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Abstract: Despite landslides impact the society worldwide every day, landslide information is
inhomogeneous and lacking. When landslides occur in remote areas or where the availability of
optical images is rare due to cloud persistence, they might remain unknown, or unnoticed for long
time, preventing studies and hampering civil protection operations. The unprecedented availability
of SAR C-band images provided by the Sentinel-1 constellation offers the opportunity to propose
new solutions to detect landslides events. In this work, we perform a systematic assessment of
Sentinel-1 SAR C-band images acquired before and after known events. We present the results
of a pilot study on 32 worldwide cases of rapid landslides entailing different types, sizes, slope
expositions, as well as pre-existing land cover, triggering factors and climatic regimes. Results show
that in about eighty-four percent of the cases, changes caused by landslides on SAR amplitudes
are unambiguous, whereas only in about thirteen percent of the cases there is no evidence. On the
other hand, the signal does not allow for a systematic use to produce inventories because only in
8 cases, a delineation of the landslide borders (i.e., mapping) can be manually attempted. In a few
cases, cascade multi-hazard (e.g., floods caused by landslides) and evidences of extreme triggering
factors (e.g., strong earthquakes or very rapid snow melting) were detected. The method promises to
increase the availability of information on landslides at different spatial and temporal scales with
benefits for event magnitude assessment during weather-related emergencies, model tuning, and
landslide forecast model validation, in particular when accurate mapping is not required.
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1. Introduction

A landslide is defined as the movement of a mass of rock, debris, or earth down a slope under
the influence of gravity [1]. Landslides are triggered by natural phenomena including earthquakes,
rapid snow melting and intense or prolonged rainfall, or they are induced by human activities such
as timber clearcut or road construction, or a combination of both [2]. They can occur singularly or in
groups of tens, hundreds or even thousands in a region (We here refer to event landslide as to those
slope failures appearing ’fresh’ in remote sensing images and in the field, we also name them triggered
landslides. Furthermore, we refer to a landslide event to indicate situations where multiple landslides
were caused by a single triggering factor (i.e., an earthquake or a typhoon). They can also be named
triggered events. An event inventory portrays a landslide event).
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Landslides occur anywhere in the world causing victims, economic losses and damages to
properties. Despite many authors recognize the importance of collecting accurate information on
the location, type and magnitude of triggered event landslides, landslide information is lacking [3].
In many cases, landslide events can remain completely unnoticed or be only partially documented,
depending on their impact on vulnerable elements (people, structures and infrastructures). This implies
that knowledge on landslide triggered events can be at least biased by incomplete inventories, and
reveals that our comprehension of landslides phenomena at the global/continental scale in relationship
to triggering events is based on few complete event inventories [4,5]. Arguably, limited or incomplete
event landslide data affects landslide modeling as well as landslide forecast models performance
validation [6]. Obtaining information on landslides both in urbanized and uninhabited areas can be
carried out by systematically analysing monoscopic or (better) stereoscopic aerial images available
for a territory [7,8]. Generally, expert trained geomorphologists collect data on landslide occurrence
by visual interpretation of such images based on a set of well-defined criteria that build on image
characteristics such as color, tone, mottling, texture, object pattern (i.e., the radiometric signature),
shape, size, site topography, curvature, morphologic and structural setting (i.e., the morphologic
signature) [9]. If landslides are identified and mapped using archival aerial photographs, event
landslide are assigned the date of the aerial photograph based on the characteristics of ’freshness’
of slope failures, unless the date of the triggering event(s) is known. In such cases, uncertainty is
introduced in assigning a date and extent to the actual triggered event. Uncertainty can be reduced
drastically if landslides are detected and mapped using images acquired on-purpose right after a
triggering event.

Over the last 10 years, availability of optical satellite images has significantly increased, enlarging
to the global scale the potential coverage of landslide event inventory maps, also thanks to an
higher revisiting time compared to aerial photographs. Optical images can be used to produce event
inventories applying (i) visual interpretation or (ii) (semi-) automatic procedures. In the first case, image
interpretation (along with field checks) is usually applied “on demand” because it is time consuming
and expensive, hence an unknown number of landslides within triggered events can remain unnoticed
or unreported. In the optical field, visual (heuristic) interpretation of images and derived products has
been preparatory for (i) quantitative image analysis through image classification methods, (ii) many
machine learning frameworks [10] for (iii) automatic and semi automatic recognition and mapping.
The large availability of high resolution satellite data and the development of quantitative image
processing techniques for event landslide detection and mapping is a potential source to systematically
obtain information on slope instabilities over large areas [3,11], but it is not fully exploited, mainly
because these techniques are still implemented and tested over specific test sites following already
known events [12]. The systematic and/or automatic detection of new event landslides is rare [12].

Despite their undoubted potential, optical images have intrinsic limitations due to the cloud cover
that usually is dense during and right after events triggered by intense rainfall [12,13]. Equatorial
South America, the Congo River basin in Africa, and Southeast Asia are the cloudiest regions of the
world, with annual cloud frequencies (proportion of days with a positive cloud flag) higher than eighty
percent [14]. Thirtysix percent of a year of conterminous (from 30 April 2013 to 29 April 2014) United
States Landsat-8 observations were obscured by cloud and an additional seven percent were obscured
by cirrus. Globally, locations with very persistent cloud at the time of Landsat-5, Landsat-7, and
MODIS overpass, have been observed to include Equatorial Africa, Amazonia, northern boreal regions,
and Southeast Asia [15–17]. Darjeeling Himalayas in West Bengal province, India, witnesses every year
loss of human lives and colossal damages to properties due to landslides [18]. Landslides mainly occur
during the monsoon season when from June to September it rains almost every day (20/27 days each
month) [18,19]. From June 2018 to September 2018, only 2 optical images in the monitoring service
offered by ©2019 Planet Labs Inc. (www.planet.com) that is able to image anywhere on Earth daily
with occasionally some missing date, show less than thirty percent of clouds over 58 images.
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In Chile, the first cloudless image available in the service after a landslide occurred in Santa
Lucia the 16 December 2017 is on the 10th of January (25 days later with 12 available images).
Direct consequences can be like in the 2015 Nepal and 2016 Ecuador earthquakes crises where the
unavailability of optical images hampered the capacity of the emergency response coordinators to
properly cope with the event [20,21]. The use of Synthetic Aperture Radar (SAR) amplitude images
can mitigate the cloud coverage issue, since the SAR signal is capable of imaging the ground surface
day and night and in all weather conditions. SAR amplitude is already used to monitor land surface
cover [22,23], crops [24,25], snow extent and conditions [26–28], glacial melt [29] and movements [30],
soil moisture [31,32], and vegetation water content [33–36], to detect floods [37], natural fires [38], and
earthquakes [39]. SAR products are also started to be used in rapid response situations [40], including
flood services [41], to track eruption progressions [42], to produce reliable damage proxy maps of
building [43] and many examples of earthquakes ground deformations maps.

All of these applications are based on measures of changes in land surface radar backscatter
which can be measured by SAR-specific change detection techniques using repeat-pass imagery [36].
Most of the recently proposed SAR-based change detection techniques utilize the concept of difference
images or ratio for suppressing background information and enhancing change information [44].
In a difference image, the values of the pixels associated with land cover changes present values
significantly different from those of the pixels associated with unchanged areas [45,46]. Ratio image
formation is helpful in suppressing image background structure and improve the detectability of
potential changes from SAR data [44]. Ratio images in change detection logarithmic scaling changes
the multiplicative speckle noise in the ratio-image into additive noise [47] helpful in the successive
uses (classifications).

Detection of landslides by using measures of changes between pre-post amplitude SAR images
is based on the assumption that landslide occurrence changes the local land cover and some of its
properties (e.g., roughness and/or the complex dielectric value of the backscattering material which, in
turn, depends on the moisture content [48]). When the volumetric moisture content of the top layer of
the soil stripped by a landslide is high at the moment of the post event image acquisition, the backscatter
signal should drop leaving dark pixels in the measures of changes. Vice-versa, new dry outcrops
should result in a positive growth of the signal and then in bright pixels. Back-scattering might also
increase when the roughness (at the scale of the used wavelength) increases [48]. Such modifications
do not necessarily occur with all types of slope failures, but they are most commonly associated
with high-mobility (i.e., rapid moving) landslides. We refer to rapid landslides as those failures that
occur through a single parossistic acceleration (i.e., debris slides, avalanches, flows, and rapid deep
slides) [49]. These failures present an almost complete emptying of the source area, a transit area
affected in part by deposition and in part by erosion of the most superficial soil strata, whereas the
accumulation zone consists mainly of completely disrupted material covering the pre-existing land
surface. Landslides showing these features are often classified as rock slides, rock avalanches, debris
flows, earth flows, mud flows, and lahar. For such failures, measures of the backscattered waves
amplitudes recorded by some pre- and post-event SAR images may change along with the land cover,
which is the basic condition for their detection [12,13,50,51].

Currently, the use of SAR amplitude images for landslide recognition and mapping is not
widespread. Obstacles in their use are represented by a complex pre-processing [12,13], the acquisition
geometry that can affect the quality of the images over mountainous areas where landslides are
likely to occur, a certain difficulty to use the SAR signal in a traditional statistical classification
approach mainly due to speckling [48], and poor familiarity to use this kind of product in the landslide
mapping community. Sporadic examples exist from the use of airborne and satellite SAR data to
detect, characterize, and map single landslides or single landslide events using amplitude. In a
pioneering study, Singhroy et al. (1998) used Radarsat-1 images and C-HH airborne SAR data,
combined with Landsat TM images, to identify diagnostic features of large landslides together
with flow slides on sensitive marine clays in Canada [52]. Czuchlewski et al. (2003) employed
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L-band airborne SAR polarimetry to detect surface changes produced by the Tsaoling landslide, the
largest slope failure triggered by the 21 September 1999 Chi-Chi 7.6 Mw earthquake in Taiwan [53].
Zhao et al. (2013) inferred the Jiweishan rock slide in China using changes in SAR backscattering
intensity in ALOS/PALSAR images. Manconi et al. (2014) and Raspini et al. (2015) used very
high resolution X-band COSMO-SkyMed amplitude images and pixel-offset technique for a rapid
mapping of the Montescaglioso (Italy) landslide displacements [51,54]. Plank et al. (2016) combined
multi-temporal information extract from optical and polarimetric SAR data to map a rotational slide
near Charleston, West Virginia, USA and a mining waste earth flow near Bolshaya Talda, Russia [13].
Mondini (2017) used continuous measures of SAR amplitude changes and spatial autocorrelation to
intercept hundreds of landslides occurred in Myammar in 2015 [12]. Tessari et al. (2017) measured
the variation in the SAR amplitude between COSMO-SkyMed SAR acquisitions to detect the area
affected by two landslides located in the North-Eastern Italian pre-Alps [55] while Konishi and
Suga (2018) investigated the potential of the backscattering coefficient difference and the intensity
correlation between pre- and post-disaster COSMO-SkyMed images for landslide detection in the Kii
Peninsula [56].

Phase difference in SAR images and Interferometric Synthetic Aperture Radar (DInSAR)
techniques have been used to identify single landslides [57–61] or single events [62] trough their
ground displacements. Coherence between two SAR images in combination with interferometry is
proposed for earthquake induced landslide detection over a large area in Nepal [40] while DInSAR and
Advanced-DInSAR time-series have become common practice for deep seated slow moving landslide
activity evaluation [63–67], landslide inventories improvements [68,69], precursor detection [70,71],
and documented by the numbers of already published state of art articles [3,61,72–76].

The Sentinel-1 mission is enhancing the perspective in the use of SAR for landslide event disasters
capturing [12]. The constellation has been specifically designed to use the phase of the SAR signal and
perform, over land, advanced Differential Interferometric Synthetic Aperture Radar (DInSAR) [77].

The high revisit time, the relative high spatial resolution, the global coverage, the free availability,
and new processing software, offer an unprecedented opportunity to exploit the amplitude of the
SAR signal in new application fields for large scale natural hazard induced land surface changes
phenomena [12,78,79]. In this work, we investigate the possibility to systematically capture rapid
landslides through visual image interpretation of standard measures of amplitude changes in SAR
Sentinel-1 Topsar IW-SLC images. We selected 32 worldwide events in random geo-environmental
settings, land covers, type, size, and exposition. All the events occurred between May 2015 and
September 2018, the period covered by the availability of Sentinel-1 images. We obtained information
about landslides and their occurrence mainly using ’the landslide blog’ (https://blogs.agu.org/
landslideblog/) [80] but also searching in local newspapers, and local websites.

The procedure to pre-process the SAR images was instead the same for all test cases and included
radiometric, and geometric corrections of the amplitude to obtain Beta Nought β0 radar brightness
coefficient in slant coordinates, and measures of changes of β0 between images acquired before and
after the landslide occurrence using the natural logarithm of the ratio of β0 post event and β0 pre
event (Log-Ratio).

Maps of changes have been interpreted to detect the presence of landslides reported in the
archival information selected. The test cases were classified in three main categories: landslides
were (i) clearly visible; (ii) hardly visible (probably not detected if no archival information was
available); (iii) not visible. The 32 test cases were then characterized based on the size of the landslides,
the geometry of acquisition with respect to the slope exposition, lithology, land use, triggering factors,
and climate regime.

The paper is organized as follows: in Section 2, the test cases are shortly listed and presented;
Section 3 explains the work-flow to prepare the measures of changes of β0 and the criteria adopted
for the interpretation of the images; in Sections 4 and 5, results are presented, analysed and discussed

https://blogs.agu.org/landslideblog/
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to highlight the potential of the presented technique and its limitations; in Section 6 conclusions are
drawn and the future developments based on the outcomes of this work are also presented.

2. Test Cases

We assembled a list of 32 landslides events (Table 1) to study from a variety of different sources
including reports of meteorological and seismic events that triggered slope failures, local and national
newspapers available on the Internet. The main source of information was represented by the blog ‘The
landslide blog’ [80,81]. The blog is continuously updated with landslide events occurring worldwide
and in most of the cases together with information concerning geological aspects. The list includes
two events that occurred during the writing of the paper, the first occurred during extreme monsoon
rainfalls in India in August 2018 and the second, triggered by the Hokkaido Eastern Iburi Earthquake
that hit the Japanese isle of Hokkaido in September 2018. fiftythree percent of selected landslides
took place in Asia, about twenty five percent in America. Figure A1 in Appendix A summarizes
the geographical distribution of the events. All landslides occurred in the period ranging from
May 2015 to September 2018, in the temporal window nominally covered by the availability of the
Sentinel-1 images. In this study we considered only rapid shallow landslides including shallow debris
slides, debris avalanches, and debris flows and deep landslides including large debris slides and rock
avalanches, debris flows, rock slides, and rapid earth flows [49] because they leave clear signs on
the land surface. Other parameters including dimension (from 1000 m2 to 21 km2), exposition, land
cover, slope, lithology, and climate regimes were set free (Table 2). More than fifty-nine percent of
the landslides are rainfall induced, and rainfall contributed together with earthquakes or rapid snow
melting for twenty-one percent of the events. The triggering factors remain unknown for four cases.
Lithological information was derived from different sources of information, mainly from national scale
geological maps, and land cover from Google Earth. Tables 1 and 2 resume all the information that we
were able to collect for the selected cases.
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Table 1. Registry of the dataset with location, date of occurrence, type, and triggering factor. For sake of clarity, we also report the set membership assigned according
to the results of the analysis (Paragraph 4): set 1 corresponds to landslides that we were not able to recognize, set 2 to landslides recognized only knowing a priori the
location, and set 3 the successful cases.

ID Name Location Occurrence Date Type Trigger Set

1 Lamplugh glacier landslide Alaska, USA 28/07/2016 Ra U 3
2 Fagraskògarfjall landslide Fagraskògarfjall, Iceland 07/07/2018 Df R 3
3 Tonzang landslide Chin Division, Myanmar 18/07/2015–11/08/2015 Es-Ef R 3
4 Yarlung Tsangpo landslide Tibet, China 17/11/2017–25/11/2017 Sa-Ra E 3
5 Kurbu-Tash landslide Uzgen Region, Kyrgyzstan 29/04/2017 Ef RS 3
6 Willow Creek landslide Wyoming, USA 25/05/2017–06/06/2017 Ef-Mf U 3
7 Mud Creek Slide California, USA 20/05/2017 Rs U 3
8 Aranayake landslide Sabaragamuwa Province, Sri Lanka 17/05/2016 Es-Df R 3
9 Pasir Panjang landslide Brebes, Indonesia 22/02/2018 Df R 3
10 Kotrupi landslide Himachal Pradesh, India 13/08/2017 Ds-Df R 3
11 Bondo landslide Val Bondasca Region, Switzerland 23/08/2017 Ra-Df RS 3
12 Wairoa Landslide North Island, New Zealand 20/02/2018–24/02/2018 Rs U 3
13 Kaikoura landslide South Island, New Zealand 13/11/2016 Sl E 3
14 Bucyurabuhoro landslide Karongi District, Rwanda 06/05/2018 Df-Mf R 3
15 Hita landslide Oita Prefecture, Japan 05/07/2017 Sl R 3
16 Minamiaso landslide Kumamoto prefecture, Japan 16/04/2016 Rs E 3
17 Freetown landslide Western Area, Sierra Leone 14/08/2017 Ef-Mf R 3
18 Lai Chau landslide Lai Chau Province, Vietnam 26/06/2018 Sl-Ef R 3
19 Zhangjiawan landslide Guizhou Province, China 28/08/2017 Rs R 3
20 Shenzhen landslide Guangdong Province, China 20/12/2015 Es-Ef H 3
21 Kure landslides Hiroshima prefecture, Japan 09/07/2018 Df R 3
22 Yaglidere landslide Giresun, Turkey 04/02/2016 Rs RS 2
23 Salgar landslide Antioquia Department, Colombia 18/05/2015 Df-Mf R 1
24 Corinto landslide Cauca Department, Colombia 07/11/2017 Mf R 1
25 Hokkaido landslides Hokkaido Prefecture, Japan 06/09/2018 Es-Ef ER 3
26 Kodagu landslides Karnataka Province, India 14/08/2018–17/08/2018 Es-Ef R 3
27 Mocoa landslide Putumayo Province, Colombia 01/04/2017 Df-Mf R 1
28 Medellin landslide Antioquia Department, Colombia 26/10/2016 Es-Ef R 1
A Maoxian landslide Sichuan Province, China 24/06/2017 Ra R 3
B Villa Santa Lucia landslide Los Lagos Region, Chile 16/12/2017 Rs-Mf RS 3
C Almaluu-Bulak Suzak District, Kyrgyzstan 27/04/2016 Es-Ef R 3
D Kyzyl-Senir landslide Suzak District, Kyrgyzstan 10/04/2017–04/05/2017 Es-Ef R 3

Legend: Landslide types: (Df) Debris flow; (Ds) Debris slide; (Ef) Earth flow; (Es) Earth slide; (Mf) Mud flow; (Ra) Rock avalanche; (Rs) Rock slide; (Sl) Slide; (Sa) Snow avalanche;
Triggers: (E) Earthquake; (H) Human induced; (R) Rainfall; (S) Snowmelt; (U) Unknown.
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Table 2. Geological, geomorphological, climatic regime, and pre-existing land cover characterization
of the test cases.

ID Area (Km2) Exposition Land Cover Slope (°) Lithology Climate Regime

1 21.00 N Glacial <10 Ir Dfc
2 2.60 SE Bare 10–15 La Cfc
3 5.00 NE Vegetated 10–15 Fly Aw
4 2.50 SE Bare >25 Nsc Dwb
5 1.85 SE Bare 10–15 Uc Dsa
6 0.42 SW Vegetated 10–15 Fly Dfb
7 0.24 SW Bare 15–25 Cc Csb
8 0.50 NE Vegetated 15–25 Nsc Af
9 0.34 SE Vegetated <10 Py Af

10 0.15 SW Bare/vegetated 15–25 Sc Cwa
11 1.30 NW Vegetated 15–25 Sc-Ir Dfb
12 0.20 NW Vegetated <10 Fly Cfb
13 0.50 SE Vegetated 10–15 Fly Cfb
14 0.11 SE Vegetated 15–25 Fly-Mar Aw
15 0.26 SE Vegetated 15–25 La-Py Cfa
16 0.36 SE Vegetated 15–25 La-Py Cfa
17 0.20 NW Vegetated/built up <10 Ir Am
18 0.38 SE Vegetated 10–15 Car Cwa
19 0.26 NW Vegetated 15–25 Cc Cwc
20 0.25 N Waste dump 10–15 Ir Cwa
21 0.50 NW Vegetated <10 Py Cfa
22 0.006 NW Vegetated >25 Ir Cfb
23 0.40 E Vegetated/built up <10 Fly Af
24 1.00 NW Vegetated/built up <10 Uc Am
25 0.01 ALL Vegetated 10–15 Cc Cfa
26 0.30 ALL Vegetated 10–15 Uc Cwa
27 0.001 ALL Vegetated/built up <10 Ir Af
28 0.05 W Bare/vegetated >25 Nsc Am
A 1.50 SW Vegetated 15–25 Fly Cfa
B 5.00 SE Vegetated <10 Ch Cfb
C 0.18 N Bare 10–15 Uc Dsa
D 1.54 SE Bare <10 Uc Dsa

Legend: Lithology: (Car) Carbonate rocks; (Cc) Consolidated clastic rocks; (Ch) Chaotic-mèlange; (Fly) Silico
marl calcareous Series; (Ir) Intrusive rocks; (La) Lave and basalts; (Mar) Marlstone; (Nsc) Non-schistose
metamorphic rocks; (Py) Pyroclastic rocks and ignimbrites; (Sc) Schistose metamorphic rocks; (Uc)
Unconsolidated clastic rocks; Climate regimes: (Af) Tropical rainforest climate; (Am) Tropical monsoon
climate; (Aw) Savanna climate; (Cfa) Humid subtropical climate; (Cfb) Temperate oceanic climate; (Cfc)
Subpolar oceanic climate; (Csb) Warm-summer Mediterranean climate; (Cwa) Monsoon-influenced humid
subtropical climate; (Cwc) Cold subtropical highland climate; (Dfb) Warm-summer humid continental climate;
(Dfc) Subarctic climate; (Dsa) Mediterranean-influenced hot-summer humid continental climate; (Dwb)
Monsoon-influenced warm-summer humid continental climate.

3. Data and Pre-Processing

We downloaded Sentinel-1 Images from the Copernicus Open Access Hub [82] in Level-1 Single
Look Complex (SLC) mode, with VV or VV-VH polarizations depending on the availability over
the different test sites, and Interferometric Wide (IW) acquisition mode. SLC products are based on
focused SAR data, geo-referenced using orbit and attitude data from the satellite, and provided in
slant-range geometry [83]. Topsar Interferometric Wide (IW) swat mode is the main acquisition mode
provided by ESA. It consists of one image per sub-swath per polarization and each sub-swath is made
up of bursts as if they were independent SLC images. Size of the files ranges from 2 Gigabytes to
4 Gigabytes for single pol images in zip format, and from 4 Gigabytes to 8 Gigabytes for dual pol
images respectively. As a general rule, we chose pre- and post-event images so as to have the shortest
possible temporal window containing the event and, when available, in ascending and descending
mode. In 17 cases the acquisition temporal window between pre- and post-event images is of 12 days,
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in 8 cases of 24 days, the remaining cases range between 32 and 72 days. Turkey-Giresun (Table 1,
case 22, 288 days), Japan-Kumamoto (Table 1, case 16, 105 days), test cases represent an exception
to this rule originated by some special event conditions described later. In two cases, the post-event
image is acquired just one day after the landslide occurrence, in one case two days after. On average,
only considering cases where the date of the landslide occurrence is known (27), the time delay of the
used post-event acquisition is less than 10 days. Table A1 in Appendix B recaps the images used in
this work.

3.1. Measures of Changes of β0 between Pre- and Post-Event Images

The final procedure to obtain the measure of changes of amplitude between two consecutive
Sentinel-1 images acquired over the same area includes: thermal noise removal, radar brightness
coefficient computation in slant range or β0 calibration [84], when available, orbit state vectors
refinement with precise orbit files automatically downloaded from Array’s servers [85], Topsar de-burst,
and eventually multi-looking with a number of range looks of 4 and azimuth looks of 1 to obtain a
mean ground resolution square pixel of about 14 m. The two outputs are then co-registered and stacked
using or (i) the SRTM 1Sec HGT auto downloaded DEM DEM-assisted co-registration, and nearest
neighborhood interpolation type for the slave image (always the post-event), or (ii) the cross-correlation
based co-registration with an estimate of the initial coarse offset with a width and height windows of
128, row and column interpolation factors of 4 max number of interpolations of 10 and 2000 Ground
Control Points (GCPs) with a GCP tolerance of 0.25. The first represented our preferred (or first
try) option, however, in some cases the procedure failed likely due to DEM inaccuracies in areas
with large topographic gradients (e.g., near the Himalayan belt). Stacked images are filtered using
the adaptive Frost algorithm [86], with a filter size in X and Y of 5 pixels, and a damping factor
of 2. The natural logarithm of the ratio between the post-event and pre-event elaborated image is
computed, and eventually ellipsoid corrected or terrain corrected to transform the measure of β0

Intensity changes expressed by the logarithm in ground coordinates from slant coordinates. Changes
can be thus visualized and interpreted in both coordinate systems.

Separately, masks of shadows and pixels in layovering were prepared to exclude from the
interpretation areas with signal problems. All the pre-processing operations were assembled and
executed in batch using the Graph Processing Tool (GPT) in SNAP 6.0, the software made available
by ESA under the Scientific Exploitation of Operational Mission (SEOM) programme [87] Toolbox
Exploitation Platform [88] for image processing.

3.2. Interpretation

We adopted a photo-interpretation approach to identify landslides in the images showing the
measures of changes of β0. The photo interpretation approach applied to event landslide detection and
mapping is usually based on the recognition of a morphological and a radiometric signature [3,9,89].

The morphological signature is the group of all the morphometric features that characterize a given
slope, including slope, aspect, cross-sectional and longitudinal curvature (which allows to identify
concave-convex profile slopes), roughness, among others. The morphological signature is traditionally
examined using stereoscopic aerial or satellite images [3,9,89–91], or alternatively using high to
ultra-resolution topographic data obtained by LiDAR [92–94] or derived through photogrammetric
techniques [95] not possible in this context.

In optical images, the radiometric signature of a landslide is composed by a set of images
characteristics analysed simultaneously to recognise most of the visible changes produced by an event
landslide where it occurs. Such characteristics include the intensity (tone) and the wavelength (color) of
the light reflected by the target, and their spatial distribution (texture, pattern, mottling, shape). Color
and tone allow interpreters deriving information on the land cover (e.g., distinguishing between a bare
soil and a vegetated area, or between a dry and a wet area). The spatial arrangement of the radiometric
signal in the space generates what is referred to as texture, pattern, mottling and shape. In remote
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sensing images, such continuous features are sampled (and represented) in a grid of pixel. Therefore,
the spatial arrangement of pixels is referred to the clustering of pixels showing similar tone and color
characteristics. The texture refers to the granularity of the image (e.g., salt and pepper or mottled), the
pattern refers to the presence of geometrical features (e.g., parallel alignments), the mottling refers
to the size and distribution of the clusters of pixels within the image (e.g., darker or lighter tones
areas), and the shape describes the outline of pixel clusters (e.g., elongated, irregular). Depending
on the experience of the interpreters, the photo-interpretation can stop at the simple reading of the
photographic and morphologic features or proceed to the identification of real-world objects, their
classification and eventually make deductions about the processes.

Using images of measures of bi-temporal changes of β0, the detection of landslides can be done
only for those landslides which have induced changes in the complex dielectric constant and or
roughness of the land cover (i.e., rapid landslides). Furthermore, the dimension of the change must
be enough large to visually emerge from the salt-and-pepper matrix coming from the incoherent
changes occurring between two SAR images. A change of few pixels is likely to remain unnoticed in
particular when the surrounding matrix of pixels shows other signatures of changes of similar sizes.
From an interpreter’s point of view, in this case landslide detection can build only on considerations
on the clustering of pixels with similar values of change immersed/plunged in a bulk of randomly
distributed values of changes as results of changes in speckling. Therefore, the only concept that
could be borrowed from the consolidated photo-interpretation technique is the analysis of the spatial
distribution of the radiometric signal, which, in this case, is the pattern, texture, mottling, and shape of
the clusters of pixels showing similar values of change of β0.

In this experiment, the assignment consisted in the ability of three differently skilled photo
interpreters to detect event landslides occurred in a given space and temporal window. The process of
recognition was carried out by using simultaneously images of changes in azimuth-range geometry
and ellipsoidal geometry. In case of large events (many changes), subsets of 5 × 5 km around the
landslides were used to constrain the search and save time.

4. Results and Analysis

Three main scenarios were identified based on the interpretation outcomes: (i) no clusters; (ii) a
single clear cluster (iii) multiple clusters with different textures and shapes were identified. The first
step of the interpretation consisted in detecting a cluster or a group of clusters that could correspond to
the event landslide reported in the chronicle information and/or seen in the optical images. Secondly,
the interpreters systematically analysed the frames to detect further clusters possibly attributable to
event landslides. It was observed that single cluster scenario mainly occurred in environments without
presence of snow or floods. Multiple clusters where instead detected in case of large triggered events
(i.e., earthquakes or typhoons) or in presence of snow melting.

Based on these scenarios, case studies were grouped in three main categories (i) set 1: landslides
were not visible; (ii) set 2: landslides were hardly visible (probably not detected if no archival
information was available); (iii) set 3: landslides were clearly visible (Table 1).

Despite the different skill of the interpreters, the agreement in the classification of the
interpretation is almost total: we did not succeed in four cases (set 1), one case was identified using
the coordinates (set 2), and finally we clearly identified 27 cases (set 3). In 8 cases (Table 1, cases
A, B, C, D, 1, 2, 3, 4) the interpreters agreed that images show enough elements to delineate the
landslide borders (mapping) and even classify their types. All results except for Colombia-Mocoa
(Table 1, case 27) and Colombia-Medellin (Table 1, case 28) are shown in Figures 1–6. Colombia-Mocoa
and Colombia-Medellin landslides coordinates are approximatively 1°10’45.90”N, 76°41’4.46”W and
6°19’8.11”N, 75°29’11.39”W, respectively.

In all the figures, the measures of SAR amplitude changes are reflected over the vertical axis
when satellite images are acquired in descending mode, and over the horizontal axis when satellite
images are acquired in ascending mode to display landslides as closest as possible into some ground
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coordinates. We will now analyse the peculiarities of the test cases. General discussion on this work is
demanded to the next paragraph.

Set 1 includes four test cases and they are all in Colombia. Landslides in the Colombia-Mocoa
(Table 1, case 27) and Colombia-Corinto (Figure 5, case 24) test cases are multiple but very small
and they occurred along narrow valleys partially North-South oriented. The first area is moderately
affected by layovering (less than ten percent in the investigated area), also in proximity of the landslide,
while the second is not, or just marginally. These elements might have disturbed the capacity of
the interpreter to recognize the continuity of some (small) elements of changes. In particular in the
Colombia-Corinto case we clearly recognized the presence of the final part of the mud flow that hit the
city of Corinto, but we were not able to detect the sources (located in the red circle in Figure 5, case 24).
Similarly, in the Colombia-Salgar case (Figure 5, case 23) the signs of the run-outs along the channels
are visible but not the source areas.

More difficult is to justify the failure in the Colombia-Medellin (Table 1, case 28) test case having a
favorable relative geometry in ascending mode. Since the landslide affected a cave, at least partially,
the changes of the surface caused by the landslide might not be enough to be measured by the
proposed technique.

The Turkey-Giresun test case (Figure 5, case 22) is the only one in set 2. It represents the most
discussed example. The standard procedure that includes the coupling of the last pre-event image
together with the first post-event image available in the ESA repository resulted too difficult to
interpret. In fact, the presence of snow in the pre-event image but not in the post-event causes many
signals that disturb the interpretation. Using a pre-event image without snow, the measure of changes
resulted clearer but still the landslide was identified through coordinates. In particular, the geometry
of the cluster was almost rectangular in shape and appeared homogeneously black in color, and then
impossible to associate without unambiguity to a landslide.

Set 3 includes all the other cases, where landslides were unambiguously identified. for the
SriLanka-Aranayake (Figure 4, case 8), and Japan-Kumamoto (Figure 5, case 16) cases we did not follow
the standard procedure of image selection, for different reasons. In the first (SriLanka-Aranayake),
we failed when we tried to co-register the first post-event to the last pre-event. We opted to use the
following available post-event. The reasons for the problems in the co-registration are unknown. In the
second case (Japan-Kumamoto) the images acquired close to the event have only the VV channel
and in the measure of changes there are not strong signals despite of the type of situation that was
supposed to be favorable. Coupling images in VH channel one acquired just after the earthquake, and
one a few month later we obtained a better signal.

The effects of the acquisition mode are particularly clear in four cases. The Rwanda-Bucyurabuhoro
test case (Figure 5, case 14), shows very clear signs of the target (and also of other landslides triggered
in the same event) only in the ascending acquisition even if the main landslide exposition is South
East. In the descending mode, there is an eastward topographic barrier in the affected slope that
does not allow the signal to illuminate well the whole landslide body. The Sierra Leone-Freetown
(Figure 5, case 17) test case shows well the displacement of the scarf North South oriented. Part of
the end of the run out results visible as well, but it is difficult to see the connection between the two
different geomorphological features, probably because the geometry is unfavorable and the lack of
the descending acquisition does not help. Also the Switzerland-Bondo landslide (Figure 4, case 11),
shows an extremely clear signal for most of the path to rapidly disappear because of a dramatic change
in the relative geometry acquisition caused by a nearly orthogonal bend at the confluence between
the channel where the landslide initiated and the valley of the main river. The Japan-Hita test case
(Figure 5, case 15) is an example where the expected favorable geometry of acquisition (descending)
works worse then the other (ascending) and the presence of very little layovering does not justify the
result. The signal in the ascending is very clear.

The China-Shenzhen test case (Figure 5, case 20) is quite clear and there are also some evidences
of the interaction between the landslide and the impacted and surrounding urban environment.
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Test cases where landslides events are caused by the same triggering factors include:
Myanmar-Tonzang (Figure 4, case 3), Indonesia-Pasir Panjang (Figure 4, case 9), Japan-Kure (Figure 5,
case 21), and India-Kodagu (Figure 6, case 26) caused by strong rainfall, and, China-Yarlung
Tsangpo (Figure 4, case 4), New Zealand-Kaikoura (Figure 5, case 13), Japan-Kumamoto (Figure 5,
case 16), and Japan-Hokkaido (Figure 6, case 25) caused by earthquakes. In most of the cases,
multiple signs of changes are present, including cases where landslides caused dams and then floods
(New Zealand-Kaikoura, Figure 5, case 13 and, Japan-Kumamoto, Figure 5, case 16) in a multi-hazard
cascade process. The landslide in Iceland (Figure 4, case 2) triggered a flood as well. Figure 6, shows
spectacular examples (Japan-Hokkaido, Figure 6, case 25, and India-Kodagu, Figure 6, case 26) of event
landslides intercepted by the procedure.

We did not know the date of occurrence of the China-Yarlung Tsangpo landslide (Table 1, case 4)
and then we downloaded a temporal series of images that allowed us to constrain the date of occurrence
in between two acquisitions (from 18 to 30 November 2017), following the big earthquake occurred the
19 November 2017. As far as we know, the precise date of occurrence remains still unknown but we
can say that the landslide followed the earthquake of at least 12 days.

Figure 1. The Maoxian (China) landslide (case A in Table 1). On the left: landslide location, in the
middle: the measure of SAR amplitude changes, on the right: the landslide in the optical image (from
https://www.planet.com).

Figure 2. The Villa Santa Lucia (Chile) landslide (case B in Table 1). On the left: landslide location,
in the middle: the measure of SAR amplitude changes, on the right: the landslide in the optical image
(from https://www.planet.com).

https://www.planet.com
https://www.planet.com
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Figure 3. The Kyrgyzstan landslides (cases C and D in Table 1). On the left: landslide location, in the
middle: the measure of SAR amplitude changes where the red arrows point to the C, and D landslides
in Table 1, and the yellow one to an unknown landslide. On the right: the landslide in the optical
image (from https://www.planet.com).

The remaining test cases apparently present no peculiarities and the identification resulted
unambiguous and easy. In Figures 1–3, respectively the China-Maoxian (case A), Chile-Villa Santa
Lucia (case B), and Kyrgyzstan Amaluu-Bulak and Kyzyl-Senir (cases C and D) cases that show how
landslides can be even mapped. In top left Figure 3 the yellow arrow indicates a landslide that is
clearly visible in the image but it is not part of the test cases because no relative chronicle information
was found. This is a landslide that might be potentially mapped.

In Figure 7, the histogram displays the number of landslides in five logarithmic intervals of
landslide areas. The different colors in the bars represent the different set membership percentages.
The bin size was chosen to avoid empty bins.

https://www.planet.com
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Figure 4. Measure of SAR amplitude changes for landslides, cases from 1 to 12 in Table 1. The coordinates
below each box represent the landslide central point in WGS84 Lat/Long.
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Figure 5. Measure of SAR amplitude changes for landslides, cases from 13 to 24 in Table 1. The
coordinates below each box represent the landslide central point in WGS84 Lat/Long.
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Figure 6. Landslides events in Hokkaido (Japan), case 25 in Table 1, and in Kodagu (India), case 26
in Table 1. Coordinates of the green point marks in the upper and lower figures are respectively
42°44’35”N 142°00’18”E and 12°27’54”N 75°39’16”E in WGS84 Lat/Long.
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Figure 7. Histogram showing the number of landslides in five logarithmic intervals of landslide areas.
Colors in the bars represent the different set membership percentages where set 1 corresponds to
landslides that we were not able to recognize, set 2 to landslides recognized only knowing a priori the
location, and set 3 the successful cases.

5. Discussion

Information about landslides timely during or immediately after an event is an invaluable source
for emergency response and management. We test here photo-interpretative approaches to identify
rapid landslide occurrence in measures of SAR amplitude changes. The scope of the method is to
obtain preliminary information when cloud coverage hampers the possibility of using optical images.
We selected only cases where chronicle information reported about a high-mobility new triggered
landslide occurrence, excluding a priory slow moving landslides for which many studies have been
already carried out. Parameters including landslide size, direction of the movement, pre-event land
cover, and triggering factors were set free in our selection.

The pre-processing of the images was the same for all the test cases with the purpose of
evaluating its systematic applicability in different contexts. Occasionally, exceptions were done
for the co-registration. We acknowledge that some test cases would have probably benefited of some
ad-hoc tuning.

We worked with Level-1 SLC products because, in the past, more frequently available than
Level-1 GRD products, they are not multi-looked, and they are in SAR coordinates allowing more
options in the tuning of the pre-processing procedure. We verified that the multi-looking process, in
particular with a Number of Range Looks of 4 and Azimuth Looks of 1 to obtain a ground square
pixel of about 14 m, tends to produce maps more familiar to the interpreter. In fact they look more
similar to the maps commonly used in terms of noise, orientation and proportions (less distorted).
Figures 1–3 show how the landslides features in the SAR measures of changes might still present
some deformations in comparison with optical images that are caused by the use of a different
reference system. Distortions required an adaptation effort in the photo-interpretation process. For
very small features, the recognition of changes resulted in many cases ambiguous but easier measuring
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changes at higher spatial resolution before the multi-looking. The re-projection in ground coordinates
introduces some tedious distortions that can affect the interpretation, particularly when landslides are
small and they occur on steep slopes. In order to recognize changes caused by landslides and some
geomorphological features, the final preference has been mainly assigned to maps in SAR coordinates
with multi-looking.

All the downloaded images were in Interferometric Wide (IW) mode with 5 × 20 m spatial
resolution in single look. IW is the main acquisition mode over land. We presume that some Strip
Map mode images at 5 × 5 m spatial resolution in single look would have helped in recognizing
changes in sets 1 and 2, and perhaps in a better definition of some local features of changes associated
to the landslides under study. It is known that the detectability of small landslides increases with the
increasing spatial resolution of optical images [9]. This has to be tested for SAR images. When available,
we processed both VV, and VH channels and we noticed a better definition of the changes in the VH
channel when landslides occurred in previously deeply vegetated areas, while VV offers sometimes
more definition and contrast in presence of glaciers or snow. The interpretation was facilitated in
presence of both the channels. We bore an unexpected problem at the level of co-registration when we
analysed areas close to the Himalayan chain. The DEM-assisted co-registration procedure generated
some triangular lacerations into the co-registered images in some cases involving the area affected by
the changes. In these cases we co-registered the images using the procedure available in SNAP based
on cross correlation. Comparative tests randomly selected (Table 1, cases 11, 15, 24, B, C) between the
two procedures in areas where we did not experience problems in using the DEM-based procedure,
did not show any influence of using one of the two procedures on the result.

We opted for a unique speckling filter set-up based on the Frost filter, which was already proved
that suitable for working properly in mountainous areas [96] where landslides occur. The 5 × 5 moving
window size represents a compromise between the need of the interpreter to (i) preserve the features
potentially related to changes caused by small landslides and (ii) filter the noise. It was chosen through
a trial and error process according to the preferences of the interpreters. Moving windows larger than
5 × 5 resulted too invasive and able to cover some features important for the interpretation of small
landslides. The difference between 3 × 3 and 5 × 5 moving windows is not impacting and somehow
difficult to evaluate.

Photo-interpretative methods cover the problems generated by the adaptive filters outliers [46,97]
in the Log-Ratio index unsupervised thresholds identifications to detect changes. The Log-Ratio index
is a conservative choice: it is widely used in many applications, relatively easy to implement, less
sensitive to to calibration errors compared to the traditional methods based on differences [36], adapt to
o enhance low-intensity pixels [35] to facilitate the interpretation in particular after multi-looking [36],
and proved to be useful to detect landslides [12]. Speckling filtering is probably one of the main
steps where dedicated solutions and tuned parameters would contribute more to reach, case by case,
better results.

The geometry of a SAR image acquisition system, or the relative geometry between the
satellite transmission/acquisition system and the target is an information to take into account in
the interpretation of a SAR image. We adopted the criterion of choosing, as first try, the geometry
of acquisition that should limit geometrical distortions in the single images and then in the change
detection estimation, with ascending acquisitions for landslides exposed towards West, descending
acquisitions for landslides exposing towards East and no preference for North-South moving direction.
This criterion was not always respected due to the lack of images in both the acquisition configurations.
When possible, we used both ascending and descending acquisitions for the interpretation of the same
event. Our choice was betrayed at least in the Kumamoto-Japan test case (Table 1, case 16).

The relative geometry is a key point for the SAR intrinsic geometry distortions including
layovering, shadowing and foreshortening that remain insurmountable limitations in the use of
the images. The problem can be just partially mitigated by using the double orbit (ascending and
descending) when available. This is somehow more evident for small landslides that induce limited
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changes difficult to trap when immersed in the salt and pepper noise originated by the random changes
experienced between the pre- and post-event images.

There is a limit to landslide detection that is imposed by the images resolution, the limit is not
absolute because it also depends on the signal contrast between within and outside the landslide
border. The detection of event landslides in remote sensing optical images builds on the ability
of an interpreter to discern the signature of the landslide from its neighboring area. Landslides
are perceived by interpreters as anomalies in otherwise continuous features that characterize a
landscape, such as land-use pattern (plowing, wood, cultivated land), anthropic elements (e.g., linear
infrastructures), geological structures (bedding traces, faults traces), among others. The more the
landslide signature (morphological and photographic in optical images) is different from the typical
surrounding environment, the easier it can be detected by an image interpreter. For example, shallow
landslides are harder to detect on a not plowed and not vegetated field during the autumn/winter
seasons than on a grass-covered field. In our case, the only variables that can be taken into account are
the pattern and shape of the clusters the portray the perturbation induced by the landslide occurrence,
given that a change has occurred where clusters appear. There is no morphological elements, nor
photographical elements that an interpreter can associate to a landslide feature or to an entire landslide.
Our set of cases and imagery do not allow us to determine the lower limit of the detectable landslide
size and more research is needed.

The other variables taken into account in this work, include geology and pre-existing land cover.
All of them do not seem to influence the ability of the interpreter to recognize landslides. Landslides
occurred in areas previously covered by vegetation resulted in some cases easier to detect, particularly
in the VH channel. Earthquakes, rapid snow melting, and typhoons may cause situations with diffuse
and different signs on the territory. In many cases, situations of cascade multi-hazard were found,
particularly floods caused by landslide dams. Cases with single landslides resulted definitely much
easier to detect, but the learning process experienced by the interpreters allowed to identify landslides
previously unknown. This was particularly relevant for the events triggered by earthquakes in China,
Japan, New Zealand, Myanmar, and in Kyrgyzstan.

We also stress that in some cases we were looking for a single landslide and we found populations
of landslides caused by the same triggering factor. Examples are the Kaikoura case in New Zealand
(Figure 5, case 13), the Amaluu-Bulak case in Kyrgyzstan (Figure 3, case C), the Kumamoto case in
Japan (Figure 5, case 16), the Pasir Panjang case in Indonesia (Figure 4, case 9) and the Tonzang case in
Myanmar (Figure 4, case 3). This can be seen as an indication that the photo-interpreter has increased
the ability to associate patterns of emerging clusters of changes to landslides independently by an
priori information.

The Hokkaido case in Japan and the Kodagu case in India (Figure 6, cases 25 and 26) encourage to
speculate the use of the technique for a rapid identification of the areas affected by huge triggering
events. Myanmar (Figure 4, case 3) and Japan (Figure 5, case 16) are other meaningful examples.
For these events magnitude estimation, which requires a quantitative assessment of the number and
the size of the triggered landslides, we consider worthwhile to carry out further research.

In at least two (Figure 5, cases 23 and 24) of the four unsuccessful cases we were able to identify
some consequences of the event. This information can also be used for emergency purposes.

The good results obtained at least in 28 cases allow to state that the framework is enough general to
be used worldwide to detect triggered high-mobility landslides. Results encourage for further research
that might include fine tuning of the procedure according to the geo-environmental characteristics of
specific areas, the use different measures of changes, the use of higher spatial resolution SAR images to
overcome the problems of the interpreters in the recognition of small landslides or features (Figure 7),
in different bands and polarizations and DEMs, in particular to increase the capacity of recognize
small landslides.
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6. Conclusions

This study applied photo-interpretative methods to detect landslides in measures of changes of
amplitude in pre- and post-event Sentinel-1 images. The method was exploited in 32 cases worldwide.
Landslides events are variegated and include single landslides or families of landslides caused by the
same triggering factor, earthquakes, rapid snow melt, or intense rainfalls. They are all rapid landslides
but vastly different in size, exposition, process and geographical, geological, and geomorphological
settings. Photo-interpreters were able to capture 27 cases with the possibility of mapping features in at
least 8 cases. One case was detected a posteriori knowing where the landslide occurred while in the
remaining four cases (all in Colombia), the interpretation did not clearly recognize signs ascribable
to landslides but to secondary effects like deposits at the end of the runouts. The rate of success of
this study suggests that SAR Sentinel-1 images and photo-interpretation are a reliable combination for
capturing rapid landslides. All weather SAR images permit to obtain information about the landslide
occurrence during an rain event when optical images are not available or useless because of cloud
presence with clear benefits in terms of disaster management civil protection operations. Furthermore,
the unprecedented availability of Sentinel-1 images in terms of frequency of acquisition and spatial
coverage promises to foster the production of information at global scale with positive feedbacks on
the quality of hazard mapping and risk assessments and climate change impact evaluation. This study
is vanguard (pioneer) and it shows many topics that merit future research. Priorities are given to:
(i) customization of the procedure to measure changes according to specific test sites requirements,
(ii) use ground coordinates, and (iii) and more in general, consolidate the learning process on the use
of the SAR images.

Author Contributions: A.C.M. designed and coordinated the work, executed data processing and wrote the
manuscript. M.S. photo interpreted the results and wrote the manuscript, M.R. executed data processing, photo
interpreted the results, and wrote the manuscript, E.R. executed data processing and photo interpreted the results,
A.M. and O.M. co-designed the work and wrote the manuscript.

Funding: This research was supported by the UKRI Natural Environment Research Council’s and UK
Government’s Department for International Development’s Science for Humanitarian Emergencies and Resilience
research programme (grant number NERC/DFID NE/P000649/1).

Acknowledgments: We thank the anonymous reviewers for their careful reading of our manuscript and their
insightful comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Figure A1. Geographical distribution of the events (Table 1).
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Appendix B

Table A1. Sentinel-1 images used to retrieve the measures of amplitude changes.

ID Track Orbit POST EVENT Image PRE EVENT Image

1 152 Ascending S1A_IW_SLC__1SSV_20160806T024605_20160806T024633_012474_0137F7_D97D S1A_IW_SLC__1SSV_20160526T024600_20160526T024628_011424_011617_44DD
2 16 Ascending S1A_IW_SLC__1SDV_20180717T185857_20180717T185924_022838_0279F5_B025 S1A_IW_SLC__1SDV_20180623T185856_20180623T185923_022488_026F84_32C6
3 143 Ascending S1A_IW_SLC__1SSV_20150811T114745_20150811T114812_007215_009DE4_76C9 S1A_IW_SLC__1SSV_20150718T114744_20150718T114811_006865_00942A_2799
4 4 Descending S1A_IW_SLC__1SDV_20171130T233727_20171130T233754_019501_02117D_7793 S1A_IW_SLC__1SDV_20171118T233727_20171118T233754_019326_020C05_F81A
5 5 Descending S1A_IW_SLC__1SSV_20160504T011247_20160504T011314_011102_010BB5_702B S1A_IW_SLC__1SSV_20160410T011247_20160410T011313_010752_0100E1_B6A9
6 122 Ascending S1A_IW_SLC__1SDV_20170606T011848_20170606T011915_005923_00A638_1C81 S1B_IW_SLC__1SDV_20170525T011847_20170525T011914_005748_00A123_B3E7
7 35 Ascending S1B_IW_SLC__1SDV_20170531T020608_20170531T020635_005836_00A3AE_1AA5 S1B_IW_SLC__1SDV_20170519T020608_20170519T020635_005661_009EA1_7930
8 19 Descending S1A_IW_SLC__1SSV_20160716T002448_20160716T002516_012166_012DD0_1B6A S1A_IW_SLC__1SSV_20160505T002441_20160505T002509_011116_010C15_C69F
9 149 Descending S1A_IW_SLC__1SDV_20180304T222520_20180304T222548_020871_023CCB_9BD6 S1A_IW_SLC__1SDV_20180220T222520_20180220T222548_020696_023742_C994

10 136 Descending S1A_IW_SLC__1SDV_20170824T005106_20170824T005133_018058_01E522_0F86 S1A_IW_SLC__1SDV_20170812T005105_20170812T005132_017883_01DFD4_6567
11 66 Descending S1B_IW_SLC__1SDV_20170825T053412_20170825T053439_007092_00C7F7_8018 S1B_IW_SLC__1SDV_20170813T053411_20170813T053438_006917_00C2E7_8739
12 175 Descending S1A_IW_SLC__1SDV_20180306T172124_20180306T172154_020897_023D98_F7AC S1A_IW_SLC__1SDV_20180222T172124_20180222T172154_020722_02380F_4AEE
13 73 Descending S1A_IW_SLC__1SSV_20161116T173100_20161116T173127_013970_016811_1786 S1A_IW_SLC__1SSV_20160905T173100_20160905T173127_012920_0146D2_B6AC
14 174 Ascending S1A_IW_SLC__1SDV_20180517T162025_20180517T162025_021946_025EAC_6C74 S1A_IW_SLC__1SDV_20180505T162024_20180505T162051_021771_02591D_2CC1
15 156 Ascending S1B_IW_SLC__1SDV_20170714T091327_20170714T091402_006482_00B65B_40D7 S1B_IW_SLC__1SDV_20170702T091326_20170702T091401_006307_00B16E_AE76
16 54 Ascending S1A_IW_SLC__1SDV_20160519T092157_20160519T092224_011326_0112E1_78CD S1A_IW_SLC__1SDV_20151203T092153_20151203T092220_008876_00CB00_AB71
17 60 Ascending S1A_IW_SLC__1SDV_20170818T190805_20170818T190832_017982_01E2CF_BCD8 S1A_IW_SLC__1SDV_20170806T190804_20170806T190831_017807_01DD81_C220
18 26 Ascending S1A_IW_SLC__1SDV_20180718T111440_20180718T111507_022848_027A43_386E S1A_IW_SLC__1SDV_20180612T111438_20180612T111505_022323_026A94_19D0
19 164 Descending S1A_IW_SLC__1SDV_20170906T225727_20170906T225755_018261_01EB46_0B57 S1A_IW_SLC__1SDV_20170825T225727_20170825T225755_018086_01E5F4_9E67
20 11 Ascending S1A_IW_SLC__1SDV_20151224T103309_20151224T103339_009183_00D39A_1C3B S1A_IW_SLC__1SDV_20151212T103310_20151212T103340_009008_00CEA9_624B
21 90 Descending S1A_IW_SLC__1SDV_20180710T210818_20180710T210846_022737_0276D8_9F2E S1A_IW_SLC__1SDV_20180628T210818_20180628T210845_022562_0271AB_CB0A
22 43 Ascending S1A_IW_SLC__1SDV_20160224T151754_20160224T151821_010090_00EDDE_760B S1A_IW_SLC__1SDV_20150512T151748_20150512T151815_005890_00795C_FD88
23 142 Descending S1A_IW_SLC__1SSV_20150531T105025_20150531T105052_006164_00804A_A3BF S1A_IW_SLC__1SSV_20150507T105023_20150507T105050_005814_0077A0_F26B
24 48 Ascending S1B_IW_SLC__1SDV_20171115T232058_20171115T232125_008299_00EAEE_E985 S1B_IW_SLC__1SDV_20171103T232058_20171103T232125_008124_00E5AE_F328
25 46 Descending S1A_IW_SLC__1SDV_20180905T204111_20180905T204139_023568_029131_BE2C S1A_IW_SLC__1SDV_20180824T204111_20180824T204138_023393_028B99_998A
26 63 Descending S1A_IW_SLC__1SDV_20180826T004813_20180826T004840_023410_028C24_DF28 S1A_IW_SLC__1SDV_20180802T004811_20180802T004838_023060_0280E6_1133
27 142 Descending S1B_IW_SLC__1SSV_20170408T105103_20170408T105131_005068_008DD8_FE30 S1B_IW_SLC__1SSV_20170327T105103_20170327T105131_004893_0088CA_547D
28 150 Ascending S1B_IW_SLC__1SDV_20161103T231341_20161103T231409_002801_004BE6_7629 S1B_IW_SLC__1SDV_20161010T231341_20161010T231409_002451_00422E_DE56
A 62 Descending S1A_IW_SLC__1SDV_20170713T230410_20170713T230437_017459_01D2E8_0F0C S1A_IW_SLC__1SDV_20170619T230409_20170619T230436_017109_01C859_BEC5
B 83 Descending S1B_IW_SLC__1SDV_20171224T095748_20171224T095815_008859_00FC9E_99BC S1B_IW_SLC__1SDV_20171212T095748_20171212T095815_008684_00F709_A672
C 5 Descending S1A_IW_SLC__1SSV_20160504T011247_20160504T011314_011102_010BB5_702B S1A_IW_SLC__1SSV_20160410T011247_20160410T011313_010752_0100E1_B6A9
D 5 Descending S1A_IW_SLC__1SSV_20160504T011247_20160504T011314_011102_010BB5_702B S1A_IW_SLC__1SSV_20160410T011247_20160410T011313_010752_0100E1_B6A9
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