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Abstract One of the main challenges hampering an accu-
rate measurement of the double parton scattering (DPS) cross
sections is the difficulty in separating the DPS from the lead-
ing twist (LT) contributions. We argue that such a separa-
tion can be achieved, and cross section of DPS measured, in
proton–nucleus scattering by exploiting the different cen-
trality dependence of DPS and LT processes. We devel-
oped a Monte Carlo implementation of the DPS processes
which includes realistic nucleon–nucleon (NN) correlations
in nuclei, an accurate description of transverse geometry of
both hard and soft NN collisions as well as fluctuations of the
strength of interaction of nucleon with nucleus (color fluctua-
tion effects). Our method allows the calculation of probability
distributions of single and double dijet events as a function of
centrality, also distinguishing double hard scatterings origi-
nating from a single target nucleon and from two different
nucleons. We present numerical results for the rate of DPS as
a function of centrality, following the model developed by the
ATLAS collaboration which relates the distribution over the
number of wounded nucleons to the distribution over the sum
of transverse energies of hadrons produced at large negative
(along the nucleus direction) rapidities, which is experimen-
tally measurable. We suggest a new quantity which allows
to test the geometry of DPS and we argue that it is a univer-
sal function of centrality for different DPS processes. This
quantity can be tested by analyzing existing LHC data. The
method developed in this work can be extended to the search
for triple parton interactions.

1 Introduction

At the LHC energies a typical proton–proton (pp) collision
involves several parton–parton interactions with transverse
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momentum transfer of a few GeV, leading to the production
of several minijets, which are referred to as multiparton inter-
actions (MPI). Successful Monte Carlo (MC) models of pp
inelastic interaction at the LHC, such as the models imple-
mented in the event generators Pythia [1] and Herwig [2],
have to tame the perturbative growth of the QCD parton–
proton scattering cross section below pT ∼ 4 GeV. Within
these models, the taming has to strengthen with the increase
of the invariant energy of collision. Minijets give an impor-
tant contribution to the production of relatively soft hadrons
that give a main contribution to the so called underlying
event (UE) with respect to the hard processes. It is gener-
ally accepted that characteristics of the UE are measured in
the direction perpendicular to the momentum of a high-pT jet
[3]. However, a direct observation of minijets is challenging
since it is very difficult to separate them. Over the last decade,
intensive theoretical and experimental studies of double par-
ton scattering (DPS) were performed [4–8]; a comprehensive
review was recently compiled in Ref. [9].

In particular, a number of experimental analyses have been
performed, aiming at finding an optimal kinematics where
the ratio of the cross sections of DPS to the competing lead-
ing twist processes are somewhat enhanced. Except for the
case of double charm production [10–12], the best kinemat-
ics still corresponds to the DPS being a correction to the LT
contribution. Hence, the identification of DPS events is rather
sensitive to the particular model adopted to describe LT pro-
cesses, which are usually rather involved. To illustrate this
point, Fig. 1 shows the DPS fraction of the total cross sec-
tion of dijet production within |η| < 2 and pjet

T ≥ 50 GeV
plus a charged particle, which originates from the different
parton interaction, obtained with Pythia 8 Monash model
[13]. The charged particle has an azimuthal angle difference
with respect to the leading jet within 80o < Δφ < 100o, as
a function of the pseudorapidity interval between the lead-
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Fig. 1 Fraction of dijet + a charged particle cross section due to the
DPS as a function of the pT of the charged particle and the pseudo-
rapidity interval between the leading jet and the charged particle, Δη.
The result is obtained using Pythia 8 Monash model [13]

ing jet and the charged particle Δη, and of the transverse
momentum, pT, of the charged particle. The fraction of the
cross section due to DPS presented in Fig. 1 is computed as a
difference between the standard collision simulation and one
with MPI mechanism switched-off, divided by the former
one. One can see from Fig. 1 that the DPS contribution is
significant but not dominant, hence a relatively small uncer-
tainty in the calculation of the LT contribution leads to a
pretty large uncertainty in the determination of the DPS con-
tribution to the experimental cross section. Traditionally the
DPS cross section is parameterized in the following form:

σDPS = σ1 σ2

σeff
, (1)

where σi are the cross sections of binary pp collisions, and
σeff is the effective cross section, widely used to characterize
the effective transverse area of hard partonic interactions in
pp collisions [14,15].

In QCD one expects σeff to depend on the Bjorken x’s
of the colliding partons, their flavors, as well as the hard-
nesses of the subprocesses. We will not write this dependence
explicitly in the following.

The LHC data are consistent with σeff ∼ 20 mb for pro-
duction of two pairs of jets with pjet

T ≥ 50 GeV [16]. In
this paper we use the formalism for the description of MPI
developed in [4,6,8,12]; see the review and references in Ref.
[17], which takes into account both the mean field contribu-
tions as well pQCD-induced parton–parton correlations and
small x soft correlations. This formalism allows to describe
all existing LHC data except double J/ψ production [18].
For smaller virtualities this formalism predicts σeff ∼ 30 mb,

which is consistent with the recent Monte Carlo analyses
[19]. The model also explains an increase of σeff from ∼ 14
to 20 mb between the Tevatron and LHC energies for the
kinematical ranges in which measurements were performed.

Though the LHC data strongly suggest the presence of the
MPI effects in pp scattering, no accurate determinations of
the MPI cross section were reported so far (a notable excep-
tion is the charm production [10–12]). To a large extent, this
is due to insufficient accuracy of modeling higher order lead-
ing twist (LT) contributions to multijet production.

We suggest that a way out is to study MPI in proton–
nucleus collisions as a function of the centrality of the col-
lision. The suggested procedure is based on the observation
made a long time ago [20] that MPI are enhanced in proton–
nucleus collisions, leading to a parametric enhancement of
MPI by the factor ∝ A1/3 as compared to the LT contribution
due to hard scattering off two nucleons. The enhancement
strongly increases with centrality of the collision. Hence, the
study of the rate of the MPI candidate events as a function
of centrality would allow to separate DPS and LT processes
and provide an unambiguous measurement of DPS.

We study the centrality dependence of the different con-
tributions to DPS in pA collisions at LHC energies, within a
high-accuracy implementation of the Glauber Monte Carlo
model. Our model makes use of realistic nucleus configura-
tions including NN correlations [21] and neutron skin in lead,
the target nucleus [22]. Other implementations of the Monte
Carlo Glauber model for soft processes exist, for example the
one in Ref. [23]. In the treatment of the individual soft pN
collisions, we also include the color fluctuation effect [24],
which takes into account the possibility for the incoming pro-
ton to fluctuate in different quantum states with substantially
different pN interaction strength; this effect is important for
an accurate description of the dependence of the hadron pro-
duction on centrality [25]; see discussion in Sect. 4. The main
effect of smearing of centrality which we take into account is
due to the experimental definition of centrality classes, based
on the measured transverse energy distribution

∑
ET. Even-

tually, we implement an algorithm for a double hard trigger
in each Monte Carlo Glauber event, based on the extension
to two hard interactions of an existing model for single hard
trigger [26].

We organized the paper as follows.
In Sect. 2 we describe the basic idea and summarize the rel-
evant information from the previous studies. In Sect. 3 we
describe the development of a Monte Carlo event genera-
tor for calculating the inclusive rate of DPS. In Sect. 4 we
describe an extension to the case of DPS of the existing Monte
Carlo procedure for the calculation of the probability distri-
bution over the number of the wounded nucleons in events
with single hard interaction. In Sect. 5 we include the effect
of smearing over impact parameter for the transverse energy
of hadrons for centrality characterization. Based on this cal-
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Fig. 2 Sketch of double parton
collisions with production of
four jets (arrows on the plot)
occurring on a single nucleon
(a) or on two different nucleons
(b) in the target nucleus. In both
illustrations, hard-interacting
nucleons are depicted in blue,
soft-interacting (wounded)
nucleons in red, and spectator
nucleons in light grey. The
reddish tube represents the
incoming proton, and its
transverse size is proportional to
the pN total cross section

culation we outline the proposed procedure for comparing
events of different centrality classes in order to measure the
DPS cross section.

2 Basic idea

In the optical approximation, which does not include NN
correlations and considers the nucleon size much smaller
than the internucleon distance, the cross section of DPS in
pA collisions for large A can be written as follows [20]:

σ DPS
pA = A

σ1 σ2

σe f f
+ σ1 σ2

∫

d2b T 2(b), (2)

where b is the impact parameter of the proton, and T (b) =∫ ∞
∞ ρ(b, z)dz is the standard nuclear profile function obtained

from the nuclear density ρ(b, z), which is normalized as∫
d3rρ(r) = A. The first term in Eq. (2) is the contribu-

tion of the impulse approximation, in which two partons of
the proton interact with two partons of a single nucleon of the
target nucleus (Fig. 2a). The second term describes the inter-
action of two partons in the proton with two partons of two
different nucleons of the nucleus, neglecting parton–parton
correlations in the projectile proton (Fig. 2b).

Here and below we shall use the notation 1N → 2N for
the processes where two partons from one projectile nucleon
interact with different nucleons from the target, and notation
1N → 1N for the processes where two partons from the
projectile nucleon interact with one nucleon from the target
(i.e. a conventional NN DPS process).

Using realistic nuclear densities (see e.g. [27]) to calculate∫
dbT 2(b), for A ≥ 40 one can calculate the ratio of the DPS

contributions in pA and pp scattering as follows [17]:

r(A)= σ DPS
pA

AσDPS
pp

=1+1.1
( σeff

15 mb

) (
A

40

)0.39

(1 + Rcorr).

(3)

In Eq. (3), Rcorr = f (x1, x2, Q2)/ f (x1) f (x2) − 1 where
f (x, Q2) and f (x1, x2, Q2) are the the single and double
parton distribution functions (dPDFs). Rcorr accounts for the
longitudinal correlations of the constituents of the projec-
tile proton due to the pQCD evolution [28]. In the pp case,
correlation effects leads to a decrease of σeff by the factor
(1 + 5Rcorr) as compared to the uncorrelated (mean field)
model. The function

f (x1, x2) ≡ G(x1, x2, Q
2, Q2, 0) (4)

is the double generalized parton distributions (DGPD) at zero
transferred momenta [6]. Numerical calculations were per-
formed under the assumption that the DGPD are factorized
at the scale Q2

0 [6]. For different models of double parton
correlations at a low resolution scale, see Ref. [29] and ref-
erences therein. It was found that for large pT, the factor
5Rcorr = 0.5÷1 allows to reproduce the measured values of
σeff(NN ); see [17] and references therein. For the kinematics
we discuss in this work, a typical value is Rcorr ∼ 0.15, see
Fig. 3. Taking σeff = 20 mb leads to the expectation that the
ratio of DPS to LT contributions is enhanced in pPb collisions
by a factor r(200) ∼ 4. For minijets with pT of a few GeV,
one expects σeff ∼ 30 mb, leading to r(200) ∼ 5. However
this enhancement is somewhat reduced due to the leading
twist shadowing effect which requires a detailed modeling
of the particular kinematic domains [30], hence this effect
will be considered elsewhere.

One can try to observe the predicted enhancement of DPS
in pA scattering at the LHC by comparing pp and pA data.
However this would require comparing two different sets
of data in a somewhat different kinematics. An alternative
strategy we suggest in this paper is to explore the strong
dependence of the DPS/LT ratio on the impact parameter of
the pA collision.

Let us rewrite Eq. (2) in the differential form

d2σ DPS
pA

d2b
= σ1 σ2

σe f f
T (b) + σ1 σ2 T

2(b), (5)
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Fig. 3 Correlation factor as a
function of Δη and pT for
different starting points of the
QCD evolution, namely
Q2

0 = 0.5 GeV2 (a), and
Q2

0 = 1.0 GeV2 (b)

Then ratio of the second term in Eq. (5), corresponding to the
specific to pA mechanism when two gluons from the incom-
ing proton interact with two nucleons of the nuclei at the
same impact parameter b, and the first term, corresponding
to conventional nucleon–nucleon DPS is given by

σDPS
1N→2N (b)/σDPS

1N→1N (b) = σeff T (b), (6)

which corresponds to a very large enhancement of DPS for
central pA collisions.

In experiment we however usually measure total four jet
cross section (or any other cross section to which DPS con-
tributes), that is the sum of the leading twist (LT) contribution
(i.e. 2–4 gluons cross section) and DPS which is of the next
to leading twist. Adding the LT contribution to Eq. 5 we can
write

dσLT+DPS
pA

d2b
= σpN T (b) + σ1 σ2 T

2(b). (7)

In Eq. (7), we removed the superscript (DPS) in the first
term on the right hand side to indicate that σpN includes the
leading twist contribution to the cross section of a process to
which both LT and DPS contribute. This is possible because
the LT cross section is also linear in T (b). Hence, Eq. (7)
gives a model-independent prediction for the b-dependence
of DPS in terms of the elementary DPS pp cross section, σ1

and σ2, and of T (b).
Obviously, one cannot fix the impact parameter of the col-

lision, but one can still define centrality classes, for example
using the method adopted by the ATLAS collaboration [31].
An evidence of the validity of such a procedure is that it repro-
duces correctly the rate of jet production in the kinematics
where the parton of the proton carries a moderate Bjorken x ,
like x ≤ 0.1.

To make realistic predictions for the DPS-related observ-
ables we perform the calculation in several steps, extend-
ing the existing Monte Carlo generator for the production

Fig. 4 Sketch of the transverse geometry of the the double parton col-
lisions. The incoming proton, Pproj, is displaced in transverse space by
the vector b from the nucleus center, while the i-th nucleon in the tar-
get, Ni

target , is displaced in transverse space by the vector bi from the

nucleus center. In this work, the hard interaction points g(1,2)
hard , pointed

by ρ1 and ρ2 from Pproj, are integrated over the whole transverse plane,
event-by-event. The remaining vector notations are self-explanatory

of dijets [24,26,32], which allows to calculate the interac-
tion probability distribution as a function of the number of
wounded nucleons and of the pA centrality. We take into
account the finite transverse spread of the parton distribu-
tion in nucleons, and correlations between nucleons in the
nucleus [21].

3 Inclusive DPS beyond mean field approximation

The generalized double parton distributions necessary for
the calculation of the DPS off nuclei were calculated in Ref.
[28] as sum of two terms, as in Eq. (3) and as illustrated in
Fig. 2.

The first term in Eq. (3) term accounts for the scatter-
ing off two partons of the same nucleon. It can be calcu-
lated by a convolution of two double nucleon GPDs plus the
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pQCD induced correlations, and corresponds to the impulse
approximation. The second term in Eq. (3) corresponds to
scattering of two partons of the projectile off two partons
belonging to two different nucleons of the nucleus. Figure 4
shows the notations used for the various quantities used in
this work. Separating the contribution of scattering off the
same nucleon is necessary to account in an economic way
for the existence of parton–parton correlations in the nucle-
ons. To calculate the DPS cross section accounting for a finite
transverse spread of the parton distributions we introduce the
quantity fN (x, Q2, ρ), describing the transverse distribution
of partons in the nucleon, defined as follows:

fN (x, Q2, ρ) = g(x, Q2, ρ)

f (x, Q2)
, (8)

where g(x, Q2, ρ) is the diagonal generalized single parton
distribution and f (x, Q2) is the parton distribution. The ρ

dependence of the generalized parton distribution is given
by the Fourier transform of the two gluon form factor of the
nucleon, F2g(t), which is determined from the analysis of
J/ψ exclusive photoproduction [33]. For simplicity we will
use an exponential parameterization of F2g(t) = exp(Bt/2),
and will not write explicitly the dependence of B and fN on
x and Q2. Thus the transverse distribution of partons takes
the form:

fN (ρ) = 1

2 π B
exp(−ρ2/2B). (9)

The value of B in Eq. (9) can be extracted from the analysis
of the exclusive J/ψ photoproduction.

The geometric factor entering to the DPS cross section
can be written as

D1N→1N+1N→2N (b)

=
∫

dρ1dρ2 f p(ρ1) f p(ρ2) ψ2
A(r (i)

t , zi , r
(k)
t , zk)

×
A∑

i=1

fN (|ρ1 + b − r(i)
t |)

A∑

k=1

fN (|ρ2 + b − r(k)
t |),

(10)

which includes both interactions with two different nucleons
(1N → 2N ) and the same nucleon (1N → 1N ) of the target
nucleus. The geometric factor for the same nucleon case is
given by:

D1N→1N (b)

=
∫

dρ1dρ2ψ
2
A(r (i)

t , zi ) f p(ρ1) f p(ρ2)

×
A∑

i=1

fN (|ρ1 + b − r(i)
t |) fN (|ρ2 + b − r(i)

t |). (11)

The factor for the interaction with two different nucleons,
which replaces the T 2(b) factor in the optical approximation,

Eq. (2), is simply given by the difference D1N→1N+1N→2N

(b) − D1N→1N (b):

D1N→2N (b)

=
∫

dρ1dρ2ψ
2
A(r (i)

t , zi , r
(k)
t , zk, ) f p(ρ1) f p(ρ2)

×
A∑

i=1

fN (|ρ1 + b − r(i)
t |)

A∑

k 	=i

fN (|ρ2 + b − r(k)
t |),

(12)

For our numerical studies, we choose B = 3 GeV−2,
which corresponds to x ∼ 0.01 for Q2 ∼ a few GeV2.
The effective cross section, σeff in Eq. (1), is expressed
through B as σeff = 8πB, leading to σeff = 30 mb for
B = 3 GeV−2. Smaller values of σeff at large virtuali-
ties result in this approach from pQCD induced correlations
[4,6,8].

The code developed to calculate Eqs. (10–12) thus allows
to obtain the separate contributions due to the DPS with one
(Eq. (12)) and two (Eq. (11)) nucleons, both as a function of
pA centrality and of the number of wounded nucleons.

Our numerical results for the b-distributions for DPS off
two and single nucleon can be compared with the optical
model approximation. In Fig. 5 we compare D1N→2N (b) and
T 2(b). We find that the b-dependent distribution accounting
for the finite nucleon size is a bit broader and the total con-
tribution of the 1N → 2N term is somewhat smaller than
in the optical approximation. For example, for pPb scat-
tering,

∫
d2bD1N→2N (b)/

∫
d2bT 2(b) = 0.95, accounting

for finite size, accurate treatment of the surface region of
matter distribution (neutron skin effect, as described in Ref.
[22]), and NN correlations. This suppression factor is close
to the correction found in the mean field approximation for
the nucleus wave function accounting for the finite nucleon
size: ≈ (1 − 2r2

N/R2
A) [28].

The impulse approximation term ∝ D1N→1N (b) obvi-
ously does not introduce any corrections to the cross section
integrated over b. However, since the elementary cross sec-
tion corresponds to the interaction of two nucleons at a finite
impact distance, the b-distribution of D1N→1N (b) should be
somewhat broader than for T (b).

The distribution over b for the leading twist distribution
is given by

S(b) =
∫

dρ1 f p(ρ1)

×
A∑

i=1

ψ2
A(r (i)

t , zi ) fN (|ρ1 + b − r(i)
t |). (13)

The difference of S(b) and T(b) is very small, so we do
not present the corresponding plot. The double scattering in
NN interactions corresponds to a smaller average transverse
distance than a single scattering [4,6,8,34]. So in this case
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Fig. 5 The impact parameter distributions for scattering off two nucle-
ons in optical approximation, T 2(b), and with finite radius of interaction
with and without NN correlations, D1N→2N (b), as defined in Eq. (12)

the deviation of the b-distribution from T (b) is even smaller.
Hence, in the following we will neglect the small difference
between S(b) and D1N→2N (b).

4 Distribution over the number of wounded nucleons

In order to calculate the distribution over the number of
wounded nucleons we need to distinguish events in which
the two interacting partons of the nucleus belong either to
the same nucleon or to two different nucleons. In the first
class of events, which is described by D1N→1N (b) in Eq.
(11), we need to calculate the distribution over the number
of soft interactions excluding the nucleon involved in the
hard interaction. Analogously, we exclude two nucleons in
the case of hard interactions with partons from two different
nucleons in the nucleus. The procedure is a straightforward
extension of the one we developed for dijet production [26].
For each of the two interacting partons of the proton, we
assign one particular nucleon as the one involved in a hard
interaction, with probabilities given by:

Pj = g( j)
N (ρ)

∑A
k=1 g

( j)
N (ρ)

. (14)

Now we need to generate the distribution over the number of
nucleons involved in soft interactions. We do it in two ways.
The first approach is based on the standard Glauber model
with an accurate treatment of the distribution of the proba-
bility of the inelastic NN interaction over the relative impact
parameter. Another approach includes in addition effects of
fluctuations of the strength of interaction of the projectile pro-
ton with the target nucleus from event to event, which we refer
to as color fluctuations. These fluctuations take into account
presence of the inelastic diffraction and provide an effective

implementation of the high energy Gribov–Glauber picture
of hadron–nucleus scattering. We follow closely the proce-
dure discussed in our paper [26]. We assign to each incoming
proton interaction strength σ with probability P(σ ) – for a
detailed discussion see Ref. [26] and calculate averages over
a large sample of the events. The variance of the distribution
over σ , ωσ = 〈

σ 2
〉
/ 〈σ 〉2 − 1 is given by the Miettinen–

Pumplin relation [35] which expresses ωσ through the ratio
of inelastic and elastic NN cross sections at t = 0. For the
LHC energies we estimate ωσ ≈ 0.1.

We follow the procedure developed by ATLAS to define
centrality classes [31]. They use the transverse energy,

∑
ET,

in the pseudorapidity interval −3.2 ≥ η ≥ −4.9 (i.e. along
the nucleus direction) as a measure of centrality. The cen-
trality intervals were defined in terms of percentiles of the
∑

ET distribution. It was shown in Ref. [36] that
∑

ET in
this kinematics is not sensitive to production of hadrons at
forward rapidities. The Authors calculated the distribution
over the number of wounded nucleons, ν, using Glauber
model or a color fluctuation model and developed a model
to describe the distribution over

∑
ET as a function of ν,

see Refs. [25,31,36]. Centrality classes are defined as corre-
sponding ranges in

∑
ET. For example, the centrality class

0 ÷ 10% includes 10% of the events with the highest
∑

ET.
Authors studied centrality dependence of the multiplicity dis-
tribution of charged-particle production for three values of
ωσ = 0, 0.11, 0.2. It is remarkable that the best description
was found for ωσ = 0.11. For such P(σ ) they also found that
the ratio of the observed charge particle production in bins
and the impulse approximation expectation, RpPb, is close
to one for pT ≥ 2 ÷ 3 GeV and a wide range of rapidities.

Since we count nucleons which were involved in both
soft and hard interaction only once, the distribution for the
double nucleon term obviously starts at ν = 2, with ν the
total number number of interacting nucleons.

The results of the calculation for the distribution over ν for
the no correlation scenario with account of color fluctuations
(σeff = 30 mb) are presented in Fig. 6 for several centrality
classes. One can see from the figure that centrality classes
correspond to rather narrow ranges of ν. In Fig 6a we present
the distribution for soft events for different centrality classes
while in Fig. 6b we present the distribution for inelastic events
with two hard dijets (which serve as double hard trigger). For
large ν the account of color fluctuations leads to broadening
of the distribution over ν.

One can see that for DPS events distribution over ν is much
broader. Parton–parton correlations lead to an enhancement
of the impulse approximation the 1N → 2N term in Eq. (11)
by a factor σeff(m. f.)/σexp = 1 + 5Rcorr, and of the double
nucleon term by a factor 1 + Rcorr [28]. For the kinematics
discussed in this work (presented in Fig. 4), Rcorr ∼ 0.15
(Fig. 3). Hence, its effect for the double scattering term is

123



Eur. Phys. J. C           (2019) 79:482 Page 7 of 9   482 

Fig. 6 Left: the centrality
distribution of the number of
soft (minimum-bias) collisions.
Right: the centrality distribution
of the number of inelastic
collisions with the double hard
trigger (i.e. with two dijets).
Note that the distributions
depend only on the transverse
spread of individual DGPDs but
not on specific of reaction

pretty small, and we will neglect its residual dependence on
impact parameter.

Note that the distributions depend only on the transverse
spread of individual DGPDs but not on specific characteris-
tics of the reaction.

To take into account parton–parton correlations in the cal-
culation of the distribution over ν, it is sufficient to take the
impulse approximation term D1N→2N (b) with an additional
factor (1 + 5Rcorr)/(1 + Rcorr) ∼ 1.5 and normalize to the
inclusive cross section where the D1N→2N (b) term is also
enhanced by the same factor.

5 Transverse energy distribution and extraction of the
DPS signal

Let us consider a process in which DPS contributes: for exam-
ple production of four jets in a special configuration, or pro-
duction of two jets and a hadron with a sufficiently large pT

from the underlying event. The main challenge is that the
LT process can also contribute to this special configuration
(cf. Fig. 1), leading to the need to rely on a Monte Carlo
simulation for a rather complicated final state.

If we choose a kinematics where soft contributions
(including very soft minijets) can be neglected, there are three
contributions to the final state: the leading twist contribution,
DPS due to the interaction with one nucleon and DPS due to
the interaction with two nucleons. The first two contributions
are proportional to roughly the number of nucleons along the
projectile path. In the events with a dijet trigger they would
result in the same multiplicity of a second dijet (hadron) for
different centralities. At the same time the DPS due to the
interaction with two nucleons should lead to a contribution
which grows with centrality much faster (roughly the square
of the number of nucleons along the projectile path). Hence,
it is convenient to consider the ratio of the multiplicity N of
the candidate DPS final state (for example dijet plus a pion)
and the multiplicity of the inclusive dijet production in the
same kinematics:

ND/I = N (dijet + pion)/N (dijet). (15)

For such a ratio, deviations from linearity in the number of
collisions, which were found in Ref. [26], practically cancel
out. The dependence of ND/I on centrality is only due to
the double nucleon interaction term. We follow the proce-
dure developed by ATLAS to define centrality classes [31]
described in the previous section.

We choose the bins in
∑

ET as in Refs. [24,32], and use
the 10–20% (second) bin, in which the first term of Eq. (2)
(linear in A) dominates, and build the ratio of the differences
in multiplicities in the i th centrality bin as follows:

Ri = ND/I
i − ND/I

2

ND/I
3 − ND/I

2

. (16)

We substruct the value of the second bin since there are sig-
nificant uncertainties in modeling the most peripheral bin, in
particular due to the contribution of diffraction /rapidity gaps.
In the differences ND/I

i −ND/I
2 the contribution of the terms

linear in A cancels out and the
∑

ET dependence originates
solely from the geometry of the process. Thus, the depen-
dence of Ri on the momenta of the jets (hadrons) is expected
to be universal (i.e. does not depend on the momenta of jets
and hadrons). This would provide a crucial test of the overall
picture of the double scattering process. The predicted depen-
dence of Ri on centrality is very strong, as it is illustrated
in Fig. 7 for the Color Fluctuation and Glauber models. One
can see that color fluctuations somewhat reduce Ri for most
central bin due to additional smearing over impact parame-
ter. Anyway, the predicted effect is large and should be pretty
straightforward to observe. Note that in our considerations
we assumed that both components of DPS events originate
from the leading twist QCD processes. So one needs to select
the kinematics where for both subprocesses RpPb is close to
one. Based on the analysis of ATLAS [25] use of the color
fluctuation model with ωσ ∼ 0.1 appears to be preferable.
Note also that in the kinematics where deviations of RpPb

from one for both subprocesses are small one can estimate
related corrections for Ri .
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Fig. 7 Centrality dependence of DPS multiplicity enhancement as a
function of

∑
ET measured in −3.2 ≥ η ≥ −4.9 (along the nucleus

direction) which corresponds centrality bins denoted in the plot

An important test of the picture is that Ri should be a uni-
versal function of

∑
ET, independent on the angle between

the dijet and the hadron, and the hadron transverse momen-
tum.

Let us now consider an example of a process which can
be studied using this procedure, the production of a dijet at
forward rapidities, in the range y = 2 ÷ 4, and a hadron
from an underlying event with a tight cut on the emis-
sion angle θ = 90o ± 10o. We performed the calculations
using the Pythia model of the contribution of DPS to the
underlying multiplicity. The results of the calculation were
shown in Fig. 1. One can see that in a wide range of hadron
momenta DPS contributes on the scale of 30% ÷ 40% to
the pp cross section. In the kinematics where the DPS/total
ratio is 1/3 for pp collisions, we expect a large enhance-
ment of DPS 1N → 2N contribution. For example taking
σe f f = 25 mb and using TPb(b ∼ 0) = 2.0 f m−2 we find
the ratio of1N → 2N and 1N → 1N DPS contributions (see
Eq. 6): ≈ σe f f T (b ∼ 0) ∼ 5, leading to the change of the
DPS/LT ratio from 0.5 to 3.0. The multiplicity enhancement
due to DPS can be increased by suppressing the LT contri-
bution. For instance, imposing additional requirement on the
dijet momentum imbalance (pT,1 − pT,2)/(pT,1 + pT,2) <

0.1, where pT,1 and pT,2 are the transverse momenta of the
leading and subleading jets respectively, would increase the
DPS contribution to 35-50%. Also due to a relatively high
rate of the discussed process an accurate subtraction proce-
dure should be possible both for the narrow angle window
we discuss, and for a wider range of the angles. The mini-
mal pT of the hadrons for which our calculations are appli-
cable follow from the requirement that RpPb, the ratio of
the rate of the observed dijet production and the rate calcu-
lated in the impulse approximation, should be close to one.
Depending on the rapidity of the hadron it corresponds to
pT(hadron) ≥ 2 ÷ 5 GeV [25]. Also, one has to impose

a restriction to the fraction of the momentum of proton,
xp, carried by the parton involved in the dijet production
xp ≤ 0.1, since for large xp the centrality dependence is
gradually changing [37]. This may be due to selection of
smaller size configurations by a large xp trigger, see discus-
sions in [24,32].

A clean separation of the 1N → 2N contribution would
allow to perform a direct measurement of the parton–parton
correlations (Rcorr) (cf. Eq. (3)). Knowing the A4/3 term it
would be possible to measure correlation effects for two par-
tons of the projectile proton involved in the process (cf. Eq.
(3)). Also it would make it easier to extract σeff from the
linear term. In this case σeff is the only parameter which
could be adjusted and it could be determined from the con-
dition that the dependence of the hadron emission on the
azimuthal angle with the respect to the dijet should disap-
pear (we make here a natural assumption valid in the leading
order that DPS gives a flat distribution in the azimuthal angle
relative to the prime dijet in difference of the LT contributions
2 → 3, 2 → 4, . . .).

6 Conclusions

We developed an algorithm for the calculation of the DPS
cross section in pA scattering as a function of centrality. We
suggested a method to use the centrality to determine the
cross section of DPS due to scattering off two different nucle-
ons. In the long run this would allow to study parton–parton
correlations in nucleons as a function of virtuality and x’s.
It would be possible also to look for triple parton scattering
[20] using a similar strategy.
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