gls (where ‘ls’ stands for ‘landslides’), obtained with a simplified ML
classifier in a Bayesian approach. A common approach to binary classification is to identify a thresh-
old value T: pixels in the gls map with values larger than T are classified as landslides, and no land-
slides otherwise. We propose to perform the classification procedure within many sub-areas, with a
multi-threshold approach.

Figure 2 summarizes the method developed in this work, consisting in two main steps.
In the first step, we define the function gls whose values represent the ML distance of each pixel

from the landslide class, providing a pixel-by-pixel measure of the presence of new landslides.
The gls function is obtained measuring changes occurred between a pre- and a post-event image.
We measured changes in the satellite images using three different metrics: changes of NDVI (Tucker
1979; Lee 2005), spectral angle (SA) (Sohn and Rebello 2002; Richards and Jia 2006; Mondini et al.
2011b) and principal component analysis (PCA) (Richards and Jia 2006). The three metrics were
combined in a single image stack for the analysis. We stress that the resulting discriminant function
defined in this work does not represent the probability of landslide presence, in a mathematical
sense.

In the second step, a map is generated by evaluating the gls function in each pixel of the study
area. Then, the gls map pixels are classified as ‘landslides’ or ‘no landslides’, either by: (i) threshold-
ing the gls values, i.e. selecting as landslides the pixels with gls values larger than a single threshold
value over the whole study area; (ii) thresholding square and rectangular subsets of the gls map, using
multiple threshold values; (iii) replacing regular subsets of (ii) with irregular SU polygons, thus
introducing local geomorphological information.

The innovative feature, in the first step of Figure 2, is represented by the fact that we only aim at
defining one land cover, the landslide class, and thus we only need to train the procedure in one
class, while typical approaches to image classification aim at identifying many classes, and focussing
on a single class allows easier calibration of the CD function. The calibration area was selected in
only one (big) landslide, for a total of 421 pixels (about 10,000 m2 out of about 1000 km2) in the
stack of changes. The core innovation of the procedure, in the second step of Figure 2, is that we
applied gls thresholding in a large number of subsets of the study area, singled out either with and
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without a topographic information. Existing thresholding approaches use a single threshold, neces-
sarily reducing accuracy, while SU provide local topography information and allows to find local
custom thresholds.

Note that, throughout the paper, we refer to training as the production of the gls function based
on a certain number of pixels known to contain new landslides; calibration, instead, is the selection
of the best binary landslide/no-landslide classification thresholds to be associated to the different
subsets of the calibration area. Validation is the application of the overall procedure to a different,
larger part of the study area.

3.1. Discriminant function definition and single threshold classification

In our approach, DNDVI, SA and PCA are composed into a single stack, which constitutes our mea-
sure of changes.

NDVI is a well-known image differencing index useful to identify vegetated areas and their con-
ditions (Tucker 1979). NDVI can assist in landslide identification, in particular for shallow land-
slides when they occur in vegetated areas (Lee 2005). Large negative values of DNDVI are typically
found in areas where forest is the predominant class and may signal loss of vegetation, possibly
caused by new landslides (Mondini et al. 2011b).

SA measures the generalized angle between two spectral signatures representing two different
surface covers (Sohn and Rebello 2002) or, when measured in the same pixel at two different times
‘post’ and ‘pre’, its temporal evolution. Spectral angles different from zero measure changes that
may be not directly related to loss of vegetation (Mondini et al. 2011b).

Figure 2. A flow chart of the algorithm proposed in this work. The algorithm can be applied upon knowledge of the occurrence of
a landslide event. Step 1 describes the discriminant function calculation, while Step 2 represents the three different classification
possibilities by index thresholding considered in this work, resulting in three different eLIMs (cf. Tables 1 and 2). The table on the
right describes the level of automation of the individual operations involved in each of the two steps. Column A lists one-time,
site-dependent operations; column B, operations that can be optionally performed again in a new study area; column C, fully auto-
matic operations.

GEOMATICS, NATURAL HAZARDS AND RISK 549



PCA is a linear transformation of a number of potentially correlated variables into a number of
uncorrelated variables in a different orthogonal system (Richards and Jia 2006) with the axes ori-
ented along the directions of the largest possible variances.

When ML is applied, it assigns the class membership of each pixel in the stack of changes as fol-
lows (Richards and Jia 2006):
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where mb and Sb are, respectively, the multidimensional mean and covariance matrix of a multinor-
mal Gaussian distribution estimated modelling the statistical behaviour of samples of pixels selected
in b land cover changes present in the scene. In this work, (a)

!

mb¼ls and Sb=ls (where ‘ls’ stands for
‘landslides’, as in the gls definition) were obtained selecting samples areas representative of landslides
occurred during the event, and (b) only the discriminant function related to landslides was esti-
mated (gb=ls).

The three change detection metrics are illustrated in Figure 3. The Figure shows the three indi-
vidual quantities (Figure 3(a), DNDVI; Figure 3(b), SA and Figure 3(c), PCA) and the combined
stack of changes. One can see that DNDVI and SA are partially correlated, though they still contain

Figure 3. Zoom of the three change detection metrics used in this work in a sample subset of the study area, calculated from the
pre- and post-event RapidEye images. (a) DNDVI; (b) spectral angle, SA; (c) principal component analysis, PCA; (d) the RGB compos-
ite image with R = DNDVI, G = SA and B = PCA. (d) is the stack of changes, which we used to obtain the numerical values of mb=ls

and Sb=ls needed to calibrate the gls CD function.
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different information. PCA instead is rather different, mainly due to the PCA being obtained by
global quantities, while the others are calculated locally. In conclusion, the three quantities provide
different information as, within the same landslide body, the combination of them (Figure 3(d))
does not show a uniform pattern.

The training stage considered a total of 421 landslide pixels in the stack of changes. To check that
the selected pixels were multinormal Gaussian distributed (as requested by the ML function), we
performed a Mardia’s test, which showed a degree of confidence on the null hypothesis (normality)
higher than 90%.

Figure 4 shows a histogram of the values for the CD discriminant function gls introduced in this
work (Equation (2)). The histogram of gls values in Figure 4 reveals a rather broad distribution of
negative values, ranging from about ¡1200 (the figure does not show the whole range) to 0, but
mostly bounded in the (¡400,0) region. Landslides correspond, by construction, to values close to 0,
i.e. small ML distance from landslide response, meaning that those pixels have spectral properties
close to the landslide pixels selected for training gls.

A distinctive feature of the histogram in Figure 4 is a bi-modal behaviour, characterized by a small
peak around gls = 0, overwhelmed by a broad peak centred at gls = ¡150 and containing the vast
majority of pixel values in the gls map with spectral properties dissimilar from the landslide ones.
The two peaks (modes) are separated by a well-defined local minimum, occurring at some gls value
denoted in the following as M. The first approximation to a binary classification of the gls values is to
flag as ‘landslide’ the pixels with M < gls < 0, and to flag as ‘no-landslide’ the remaining pixels.

It is straightforward that a sharp cut on the gls values in correspondence to M (Figure 4) introdu-
ces false negatives, i.e. pixels that are incorrectly flagged as free of landslides resulting from cutting
the left tail of the landslide-related peak in the distribution, as well as false positives, i.e. pixels that
are incorrectly flagged as landslides resulting from the right tail of the broad peak of the distribution.
There is no straightforward way to overcome the misclassification from the sole analysis of the dis-
tribution of Figure 4.

3.2. Automatic mode detection within regular and topography-driven subsets

A strategy to minimize misclassification imposed by the use of a single threshold consists in splitting
the study area into a variable number of polygonal subsets, with variable size and shape, and repeat,
within each subset, the gls mode analysis operated globally on the histogram of Figure 4, described

Figure 4. Histogram of the gls function values over the whole study area. The vertical line situated at M = ¡26.725 represents the
divide between the two existing modes. The mode located right from the divide is due to pixels with gls values close to zero, i.e.
with spectral behaviour very similar to pixels known to be within the landslides selected for the training procedure.
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in Section 3.1. In each polygon, we can investigate the histogram of gls values and, in principle, single
out a custom threshold for binary classification. We considered different subsets, namely a large
number of (i) regular (square or rectangular) polygons resulting from a grid with variable number
of rows and columns, (ii) SU polygons with variable size and shape.

SUs are morphological terrain units, bounded by drainage and divide lines (Carrara 1993; Guz-
zetti et al. 1999) delineated in such a way that terrain homogeneity is maximized within the units,
and inhomogeneity is maximized across neighbouring units. We obtained SUs for our study area
using the r.slopeunits specialized software (Alvioli et al. 2016). The software is adaptive, in that SUs
are delineated with varying sizes and shapes in different regions of the study area. Optimized SU
can be obtained by selecting values of the software’s input parameters that maximize fitness of the
output SU set for a particular purpose. We investigated the use of two metrics for optimization of
the software’s parameters: (i) an aspect segmentation metric first introduced by Espindola et al.
(2006) for the segmentation of generic digital images and adapted by Alvioli et al. (2016) to work
with the aspect circular variance; (ii) the error index EI first introduced by Carrara (1993), and
described later on in Section 3.4. To illustrate the aspect distribution across the study area, Figure 5
(a) shows an aspect map of the study area, along with rose diagrams of the distribution of aspect

Figure 5. (a) Aspect map of the study area, with the subdivision into calibration (black dashed contour) and validation (grey con-
tour) areas. (b) Rose diagram of the aspect distribution within the calibration area. (c) As in (b), for the validation area.

552 M. ALVIOLI ET AL.



values within the calibration (Figure 5(b)) and the validation (Figure 5(c)) areas. Figure 6 shows the
final SU subdivision of the study area, obtained optimizing the error index EI. This point will be
further discussed in the following.

We stress here that SUs must be obtained once and for all, making the mapping procedure read-
ily applicable to any future landslide event with comparable computational cost (running time) with
respect to applying a single threshold to the global histogram. The multi-threshold calculation of
the final map on the whole study area requires about two hours on a 64-core machine, thanks to the
possibility of developing scripts in GRASS GIS, which can be efficiently run in parallel.

We calculated histograms of the values of the discriminant function gls (Equation (2)), within
either regular (square or rectangular) polygons obtained from a grid and within irregular SU poly-
gons. Then, histograms were processed using the software of Delon et al. (2007). The software con-
tains an automatic, non-parametric algorithm for one-dimensional histogram segmentation without
a-priori assumptions about the number or shape of the histogram modes. The method tests the sim-
plest multimodal law that fits the data coupled with a test which presents the advantage of being
simultaneously local and global over the histogram range. The histogram is first split into monotone
chunks, then the algorithm makes use of the so-called meaningful rejection for a decreasing hypoth-
esis, leading to a piece-wise multimodal hypothesis. The automatic histogram-splitting algorithm
of Delon et al. (2007) was used to determine, for each polygon, the number of modes (number of
maxima) Nmod in the corresponding gls distribution and the numerical values of the separations
(positions of minima) between modes, g(i)

s, i = 2,..., Nmod, if any.
The information about the number of modes and the positions of minima between the peaks,

alone, is actually not enough to define individual thresholds for each polygon. The possible situa-
tions are qualitatively illustrated in Figure 7, for Nmod = 1, 2, 3. The figure shows that for each given
number of modes (each row in the Figure), the histogram may (type HA histograms) or may not
(type HB histograms) present a mode peaked about gls = 0, which likely corresponds to landslide
presence, by gls construction. As a matter of fact, knowing the number and positions of the separa-
tions only enable us to know if the histogram belongs to the first, second or third row, but does not
allow to know if they are of kind HA or HB in Figure 7, so that further analysis is needed.

3.3. Calibration of the classification thresholds

In our study area, histograms built for both regular or SU subsets of the gls map were found to pres-
ent one, two or three distinct modes. Our goal is to find custom thresholds T for each polygon or,
more realistically, for each different kind of the corresponding histograms on the basis of the differ-
ent situations sketched in Figure 7. We adopted a different strategy for Nmod = 1 (first row-like histo-
grams in Figure 7), Nmod = 2 (second row-like) or Nmod = 3 (third row-like).

For the purpose, we further characterized the histograms considering the average values of mode
separations. We denoted as m(2) the average value of separations in the Nmod = 2 cases, and with
m(3)

a (m(3)
b), the average value of the leftmost (rightmost) separations in the Nmod = 3 cases. We

established if Nmod = 2 cases are more likely to fall in the HA2 or HB2 classes by analyzing m(2) in
relation to m(3)

a and m(3)
b. This is easily done by assuming Gaussian distributions of the gls values of

the leftmost (labelled with a in the following) and rightmost (labelled with b) separations in the set
of Nmod = 3 cases, and proceeding as illustrated in Appendix 1. We end up classifying Nmod = 2 cases
either as left-like (type HA2) or right-like (type HB2).

In a subset area (calibration area shown in Figure 5(a)), we collected the following information to
characterize the different polygons:

(i) the number of intervals Nmod found by the automatic histogram-splitting algorithm polygon-
specific quantity;

(ii) the values of the separations g(i)
s, i = 2,…, Nmod between the different peaks in the associated

histogram (polygon-specific);
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(iii) the average values m(2), m(3)
a and m(3)

b of the separations in each Nmod class (not polygon-
specific);

(iv) the value M of the separation of the two peaks in the global gls histogram (obviously not
polygon-specific);

(v) distinction of Nmod = 2 cases in left-like or right-like (not polygon-specific).

We stress here that the object of the calibration procedure is the method we devised to obtain the
best result, i.e. how to use the information contained in (i)–(v). Specific numerical values of the
quantities (i)–(iv), instead, are directly calculated from the histograms, they depend on the study
area, and they are different between the calibration and validation area (also shown in Figure 5(a)).

Different T values within the different classes of polygons should be introduced in such a way
that misclassification is minimized polygon-wise instead of on the global map. Following a trial-
and-error procedure, we found the best results for the gls classification threshold T for different poly-
gon classes, as compared to the ground truth of expert mapping within the calibration area. The
details of the procedure are rather cumbersome, and are described in Appendix 2 for the interested
reader and to allow full reproducibility of the procedure.

The best results were found adopting polygon-specific thresholds in the cases with Nmod = 3 (one
threshold value for each polygon HA3 and HB3 in Figure 7), and common thresholds for the follow-
ing classes of polygons: (a) one threshold value for all the Nmod = 1 polygons (HA1 and HB1 in
Figure 7); (b) one threshold value for all the Nmod = 2, left-like polygons (HA2 in Figure 7); (c) one

Figure 6. The optimal slope units partition of the study area, corresponding to the values (aE, cE) = (200,000 m
2, 0.15) of the area-

min and cvmin input parameters of the software r.slopeunits introduced by Alvioli et al. (2016). The background image is a shaded
relief of the study area.
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threshold value for all the Nmod = 2, right-like polygons (HB2 in Figure 7). The actual numerical
values of the thresholds are given by the polygon-specific value g(s)

b, 3, in the Nmod = 3 cases, and can
be calculated from the quantities listed in (i)–(v) for the Nmod = 1, 2 cases as specified in Appendix 2.

3.4. Evaluation of classification performance

To compare the outcome of our binary classification procedure with the expert-mapped landslides,
we used the EI error index proposed by Carrara (1993) and defined as follows:

EI ¼
A[ & A\

A[

; (3)

where A[ is the area of the region where either the automatically classified and the expert-mapped
landslides exist (union), while A\ is the area of the region where both exist (intersection). We also
discuss the results in terms of confusion matrices, in particular false, either positive (FP) or negatives
(FN), assignments. Calibration was performed in the area shown in Figure 5(a), and validation in

Figure 7. Qualitative sketches of different histogram shapes with single mode (first row, HA1 and HB1), two modes (second row,
HA2 and HB2) and three modes (third row, HA3 and HB3). Landslides correspond to gls values close to zero (cf. Figure 4) and are
likely present in histograms shapes in the right column. Vertical black dashes depict the separations between different modes, to
be calculated by the automatic histogram-splitting algorithm of Delon et al. (2007). The positions of the modes are for illustration
purposes and are not the actual ones found during the gls image processing.
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the remaining part of the area, also shown in Figure 5(a), after the calibration area was excluded,
where landslides were mapped by visual interpretation as well.

In order not to misclassify riverbanks, which present spectral behaviour similar to landslides, pix-
els belonging to such features were removed from the comparison. River features were also mapped
by expert photo-interpreters, since this was the most straightforward thing to do in order to show
the relevant features of our new method. In principle, riverbanks may change across different land-
slide events and need be delineated again. At the present stage, this is not included in our procedure,
which makes it not fully automatic. Nevertheless, examples exist in the literature of automatic and
relatively simple ways of recognizing rivers based, for example, on the correlation with strong
changes from the pre- to the post-event images and values of slope below some small threshold.
Including such functionalities will make the overall procedure fully automatic, once the one-time
operations (training of the change detection function, slope unit delineation and calibration of the
classification thresholds) are performed.

4. Results

We proposed a procedure to go beyond the single-threshold classification of a CD discriminant
function. Defining a large number of subsets of the study area, either using topography-blind rectan-
gular regions or using topography-aware slope units, we adopted a multiple-threshold classification
following the prescriptions outlined in Section 3.

The multi-threshold classification was automated by a histogram-splitting software (Delon et al.
2007). Figure 8 shows a few examples of histogram shapes obtained in a few selected cases, within
SU polygons, in the validation area. We selected the examples in order to illustrate the actual shapes
of the histograms that we previously sketched in a qualitative way in Figure 7. We acknowledge
that, among the several histograms obtained within our procedure (one for each SU polygon; cf.
Figure 6), there were many shapes that did not perfectly fit into the shape classification of Figure 7,
even if the automatic algorithm of Delon et al. (2007) classified them as belonging to one of those
classes. This is the trade-off for using a high level of automation. Moreover, the relative abundance
of the histograms of the six types defined in Figure 7 is not at all balanced. In the calibration area,
we used an SU set containing 564 polygons, with minimum area 50,550 m2, maximum area
2,082,150 m2, average area 440,000 m2 with standard deviation 350,000 m2. Out of 564 polygons,
292 were classified as Nmod = 1,258 as Nmod = 2 and 14 as Nmod = 3. In the validation area, we used
an SU set containing 1755 polygons, with minimum area 50,400 m2, maximum area 3,809,600 m2,
average area 507,000 m2 with standard deviation 450,000 m2. Out of 1755 polygons, 1132 were clas-
sified as Nmod = 1604 as Nmod = 2 and 19 as Nmod = 3. In both calibration and validation, the Nmod =
1 histograms were of type A1 (cf. Figure 7) for the vast majority, and Nmod = 3 histograms were a
very small number as compared to the total number of polygons. These conditions were addressed
by the proposed algorithm, introduced in Section 3.3 and further detailed in Appendix 2. As a mat-
ter of fact, we defined the final combination of thresholds through a trial-and-error procedure, so
we conclude that the resulting algorithm effectively accounts for the relative abundances of histo-
grams presenting different Nmod values.

We show results of the calibration stage (Section 3.3) for the following approximations: (i) a
global threshold T = M is used (cf. Figure 4), labelled by ‘global’ (Tglobal), resulting in the map shown
in Figure 9(d); (ii) the multiple thresholds defined above are used, within polygons from a regular
grid, labelled by ‘grid’ (Tgrid) (Figure 9(e)); (iii) multiple thresholds are used, within polygons from
the optimal SU partition, labelled by ‘SU’ (TSU) (Figure 9(f)); (iv) individual thresholds for each SU
are used, heuristically optimized in order to obtain the best agreement (minimum value of EI)
between classification and expert mapping SU-wise; labelled by ‘optimal’ (Topt).

Result (iv) in Table 1 (Topt) is given for reference and it is not our final result, due to the optimiza-
tion being performed in each SU of the calibration subset of the study area. Thus, it is impossible to
generalize result (iv) to the validation area: ground truth is available to us in the whole study area,
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Figure 8. A few histograms of the gls values, corresponding to 12 individual slope units. We selected the example histograms to
show the actual shapes that were qualitatively sketched in Figure 7. In particular, (a) and (c) correspond to sketch HA1 in Figure 7;
(b) and (d) to HB1; (e) and (g) to HA2; (f) and (h) to HB2; (i) and (k) to HA3; (j) and (l) to HB3. We drew black vertical dashed lines at
gls values corresponding to the histogram mode separations g(i)s, i = 2, 3, as calculated by the automatic procedure of Delon et al.
(2007) used in this work.
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but we used it to build the method itself in the sole calibration area and to validate in the remaining
part of the study area (cf. Figure 5(a)). We assume that the combination of the best values EI in each
SU also provides the best theoretical EI for the whole map, which we believe to be a very good
approximation to the real overall best possible classification using a custom binary classification
threshold for each of the different polygons.

The numerical values of the confusion matrix indices and the EI index of Equation (3), obtained
from the comparison of the expert mapping from orthophotos and automatic mapping with the
procedure introduced in this work, are listed in Table 1 for the calibration stage, and in Table 2 for
the validation stage.

The calibration stage (Table 1) provides a performance gain (EgridI ¡ EglobalI)/E
global

I = 6.7% when
using regular (square) polygons, with respect to single threshold, and (ESUI ¡ EglobalI)/E

global
I = 8.1%

when using SUs; the ideal, ‘optimal’ result would provide (EoptI ¡ EglobalI)/E
global

I = 23% gain.
The relative small gain observed in the calibration area when going from grid polygons to SUs

increases when looking at validation stage results (Table 2): regular polygons provide a performance
gain of 0.4% (with square polygons of the same size as in the calibration stage), while we gained
4.8% by using SUs.

Figure 9. The different approximations to the binary classification of the discriminant function map. (a) The gls map, providing the
Tglobal result in Table 1 with the single-threshold classification (Figure 4); (b) the set of rectangular polygons providing the classifica-
tion result Tgrid; (c) the set of SU providing the best result, TSU; (d)–(f) show the eLIMs corresponding to the ‘global’, ‘grid’, and ‘SU’
approximations, respectively: pixels corresponding to automatically mapped landslides are shown in colour.
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The dependence of the results upon the number of polygons used in the analysis, either square,
rectangular or irregular SU polygons, is shown in Figure 10. The figure compares the constant Tglobal

with Tgrid, separately for the square and rectangular cases, and with TSU, both in the calibration
(Figure 10(a)) and the validation (Figure 10(b)) areas. For the latter, we highlighted in the figure the
two results corresponding to the best SU set with respect to aspect segmentation (Alvioli et al. 2016)
and to EI performance (cf. Equation (3)). We see that, in the validation case (Figure 10(b)), the SU
results are always better than the regular grid results, irrelevant of the number of polygons in the dif-
ferent polygon sets.

Tables 1 and 2 list, along with the values of EI in the different approximations investigated in this
work, the values of the FP, FN, TP, and TN indices, for completeness. We maintain that EI is an eas-
ier overall agreement measure, since it is a single index specifically developed for the comparison of
different mapping efforts of the same landslides bodies. Fiorucci et al. (2018) recently provided a
detailed application of the index for the analysis of remote sensing imagery for landslide mapping.

Table 1. Comparison of the agreement of the result of our automated procedure with an
expert-mapping procedure in the calibration area. TP (TN) = true positive (negative); FP
(FN) = false positive (negative); EI is the error index of Equation (3) introduced in Carrara
(1993) for the comparison of two inventory maps.

Tglobal Tgrid TSU Topt

TN 92.55% 92.39% 92.27% 92.30%
FN 1.78% 1.49% 1.39% 0.97%
FP 0.97% 1.13% 1.22% 1.22%
TP 4.70% 4.99% 5.09% 5.51%
EI 0.369 0.344 0.339 0.284

Table 2. As in Table 1, but for the validation area. In this case, the results corresponding to
the optimal threshold Topt are not available, by construction.

Tglobal Tgrid TSU

TN 97.03% 96.82% 96.98%
FN 0.66% 0.71% 0.72%
FP 0.70% 0.91% 0.75%
TP 1.45% 1.56% 1.54%
EI 0.512 0.510 0.487

Figure 10. Classification performance index EI (Equation (3)) results for the different approximations used in this work to automati-
cally classify landslides versus anything else. NxM represents the results obtained with rectangular polygons grids; MxM, with
square polygons; SU, with different SU sets; SUE, with the optimal SU set, obtained by minimizing EI in the calibration area; SUA,
with the optimized SU set with respect to aspect segmentation (Alvioli et al. 2016) in the whole study area. (a) Calibration area; (b)
validation area.
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Figure 11 compares the ground truth of eLIMexpert, mapped by expert photo-interpreters, to the
best automatically mapped eLIMSU. The map shows both the calibration and validation portions of
the study area.

5. Discussion

Systematic production of landslide inventories requires a high level of automation. In this work, we
addressed the issue of reducing the time to train a supervised classifier, exploiting the possibility of

Figure 11. Comparisons of eLIMs obtained by photo-interpretation (black polygons) and by the automatic mapping procedure
developed in this work (red pixels). Blue polygons represent riverbanks, excluded by the analysis. The map clearly shows many
false positives, predicting landslides where they did not actually occur. False negatives, instead, typically fall within detected land-
slides, with a few missing pixels. The background image is the gls discriminant function.
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obtaining an inventory map as a simplified land cover map containing only two classes: ‘landslide’
and ‘no landslide’ (i.e. ‘everything else’). Such an approach involves: (a) estimating a single discrimi-
nant function for the only landslide land cover class; (b) minimal training information to prepare a
statistical model for landslide spectral properties; (c) automated binary classification, after proper
calibration. All the (a)–(c) features go in the direction of reducing the overall effort to obtain the
inventory map.

In this work, we used a maximum likelihood discriminant function, applied to a combination
of change detection indices (step 1 in Figure 2). When a discriminant function is calculated, one
is left with assigning the pixels either to the ‘landslide’ or ‘no landslide’ classes (step 2 in Figure 2).
This can be done by a thresholding procedure, which we accomplished in three different ways,
showing that a multi-threshold procedure using automatic histogram segmentation in conjunc-
tion with topographic-aware subdivision of the study area into many sub-areas provides the best
result.

The proposed method presents several advantages. In first place, the part strictly related to image
preparation is substantially simplified with respect to existing remote sensing land cover classifica-
tion methods. In fact, considering only one land cover class, we reduce the number of points and
time needed to define the landslide class itself in the training stage. In second place, the classification
algorithm parameters are specific of the study area but are expected to stay constant across different
landslide events. This means that expert landslide mapping, CD image definition and topography-
related tasks are required only once, to train the CD function and calibrate the thresholds for SU-
based classification, in each newly considered study area. In third place, class assignment is auto-
matic and it does not require a-posteriori identification of the different classes. The method can
thus be used on a routine basis, and run whenever the occurrence of a new landslide event is other-
wise detected with specialized methods (Martha et al. 2016; Mondini 2017) or simply a new image
(or a pair of images) of the area becomes available. We combined different indices to obtain the dis-
criminant function gls, to cope with the natural heterogeneity showed by the spectral response of the
landslide surface. DNDVI, PCA and SA proved to be reliable in identifying changes introduced by
landslides in vegetated areas (Mondini et al. 2011a, 2011b), since they take into account both the
radiometric (DNDVI and SA) and the geometric (PCA) information contained in the satellite
images. The combination of the three indices highlights the presence of landslides, making even eas-
ier the selection of a training area; we do not exclude that in other geographical regions different
indices may be more effective. The computation and use of additional indices, together or in
place of the ones used in this work, would easily be integrated in the method. In general terms, the
computation of indices is not time-consuming even in a large scene like the ones offered by typical
Sentinel-2 images.

The approximation provided by the global thresholding is actually a good one in our test case
(cf. Tables 1 and 2), due to the very definition of gls as a high-contrast CD map. The study area is
not characterized by sharp illumination differences, which makes the landslide-related peak in the
histogram of gls values to be rather well separated from the remaining of the distribution. We stress,
however, that this might not be the case for other case studies in which, for example, different com-
binations of latitude, season, and slope aspect in combination with image acquisition angle and sun
illumination may determine a much less evident bi-modal behaviour of the global histogram of gls.
In that eventuality, we expect the multi-threshold procedure to be even more effective than it does
in the study area considered in this work.

We stress that the values of the average separations of peaks in the histograms of the gls values,
m(2), m(3)

a and m(3)
b are peculiar of the study area and the peculiar partition into sub-areas, so they

are newly calculated in the validation stage. Moreover, unlike SU polygons, the numerical values of
such variables depend upon the CD discriminant function and thus have to be re-calculated once a
new gls is obtained from a new pair of images, and this is a rather fast calculation. Obtaining a new
gls map is an automatic procedure, since the spectral properties of the same landslide type are
believed to stay the same, in the same area, across multiple events.
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In order to better illustrate which parts of the proposed procedure are site-dependent or not, and
which parts are automatic or supervised, Figure 2 includes a table describing such characteristics of
both the gls calculation step and of the classification step. We can summarize the Table as follows:

' the gls definition (step 1 in Figure 2) requires training; this amounts to single out (visually or
by prior knowledge) one landslide, heuristically chosen as representative of the landslides pos-
sibly occurring in the area. The training step is a one-time operation, and allows to automati-
cally calculate the gls raster map for the whole study area and for any pair of images available
at present or in the future. Only deployment of the method in a different study area, or for use
with images from a different sensor, requires new training. Running the method with any
newly acquired image (or image pair) of the same study area, instead, is fully automatic;

' the topography-driven classification (step 2 in Figure 2) requires: (i) slope unit delineation, (ii)
calculation of gls histograms in each slope unit and their grouping according to the classes
sketched in Figure 7, (iii) definition of the quantities best suited to act as classification thresholds
in each class of histograms, (iv) actual classification of the raster map into landslide/no landslide
by multiple thresholding. SU delineation and definition of best quantities to be used as thresh-
olds are one-time operations, since the first is only dictated by the DEM and the second is
obtained by trial-and-error procedure against the ground truth in a calibration area. Calculation
of the actual histograms in each SU and of the actual threshold values, and final classification,
are fully automatic. Deployment of the method in a different study area requires SU delineation
and, optionally, check if the set of quantities defined here as thresholds is still valid for the new
area, if a landslide event can be mapped by expert geomorphologists in a calibration area.

There exist additional reasons for analyzing the distribution of gls values within single slope units
instead of across the whole map. The spectral response of the terrain is a function of the relative ori-
entations of the local slope, sun azimuth at the time of image acquisition, and the line of sight of the
satellite. As a consequence, pixels facing a homogeneous aspect direction, like the pixels within each
SU do on average, are likely to produce a similar response and, eventually, similar gls values for the
same land cover class; in our case of interest, the landslide class. These expectations were borne out
by our results, as one can see in Tables 1 and 2 and, in particular, in Figure 10, where the superiority
of the SU-based multi-thresholding approach is evident especially in the validation area.

Tables 1 and 2 show that the effects of using a topographic-aware subdivision of the study area
into sub-areas is numerically more effective in the validation area than in the calibration area with
respect to a topographic-blind subdivision, though the gain with respect to the global thresholding
decreases from about 8% in calibration to about 5% in validation. Nevertheless, the performance of
SU-based classification with respect to regular polygon-based classification increased from the cali-
bration to the validation areas. In addition, we observe from Figure 10(b) that a miscalibration of
SUs would produce a smaller error than a miscalibration of square polygons size: the SU results are
always better than the polygon results, in validation. In other words, the SU approach is more effec-
tive in a larger area than it is in a smaller one, regardless of small variations in the number and size
of individual SU polygons.

Figure 5(a) shows an aspect map of the study area. No clear distinction exists between different
regions containing preferred aspect directions. As a matter of fact, the histogram selection algorithm
of Delon et al. (2007) could not distinguish different modes in the histograms of SU-based (average
values in each SU) aspect values in our study area, neither within the calibration (Figure 5(b)) nor
the validation (Figure 5(c)) areas. We explicitly checked that further splitting the study area and per-
forming the analysis presented in this work separately in sub-areas where the SU aspect, loosely
speaking, faces two or three preferred directions do not substantially improve the results. Should
another study area present a clear-cut distinction between aspect directions in different groups of
SU, the method would probably be more effective if the calibration procedure was performed, and
classification applied, separately in such sub-areas.
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6. Conclusions

We presented a novel approach to binary classification of satellite imagery, aimed at supervised
landslide mapping, with a high level of automation. Our approach requires knowledge of the occur-
rence of a landslide event, obtained by external means, availability of a high-resolution pre- and
post-event pseudo-stereo pair, and a digital elevation model.

The mapping procedure, outlined in Figure 2, consists of two steps. In the first step, we defined a
discriminant function gls, a combination of well-known DNDVI, PCA and SA change detection indices,
tuned to highlight differences in landslide spectral response versus anything else. In the second step, we
devised a multi-threshold binary classification method for the gls map, aimed at distinguishing the only
landslide class. The multi-thresholding procedure is applied within a large number of sub-areas, namely
slope units (Alvioli et al. 2016), known to be particularly suited for landslide studies.

From the results obtained in this work, illustrated in Tables 1 and 2 and Figures 9–11, we can
draw the following conclusions:

' comparison of the results of the semi-automatic mapping procedure with the ground truth of
an eLIM prepared by visual interpretation reveals that the topographic-aware subdivision of
the territory allows for a better performance both than thresholding applied globally on the
study area, andwithin a topographic-blind subdivision;

' the increased performance of the proposed multi-threshold approach can be obtained with a
comparable computational cost of the single-threshold approach, once proper calibration has
been performed;

' the overall procedure is fully automatic once the preliminary steps of SU delineation, gls train-
ing and threshold calibration are performed. In principle, the definition of river is left out
from the second step.

As a matter of fact, a severe rainfall event modifies the rivers in a non-negligible way and they
have to be drawn for each new event. In our case, this was done at photo-interpretation time, for
simplicity. The literature contains several sound automatic ways of mapping riverbanks, for example
with pixel-based methods (Mondini and Chang 2014; Mondini et al. 2017) or object-oriented meth-
ods (Martha et al. 2010; Stumpf and Kerle 2011). Thus, in principle, the method is fully automatic
after riverbank detection is included.

Applicability of the method in other study areas, in which different environmental conditions
may exist, remains to be investigated. We expect the stack of changes (Figure 3(d)) to exhibit signa-
tures produced by new landslides occurring in different lithologies to be more similar among them-
selves than signatures of changes due to other features (or signatures of no-changes), which entitles
us to assume the portability of a single landslide class, possibly similar or invariant across different
areas. We also expect the relative performance of multi-thresholding with respect to global thresh-
olding to increase in study areas where a sharp difference in orientation of hillslopes, generating a
different spectral response between the different orientations, may exist.

We argue that the improved performance and limited training requirements of the classification
procedure represent a step forward towards an automatic, real-time landslide mapping from satellite
imagery.

Geolocation information

Our study area covers N23.874 –23.431 and E93.7 –93.948 (EPSG:4032), in Myanmar.

Notes

1. https://grass.osgeo.org.
2. http://portal.onegeology.org/OnegeologyGlobal/.
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3. http://www.seom-commonsproject.net/.
4. https://resa.blackbridge.com/files/RapidEye

ç
Image

ç
Positional

ç
Accuracy

ç
Whitepaper

ç
V1.0

ç
ENG.pdf.

5. http://www.harrisgeospatial.com/docs/FLAASH.html.
6. https://asterweb.jpl.nasa.gov.
7. http://www.planar.com.
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Appendices

Appendix 1. Analysis of polygon-wise discriminant function histograms

The cases Nmod = 2, shown qualitatively in the second row of Figure 7, can be further characterized
by their similarity to the cases HA3 or HB3 with Nmod = 3. This is easily done if one assumes Gauss-
ian distributions of the gls values of the leftmost (and the related quantities being labelled with a)
and rightmost (labelled with b) separations, separately. Associating standard deviation d(3)

a and
d(3)

b to the distributions centred in m(3)
a and m(3)

b, respectively, and denoting with Gm, d(g) the
normalized Gaussian distribution with average m and standard deviation d, one can calculate the
probability of a separation g(2)

s from an Nmod = 2 case to belong to the Gaussian distributions Gm,

d(g) at the distance d = |g(2)
s ¡ m| from its central vale m as follows:

Pm;d dð Þ ¼

Z mþd

m&d

dg Gm;d gð Þ : (A1)

Calculating the probabilities P
m

3ð Þ
a ;d

3ð Þ
a

dð Þ and P
m

3ð Þ

b
;d

3ð Þ

b

dð Þ allows to label the separation g(2)
s to be

either:
' more similar to the HA3 cases with Nmod = 3 of Figure 7, if P

m
3ð Þ
a ;d

3ð Þ
a

dð Þ < P
m

3ð Þ

b
;d

3ð Þ

b

dð Þ, which we
define as left-like;

' more similar to the HB3 cases with Nmod = 3 of Figure 7 if P
m

3ð Þ
a ;d

3ð Þ
a

dð Þ > P
m

3ð Þ

b
;d

3ð Þ

b

dð Þ, which we
define as right-like.

Appendix 2. Definition of custom thresholds for polygon-wise classification

We have devised a procedure to obtain different T values within different classes of polygons
(ideally, the six classes identified by the histogram types of Figure 7; in practice, the classes listed
below) to reduce misclassification. Following a trial-and-error procedure, and using the quanti-
ties M, m(2), g(2)

s, m
(2)

a, m
(2)

b, g
(3)

s, a and g(3)
s, b introduced in Section 3, we obtained the follow-

ing procedure:
' Nmod = 1: we set T = m(2), except for those cases in which either (i) there is a percentage of cells

with gls > M smaller than 0.1%, where we set T = 0 (assuming no landslides at all in the poly-
gon), or (ii) there is a percentage of cells with gls <M larger than 50%, where we set T = ¡200
(assuming most of the polygon is a landslide). Cases (i) likely correspond to histograms similar
to HA1 in Figure 7, while cases (ii) to HB1.

' Nmod = 2: in this case, we further distinguish (cf. Appendix 1):
) left-like: we set T = m(2), except for those cases in which there is a percent of cells with gls >

M smaller than 0.1%, corresponding to histograms similar to HA2 in Figure 7, and where
we set T = 0. We did not find advantages setting a large negative threshold when there are
many cells situated at the left of M, as it is the case for Nmod = 1, hinting that the ansazt of
histograms similar to the sketch HB2 is not realistic.
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) right-like: we set T = M. We do not find advantages in setting a threshold at zero or at large
negative values, which is reasonable for right-like Nmod = 2 cases: as a matter of fact, both T
= 0 or a large negative T suggest a histogram similar to the sketch HA1 of Figure 7, which is
not likely to occur when one separation is found, as in the case we are discussing.

' Nmod = 3: we set T = g(3)
s, b, the rightmost of the two existing separations. The fact that this

turns out the best choice, in this case, hints that the ansatz of histograms similar to the sketch
A3 does not actually show up often.
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