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Abstract. The increasing availability of free-access satellite
data represents a relevant opportunity for the analysis and
assessment of natural hazards. The systematic acquisition
of spaceborne imagery allows for monitoring areas prone
to geohydrological disasters, providing relevant information
for risk evaluation and management. In cases of major land-
slide events, for example, spaceborne radar data can provide
an effective solution for the detection of slope failures, even
in cases with persistent cloud cover. The information about
the extension and location of the landslide-affected areas
may support decision-making processes during emergency
responses.

In this paper, we present an automatic procedure based on
Sentinel-1 Synthetic Aperture Radar (SAR) images, aimed
at facilitating the detection of landslides over wide ar-
eas. Specifically, the procedure evaluates changes of radar
backscattered signals associated with land cover modifica-
tions that may be also caused by mass movements. After
a one-time calibration of some parameters, the processing
chain is able to automatically execute the download and
preprocessing of images, the detection of SAR amplitude
changes, and the identification of areas potentially affected
by landslides, which are then displayed in a georeferenced
map. This map should help decision makers and emergency
managers to organize field investigations. The process of au-
tomatization is implemented with specific scripts running on
a GNU/Linux operating system and exploiting modules of
open-source software.

We tested the processing chain, in back analysis, on
an area of about 3000 km2 in central Papua New Guinea
that was struck by a severe seismic sequence in February–
March 2018. In the area, we simulated a periodic sur-
vey of about 7 months, from 12 November 2017 to
6 June 2018, downloading 36 Sentinel-1 images and per-
forming 17 change detection analyses automatically. The
procedure resulted in statistical and graphical evidence of
widespread land cover changes that occurred just after the
most severe seismic events. Most of the detected changes can
be interpreted as mass movements triggered by the seismic
shaking.

1 Introduction

Landslide recognition and mapping in rural areas represents
one of the main challenges faced by the research commu-
nity. The spatial and temporal distribution of landslides is
well known mainly in urban areas, where they often cause
severe consequences to anthropic structures and population.
On the contrary, landslides in rural and remote areas often re-
main unknown, limiting environmental evaluations like haz-
ard and risk assessments (Guzzetti et al., 2012). Understand-
ing where landslides have occurred may provide useful in-
dications to forecast future events. In particular, the knowl-
edge of the spatial distribution of landslides in a given re-
gion is essential to implement, calibrate, and validate statisti-
cally and physically based methods (Rossi and Reichenbach,
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2016; Mergili et al., 2014a, b) aimed at predicting the pos-
sible location of future mass movements or identifying areas
where the probability of failure is negligible (Marchesini et
al., 2014). As stated by Reichenbach et al. (2018), the qual-
ity and completeness of the landslide inventories may affect
the reliability of the landslide susceptibility assessment (Ste-
ger et al., 2016). To produce inventory maps with limited er-
rors and uncertainties (Santangelo et al., 2015), the mapping
techniques should be selected by taking into account a se-
ries of factors: the purpose of the inventory, the extent of the
study area (Bornaetxea et al., 2018), the scale of the base
maps, the resolution and characteristics of the available data,
the skills and experience of the investigators, and the avail-
able resources (Guzzetti et al., 2000; van Westen et al., 2006;
Casagli et al., 2017).

Besides conventional techniques (field mapping, visual in-
terpretation of aerial photographs), remote sensing technolo-
gies based on satellite optical imagery, airborne and terres-
trial laser scanning, and digital photogrammetry represent
innovative solutions for landslide detection and mapping. In
addition, multispectral and Synthetic Aperture Radar (SAR)
satellite images have been also used with great success. To
recognize landslides in multispectral and very high reso-
lution (VHR) optical images, the most commonly applied
methods consist of visual interpretation (Fiorucci et al., 2011;
Ma et al., 2016) or semiautomatic classification (segmenta-
tion) that exploits different radiometric signatures of stable
and failed areas (Martha et al., 2011; Mondini et al., 2011;
Alvioli et al., 2018). However, optical images have some
disadvantages and cannot be used when the analyzed areas
are covered by persistent clouds or affected by shadow ef-
fects. To overcome these issues, SAR data can represent an
effective alternative, since they are not influenced much by
weather conditions.

Several techniques allow for extracting information from
SAR data to identify and map slope failures. The Differ-
ential Interferometric Synthetic Aperture Radar (DInSAR)
(Gabriel et al., 1989) has been widely used to detect sur-
face displacements over large areas with sub-centimeter ac-
curacy. DInSAR is aimed at calculating phase differences be-
tween two or more multi-temporal images and has been suc-
cessfully applied to analysis of landslides (Calò et al., 2012;
Zhao et al., 2012; Cigna et al., 2013; Calvello et al., 2017;
Tessari et al., 2017), earthquakes, subsidence, soil consol-
idation, volcanoes and tectonic deformations (Plank, 2014,
and references therein). Other techniques exploit the ampli-
tude information contained in the pixels of the SAR images.
Amplitude of the backscattered signal is influenced by the
type of target and varies according to several factors, such
as the type of land use (e.g., water bodies, ice cover, for-
est type, bare soil), the surface roughness and the terrain
slope. According to Colesanti and Wasowski (2006), ampli-
tude SAR imagery potentially represents a very useful source
of information, which can complement high-resolution op-
tical imagery and aerial photography in feature detection.

Generally, amplitude-based methods analyze the correlation
of the speckle pattern of two images (e.g., pre- and post-
event, where the terms “event” can refer to a major natural
and/or human-induced hazard affecting a given area, such as
an earthquake, a hurricane, a forest fire) to map the land cover
changes (Raspini et al., 2017). To date, the landslide mapping
community has shown a poor attitude toward using this type
of product, and thus only a few studies have demonstrated
the valuable contribution of SAR amplitude changes to land-
slide detection and mapping. According to Mondini (2017),
this is due to a series of problems and drawbacks represented
by (1) the complex preprocessing procedures; (2) geometric
distortions, such as layover and shadowing due to the side-
looking acquisition geometry of SAR sensors, which can af-
fect the quality of the images over mountainous areas where
landslides are likely to occur; and (3) the difficulty in us-
ing the SAR signal in traditional statistical classification ap-
proaches mainly due to speckling. A successful example of
the use of amplitude variations of the radar signal to analyze
landslides is described by Zhao et al. (2013), which inferred
the occurrence of the Jiweishan rock slide in China using
changes in SAR backscattering intensity in ALOS/PALSAR
images. Tessari et al. (2017) verified that when the phase in-
formation cannot be exploited, the amplitude of the reflected
signal is very useful to detect and map rapid-moving land-
slides that cause significant variations in the ground morphol-
ogy and land cover. Mondini (2017) proved that both land-
slides and flooded areas can be detected by verifying changes
in the spatial autocorrelation in a multi-temporal series of
SAR images. Konishi and Suga (2018) also identified a se-
ries of landslides in Japan by analyzing intensity correlation
between pre- and post-event SAR images.

Besides the described techniques, recent advances in SAR
technology are promoting the use of polarimetric SAR
data (PolSAR) characterized by full polarimetric informa-
tion (i.e., acquired in single-polarization, dual-polarization
and fully polarimetric modes) for a target in the form of
the scattering matrix (Skriver, 2012). According to Plank
et al. (2016), these data provide more information on the
ground, which enables a better land cover classification and
landslide mapping. Successful applications were described
by Yamaguchi (2012), Shimada et al. (2014), Li et al. (2014)
and Plank et al. (2016).

The use of SAR data to analyze landslides and/or poten-
tially unstable slopes should hence increase in relation to a
series of other valuable technical innovations as well. The
improved revisiting times and spatial resolution of the im-
ages, for example, represents a key factor during disaster re-
sponse operations, when a preliminary localization of areas
potentially affected by major landslides is crucial. Revisit-
ing times have in fact been reduced from 35 d for European
Remote Sensing (ERS) and Envisat satellites, to 12 h (at 40◦

latitude, in case of emergency response) for the COSMO-
SkyMed constellation (Casagli et al., 2017). The enhanced
spatial resolution (azimuth or along-track resolution× range
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or across-track resolution) of images spans on the order of
few meters (i.e., 1–10 m), resulting in more detail with re-
spect to the coarser resolution of the first-generation satellites
characterized by pixel sizes up to 100 m (Plank, 2014).

Among the most advanced SAR spaceborne systems
(Casagli et al., 2017), there are those of the mission Sentinel-
1 operated by the European Space Agency (ESA) in the
frame of the European Union’s Copernicus Programme.
Satellites Sentinel-1A and 1B acquire images characterized
by pixels with sizes ranging from 5 m (range)× 20 m (az-
imuth) in the default acquisition mode for land observations
(Interferometric Wide Swath mode – IW), up to 5 m×5 m in
the Strip Map mode. The temporal resolution ranges from
6 to 12 d according to the surveyed geographic area. The
Sentinel-related products have a global coverage and are
freely available to all users registered on the ESA data hub
(https://scihub.copernicus.eu/, last access: 24 January 2020).
This is a considerable benefit that is leading many research
institutions and public administrations to use Sentinel data
to investigate landslides and other natural processes (Salvi
et al., 2012; Dai et al., 2016; Twele et al., 2016; Intrieri
et al., 2018). According to Raspini et al. (2017), the fu-
ture increased number of available satellites characterized by
shorter revisiting times and high spatial resolution will offer
relevant information for decision support and early warning
systems. Currently, significant limitations concern the real-
time and/or quasi-real-time detection of rapid flow-like mass
movements, rock failures and flash floods characterized by
evolution times ranging from minutes to hours. This poses a
challenge for the geohydrological risk management based on
satellite technologies.

In this article, we present an automatic procedure aimed
at supporting the detection of rapidly moving landslides by
performing a periodic survey of unstable slopes using space-
borne radar imagery. We focus on rapidly moving landslides
since they determine evident land cover changes with respect
to slow-moving failures. The main purpose of the imple-
mented procedure is to emphasize areas where land cover
changes (potentially related to slope failures) have occurred,
facilitating the following possible phases of mapping and/or
field surveys. In other words, the procedure allows for pro-
ducing a map that highlights the land cover changes observed
by comparing two consecutive spaceborne SAR images. De-
cision makers and emergency managers can use this map to
organize possible verifications and field investigations.

The procedure is implemented in a processing chain based
on free data and software and exploits radar backscattered
signals recorded within the Sentinel-1 SAR images. The val-
ues of some parameters related to the used algorithms must
be provided by the user. As an alternative, they can be set
based on the values derived from other similar areas. The
processing chain was applied, in back analysis, to an area in
Papua New Guinea that was struck by a severe seismic se-
quence in February–March 2018; the most powerful seismic

events triggered numerous landslides, generating widespread
land cover modifications.

2 Methodology

2.1 Preprocessing of SAR images

The implemented procedure is based on Sentinel-1 images
available in Level-1 Single Look Complex (SLC), with a
VV-VH polarization and Interferometric Wide (IW) acqui-
sition mode. Level-1 SLC products are images provided in
slant range geometry that are georeferenced using orbit and
attitude data from the satellite. Each image pixel is rep-
resented by a complex magnitude value and contains both
amplitude and phase information (ESA, 2018). Preprocess-
ing of the images is performed using the Graph Processing
Tool (GPT) of the Sentinel-1 Toolbox1, and includes the fol-
lowing steps: (1) thermal noise removal, (2) radiometric cal-
ibration, (3) TOPSAR de-burst and (4) multi-looking pro-
cesses.

The thermal de-noising consists of the removal of dark
strips with invalid data from the original data. This operation
is performed with the SNAP algorithms by subtracting the
noise vectors provided by the product annotations from the
power-detected image (ESA, 2017). The radiometric calibra-
tion allows for converting digital pixel values in a radiomet-
ric calibrated backscatter (β0) (El-Darymli et al., 2014). The
TOPSAR de-burst removes black-fill demarcations between
the single bursts, forming sub-swaths of the IW-SLC prod-
ucts, allowing for the retrieval of single images. The multi-
looking process is carried out to reduce the standard devi-
ation of the noise level and to obtain approximately square
pixels of about 14 m (mean ground resolution) by applying a
factor of 1 : 4 (azimuth : range).

Consecutive SAR images, selected to detect amplitude
changes of the radar signal (i.e., change detection), are co-
registered with a digital elevation model (DEM)-assisted
procedure that uses the Shuttle Radar Topography Mis-
sion (SRTM) 1 s DEM, auto-downloaded by SNAP. After the
co-registration, the resulting stacked images are filtered for
speckling reduction using the adaptive Frost filter (Frost et
al., 1982), with a filter size on the x and y axes of 5 pixels
and a damping factor (defining the extent of smoothing) of 2.

2.2 Detection of SAR amplitude changes

To perform the change detection analysis, the log-ratio (LR)
index is calculated as described by Mondini (2017). This in-
dex measures the change in the backscattering that might

1GPT is the Command Line Interface of the open-source soft-
ware SNAP Sentinel Application Platform, version 6.0 – http://step.
esa.int/main/toolboxes/snap/ (last access: 24 January 2020). The
source code of SNAP is available at https://github.com/senbox-org
(last access: 24 January 2020).
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be induced by land cover changes related to both natural
(e.g., landslides, floods, snow melting) or human-induced
processes (e.g., mining activities, deforestation) in a defined
time interval. For each pair of corresponding pixels belong-
ing to consecutive preprocessed SAR images, the LR index
is calculated as follows:

LR= ln
(
β0,i

β0,i−1

)
, (1)

where β0,i and β0,i−1 indicate two consecutive backscatter
values. For each pair of preprocessed images, a LR layer is
computed, and related pixels can be characterized by positive
or negative values, depending on the backscattering changes.

When the study area (i.e., area of interest, AoI) corre-
sponds to a zone smaller than the entire LR layer, a subset
is extracted by using the subset tool in SNAP.

2.3 Segmentation of the LR layer

The segmentation of the LR layer aims to group pixels with
similar LR values into unique segments. The process is per-
formed with the i.segment module in GRASS GIS 7.4 (Mom-
sen and Metz, 2017), using the “Mean Shift” algorithm and
the adaptive bandwidth option.

The first step of the Mean Shift algorithm consists of the
smoothing process of the LR layer. To do this, the algorithm
requires the definition of the following parameters from the
user: (i) the initial bandwidth size (hr), (ii) the spatial kernel
size (hs), (iii) the threshold (th) and (iv) the maximum num-
ber of iterations. We acknowledge that the smoothing consid-
ers the pixel p (having value LRp) in the center of a spatial
kernel of size hs and assigns to this a mean value calculated
using only the pixels that are inside the spatial kernel and
with values ranging between (LRp− hr) and (LRp+ hr). The
unit of measurement of hs is in pixels, and hr is a range of
LR values. In other words, the smoothing allows each pixel
value to be computed considering all pixels that are not far-
ther than the spatial kernel (hs) with a difference that is not
larger than hr. This means that pixels that are too different
from the considered pixel p are not included in the calcula-
tion of the new value.

With the adaptive option, for each pixel p, hs is fixed,
whereas the bandwidth size (hrad)p is recalculated to ac-
count for the variation of the pixel values (LR in this work)
across the spatial kernel centered on p. The aim is to avoid
the drawbacks of a global bandwidth consisting of under- or
over-segmentation. More generally, the adaptive bandwidth
size (hrad) is calculated using the following equation:

(hrad)= avgdiff · exp

(
−

avgdiff2

2 · hr2

)
, (2)

where “avgdiff” is the average of the differences between the
value of the central pixel and the values of other pixels in-
cluded in the kernel; hrad is at a maximum if the avgdiff is

equal to the user-defined hr, which is also the upper limit of
the possible hrad values (i.e., hrad is always smaller than hr).
The adaptive option is particularly useful when data are char-
acterized by high and abrupt spatial variability (as is the case
of the LR layers) and a smoothing preserving the main dis-
continuities is required (Comaniciu and Meer, 2002).

The Mean Shift algorithm recalculates the central pixel
values until a user-defined maximum number of iterations
is reached or until the largest shift (value difference) result-
ing between the central pixel and the pixels inside the ker-
nel is smaller than a threshold (th) defined by the user. The
threshold must be bigger than 0.0 and smaller than 1.0: a
threshold of 0 would allow only pixels with identical values
to be considered similar and clustered together in a segment,
while a threshold of 1 would allow everything to be merged
in a very large segment (Momsen and Metz, 2017). A more
or less conservative threshold needs to be chosen consider-
ing the spectral properties of the analyzed image. After the
smoothing, pixels in the range of the estimated local max-
ima (Comaniciu and Meer, 2002) that are close to each other
are clustered and included in a new raster map containing the
defined segments. To reduce the “salt and pepper effect”, the
segments containing less than a preferred minimum number
of pixels are eliminated, by specifying the “minsize” param-
eter within the i.segment command.

To select the appropriate parameter values (i.e., tuning), a
specific analysis should be carried out interactively (manu-
ally) before the implemented procedure is started. In partic-
ular, variability of the segmentation outcomes to the usage
of different values for the hs, hr and th parameters must be
analyzed. This analysis is event dependent because it can be
executed using consecutive SAR images acquired before and
after a well-known landslide event occurred in the past, in
the area to be surveyed or in areas that are considered sim-
ilar by geomorphologists, based on the types of land cover
and expected types of landslide. The spatial kernel size hs
can be heuristically chosen according to the size of the land
cover changes that should be detected. Keeping the spatial
kernel size constant, hr and th values can be changed itera-
tively, evaluating the results in terms of number and sizes of
segments generated by the Mean Shift algorithm. As general
rule, one can expect that large values of hr will correspond
to few (but large) segments, whereas small values of hr will
determine many small segments. This is due to the fact that
smoothing increases when larger values of hr are used. The
effect of the variation of the value of th is expected to work in
the opposite direction but is much less effective on the seg-
mentation outcomes. The first scenario (few and very large
segments) is useless since it cannot be used to geo-localize
the possible land cover changes. The second scenario (many
and small segments) is the result of the segmentation of the
random noise of the backscattered SAR images and it is also
useless. We assume that a possible criterion for selecting the
best values of th and hr is to search for the combination of
values that optimize, at the same time, the number of seg-
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ments and their average size with respect to the expected land
cover changes. An example of the procedure for the selection
of the best values for the th and hr parameters is described in
Sect. 3.

2.4 Identification of areas potentially affected by land
cover changes

After the segmentation step, a statistical analysis of the
LR pixel values included in each segment is carried out to
identify segments that are related to significant land cover
changes with high probability.

For each segment, the arithmetic mean (µs) of the included
LR pixel values is calculated as follows:

µs =
1
k

(
k∑
j=1

pj

)
, (3)

where s indicates the segment, p the pixel value and k the
number of pixels in the segment. We define the “average
layer” as the raster layer where each segment is associated
with the corresponding value of µs. Afterwards, in order to
filter segments and extract only those representing signifi-
cant statistical changes, the µs values have to be compared
with reference µ and average standard deviation (σ ) related
to no-change conditions. These reference figures have to be
calculated before the initialization of the processing chain
and after the segmentation of the event-related LR image,
using preceding SAR images when no heavy rainfall, land-
slides and earthquakes occurred, by applying the following
formulas:

µ=
1
m

(
m∑
j=1

pj

)
, (4)

σs =

√√√√√( 1
k− 1

)( k∑
j=1

pj −µs

)2

, (5)

σ =
1
r

(
r∑
z=1

σsz

)
, (6)

wherem is the total number of pixels in the pre-event LR im-
age used as reference, p is the related pixel value, and r is the
total number of segments derived from the segmentation of
the event-related LR image, characterized each one by a σs.

In this way, both the µ and σ are calculated in a kind of
“warm-up stage” of the described processing chain. Gener-
ally, these figures can be considered suitable if calculated
from three or four reference LR layers characterized by nor-
mally distributed values (i.e., Gaussian). Such a distribution
in fact indicates the random nature of the LR values, which
is typical when land cover changes are not relevant. We high-
light that in such a case, given that LR values are commonly
small and positive or negative, the µ value is equal or very
close to zero.

In this way, all the segments of the average layer character-
ized byµs values larger than |µ+(2σ)| are then extracted and
classified. Segments with µs values lower than a confidence
interval of 95 % (µs < |µ+(2σ)|) are instead discarded. Seg-
ments where µs is greater than |µ+ (2σ)| and smaller than
|µ+(3σ)| are reclassified to the integer value of 2. Similarly,
the values 3 and 4 are used to classify segments with µs val-
ues included in the range |µ+ (3σ)| to |µ+ (4σ)| and larger
than |µ+ (4σ)|, respectively. All these segments form a new
raster layer representing a map of areas characterized by rel-
evant SAR amplitude changes, including those affected by
rapid slope movements.

In order to refine this map, all the segments with the same
values (i.e., 2, 3, or 4), that are spatially contiguous and are
formed by at least a user-defined minimum arbitrary size in
terms of pixels (i.e., minimum detectable landslide area) are
merged together, and the following statistics are then com-
puted: (1) count of merged segments, (2) maximum number
of pixels included within a single segment and (3) average
number of pixels included within a single segment.

The final segment map produced by the processing chain is
georeferenced in the WGS84 reference system (EPSG 4326)
by means of the terrain correction tool of SNAP.

2.5 Automatic implementation of the processing chain

The processes described before have been implemented in
two groups of scripts that can be executed automatically (in-
chain), according to the flowchart shown in Fig. 1. They
are run after a preliminary one-time calibration phase, op-
erated manually by the user and consisting of (1) the tun-
ing of the i.segment parameters, carried out with the expert-
based segmentation of an event-related LR image (Sect. 2.3),
and (2) the computation of reference µ and σ related to no-
change conditions, as described in Sect. 2.4.

The python-based script (Fig. 1, Data ingestion) is devoted
to the automatic querying and downloading of Sentinel-1
SAR images from the ESA Sentinel Data Hub. The script,
based on the SentinelSat toolbox (Kersten et al., 2018), is set
to query the Sentinel Data Hub with a daily frequency, even
though new images may be available every 6 or 12 d depend-
ing on the geographic area.

The consecutive group of scripts written in GNU/Bash
programming language (Fig. 1) is aimed at (i) preprocessing
the Sentinel-1 images (Sect. 2.1), (ii) detecting the changes
in SAR amplitude and production of LR maps (Sect. 2.2),
(iii) segmenting the LR maps (Sect. 2.3), and (iv) identifying
areas potentially affected by land cover changes (Sect. 2.4).
This group of scripts is executed automatically when new
Sentinel-1 images are available and downloaded by the
Python-based script.

The Bash scripts require the following settings to be de-
fined by the user: (1) the path of the folder where the down-
loaded SAR images are stored, (2) values of the parameters
to use for the segmentation (see Sect. 2.3) and (3) the spa-
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Figure 1. Flowchart representing the automatic steps of the processing chain implemented in two groups of scripts (developed using Python
and Bash scripting languages). I (t1) and I (t2) represent two consecutive SAR images (or set of images).

tial coordinates of the area of interest (if it is a portion of the
downloaded SAR images). No further information is needed
since the commands are executed in a unique automatic se-
quence. To survey the same area for an unlimited time period,
all of these settings only have to be defined one time for the
chain initialization.

3 The Papua New Guinea test site

We selected an area located in central Papua New Guinea
(Fig. 2) that was affected by a severe seismic sequence at the
beginning of 2018 as a test site. On 25 February, the area was
hit by a main seismic event (M7.5) followed by several after-
shocks, including a M6.7 earthquake on 6 March. The strong
mainshock, which was rather superficial with a hypocentral
depth at 25.2 km (USGS, 2018), caused buildings to collapse,
road damage and widespread landslides, mostly along the
Tagari river valley and the slopes of Mount Sisa (McCue et
al., 2018). According to the International Federation of Red

Cross and Red Crescent Societies (IFRC, 2018), more than
100 people died, most of them due to landslides.

To test the implemented procedure, we analyzed an area of
about 3000 km2 in the mountainous region close to the epi-
center of the mainshock (AoI in Fig. 2), where preliminary
information on landslides were available (Petley, 2018a, b).

To simulate a periodic survey covering pre- and post-
earthquake periods, we downloaded 36 Sentinel-1 images
from the Sentinel Data Hub (https://scihub.copernicus.eu/,
last access: 24 January 2020) acquired along the satel-
lite track no. 82 with a temporal frequency of 12 d, from
12 November 2017 to 6 June 2018. Considering that the ma-
jority of the slopes in the study area are exposed towards the
west, to limit geometrical distortions in the single images and
in the change detection estimation, we preferred to use IW-
SLC products acquired in ascending mode, with a VV-VH
polarization. Each IW product is collected with a swath char-
acterized by a width of 250 km, subdivided in turn to three
sub-swaths containing one image per polarization, consist-
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Figure 2. Location of the test site. The area of interest (AoI) is highlighted with a blue rectangle on the main map and with a red triangle in
the inset. The black rectangles show the spatial coverage of the used Sentinel-1 SAR images.

ing of a series of bursts that are processed as independent
SLC images.

The downloaded images were used to perform a total of
17 change detection analyses, which resulted in likewise LR
layers, with a pixel size of about 14 m. The values of the seg-
mentation parameters were defined with an interactive man-
ual analysis (see Sect. 2.3) by segmenting the “pre-postM7.5
earthquake” LR layer, selecting the spatial kernel size (hs)
of 10 pixels (see Sect. 2.3), and setting the maximum num-
ber of iterations to 200. This size of the spatial kernel was
set to 10 pixels to detect significant differences of LR val-
ues during the smoothing stage of the segmentation pro-
cess, taking into account the approximate expected size of
the land cover changes. In the interactive (manual) analy-
sis, we selected bandwidth sizes (hr; see Sect. 2.3) ranging
from 0.0005 to 0.016 and thresholds (th) from 0.001 to 0.016
(Fig. 3), obtaining 20 different parameter combinations. For
each pair of parameters, the number of generated segments
and their average size was plotted in Fig. 3. Points highlight
the major impact of the hr parameter with respect to the role
played by the threshold (th) parameter in defining the number
of total generated segments. Below an hr value of 0.004 over-
segmentation occurs, whereas for hr values equal or larger
than 0.004, the number of generated segments tends to be-
come small and constant. With the aim of avoiding over-
segmentation while maintaining a reasonable average size of

the segments (to be able to also delineate small patches of
the terrain where changes occurred), and considering a vi-
sual inspection of the segmentation results obtained with the
different combinations, we decided to run i.segment in the
automatic processing chain using the following set of param-
eters values: hs= 10; hr= 0.004; th= 0.008; minsize= 2; it-
erations= 200 (see Sect. 2.3).

After the segmentation of the 17 LR layers, areas affected
by layover and shadowing effects were masked out in order
to avoid errors in the statistical analysis described below and
in the localization of potential landslides. The mask was de-
veloped in SNAP by means of the SAR Simulation Terrain
Correction tool, exploiting the SRTM 1Sec DEM.

The segments with a minimum size of 5 pixels were
extracted in the area of interest (an example is shown in
Fig. 4d), and statistics were calculated according to the con-
fidence intervals described in the methodology section. We
decided to select only the segments with a minimum size of
5 pixels, corresponding to a minimum area of about 980 m2

(i.e., a single-pixel area roughly equal to 196 m2
× 5 pixels),

after a general evaluation of the preliminary landslide-related
images published on news websites and social networks and
also considering that the detection of smaller segments in the
test area was not significant at the scale of our analysis. It
is worth noting that the accuracy of such a minimum area
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Figure 3. Data analysis aimed at evaluating the best combination of bandwidth (hr) and threshold (th) values. The black rectangle identifies
the selected combination.

is not accurate due to the use of a geographic (and thus not
projected) reference system (WGS84).

In Fig. 5, statistics of the selected segments are displayed
for each change detection. The analysis of the histograms re-
vealed two main peaks corresponding to change detections 9
and 10. Change detection 9 considers images acquired be-
fore and after the M7.5 earthquake, whereas change detec-
tion 10 considers the images acquired on 28 February and
12 March 2018. The first peak highlights widespread changes
related to landslides that were extensively documented after
the M7.5 event (Petley, 2018a). The second peak was instead
unexpected and was probably due to the occurrence of fur-
ther landslides triggered by the M6.7 event on 6 March 2018.
In Fig. 6, segments related to these two peaks are displayed
(red pixels relate to change detection 9; blue pixels relate to
change detection 10). To check whether these segments were
effectively located in areas characterized by a high concen-
tration of seismically induced landslides, we analyzed optical
images available on the Planet explorer application (Planet
Team, 2017). By means of a visual interpretation, we identi-
fied the zones (the yellow polygons shown in Fig. 6) where
clusters of landslides occurred, verifying a general accor-
dance with the spatial distribution of both red and blue seg-
ments.

Small widespread segments outside the areas affected by
landslides, mostly related to stream changes and noise, also
resulted in the AoI. Similar random segments occurred in the
pre- and post-event change detections, as also displayed by
statistics in Fig. 5.

3.1 Statistical evidence of landslide-like segments

Evidence of the widespread land cover changes induced by
the two earthquakes, as well as the timing of their occur-
rence, also resulted from a statistical analysis of the seg-
ment areas derived from each change detection. The com-
parison of some representative statistics of segment’s areas
related to different change detections are shown in Fig. 7.
For each comparison, four types of statistics are displayed:
Quantile–Quantile (Q–Q) plot, Empirical Cumulative Distri-
bution Function (ECDF), Density plot and Frequency plot.

The first column in Fig. 7 compares areas of the seg-
ments resulted from the change detections 11 and 7, which
we assume to not be affected by landslides triggered by
the earthquake (i.e., NO-EVENT/NO-EVENT, where the
term EVENT refers to the earthquake shocks); the second
column shows the comparison between areas of the seg-
ments resulting from change detections 6 and 10, with the
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Figure 4. (a) Optical image of a small sample area affected by landslides within the AoI. (b) The corresponding LR layer. (c) Output of the
segmentation algorithm (obtained using the optimized hr and th values), where the different colors are random and have the sole purpose of
differentiating the different segments. (d) The extracted landslide-related segments (in blue). Optical images have been downloaded from the
Planet explorer application (Planet Team, 2017).

second including seismically triggered landslides (i.e., NO-
EVENT/EVENT); the third column indicates the compari-
son between areas of the segments from change detections 9
and 10, both with landslides (i.e., EVENT/EVENT).

Clear differences can be noted between the area’s dis-
tribution of segments with and without landslides (change
detection 6 – change detection 10) displayed in the NO-
EVENT/EVENT plots. This difference is particularly high-
lighted in the Q–Q plot, where the gap between the blue line
representing the real distributions and the theoretical similar-
ity condition (red line) is evident.

Considering the p values from the Kolmogorov–Smirnov
tests carried out for all the 136 distribution compar-
isons (the combination of 17 change detections taken 2
at a time without repetition), a general similarity arises
(i.e., p value> 0.05) among 81 of the 105 distributions
that were not affected by landslides (NO-EVENT/NO-
EVENT) (Fig. 8). On the other hand, among the 30 NO-
EVENT/EVENT distributions, the majority (21/30) are dif-
ferent. The EVENT/EVENT distribution is instead the same
(Fig. 8).

We have attempted to analyze the distribution of the areas
of the segments derived from the change detections to verify
if they followed the empirical statistical distribution of the
landslide size, as described by different theoretical models
(Stark and Hovius, 2001; Malamud et al., 2004; Rossi et al.,
2012; Schlögel et al., 2015).

By using the tool implemented by Rossi et al. (2012)
for estimating the probability distribution of landslide ar-

eas, we verified that medium and large-scale areas of seg-
ments obtained with change detections 9 and 10 followed
a landslide-like behavior. In fact, the two probability dis-
tributions obtained with a Double Pareto Simplified model
(Fig. 9) resulted in inverse power law decay for medium and
large areas, highlighting a moderate agreement with empir-
ical data. A rollover (inflection) in correspondence in small
areas (e.g., Malamud et al., 2004), however, is not present.
This could be due to a consistent detection of small changes
(i.e., ∼ 1000 m2) ascribable to landslides and other random
land cover modifications, as well as some noise. In addition,
it is worth remembering that segments with areas≤ 980 m2

were not considered.
As shown in Fig. 9, the two analyses did not pass the

Kolmogorov–Smirnov test (p value= 0). This may be ex-
plained by the fact that the input datasets (i.e., segments area)
were not obtained with a proper landslide mapping activity,
as described in Guzzetti et al. (2012), but with a procedure
that is not aimed at landslide mapping operations, as clari-
fied in the Introduction, but at identifying land cover changes
also related to landslides. Despite this, results seem to be
fairly consistent with curves of proper landslide inventory
data (Schlögel et al., 2015).

4 Discussion

In this article, we describe a processing chain aimed at identi-
fying SAR amplitude changes that can be partially explained
by the occurrence of mass movements. We have selected
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Figure 5. Statistics of the segments identified for each change detection. (a) Number of segments with more than 5 pixels. (b, c) Maximum
and average number of pixels per segment. Peaks of the change detections 9 and 10 indicate the occurrence of widespread land cover changes.
The dashed lines show the 95◦ percentiles of the distributions (not including change detections 9 and 10).
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Figure 6. The location of the epicenters of the two main earthquakes and the distribution of segments representing SAR amplitude changes
for the change detections 9 (red) and 10 (blue). Yellow polygons are areas affected by clusters of landslides, as interpreted from optical data.
The white rectangle identifies the AoI (see Fig. 2).

SAR data since they have the advantage of not being affected
by the cloud cover disturbance. In fact, as described by Mon-
dini et al. (2019), the use of SAR amplitude data can mitigate
the cloud coverage issue and can allow for detecting land-
slides that otherwise might remain unknown or unnoticed for
a long time. In this way, the procedure can be exploited for
a “continuous” (in terms of time) slope monitoring activity,
even if failures occur during long-lasting periods of precipi-
tation and persistent cloud cover that do not allow us to use
optical data for a rapid and detailed landslide recognition. In
the selected study area, widespread cloud cover persisted for
several weeks during and after the seismic sequence. The first
cloudless optical image of the area damaged by the seismic
shaking was published by the daily monitoring service deliv-
ered by © 2019 Planet Labs Inc. (https://www.planet.com/,
last access: 24 January 2020) on 25 March, almost 1 month
after theM7.5 mainshock that triggered numerous landslides.
The high cloud persistence is quite common in Papua New
Guinea, and in fact this is one of the cloudiest regions of the
world, with an annual cloud frequency (proportion of days
with a positive cloud flag) higher than 80 % percent (Wilson
and Jets, 2016; Mondini et al., 2019). As a consequence, the
use of optical data in this area, and in other mountainous re-
gions exposed to prolonged rainfall related to monsoons, cy-
clones, or other persistent meteorological systems, is tricky.

The obtained results depend on the definition of the im-
age preprocessing and segmentation parameters that should
be calibrated a priori (see Sect. 2.3 and 2.4). While the ge-
ometric and radiometric corrections to the images are quite
standard and well-accepted procedures, the SAR multiplica-
tive noise filtering remains a largely discussed point in the
scientific literature, and there is not a consensus on the se-
lection of strategies. We chose the Frost filter because it has
already been proven to work properly in mountainous envi-
ronments (Schellenberger et al., 2012) and it was used suc-
cessfully in previous studies dealing with landslides (Mon-
dini, 2017). We acknowledge that different filters might have
produced different results or requested a different tuning of
the segmentation procedure. The impact of different filters on
our procedure might be an interesting follow up to this work.
Another improvement may consist of the use of images ac-
quired in both ascending and descending geometries. The use
of ascending images was only related to focus this first step
of the work on the implementation of the entire processing
chain, which we tried to simplify as much as possible. In fact,
there is no doubt that combining images acquired in ascend-
ing and descending geometries can improve the quality of
results, representing a nontrivial advancement of the proce-
dure that was out of the aim of this first implementation. The
a priori choice of using ascending products was based on the

https://doi.org/10.5194/nhess-20-2379-2020 Nat. Hazards Earth Syst. Sci., 20, 2379–2395, 2020

https://www.planet.com/


2390 G. Esposito et al.: A spaceborne SAR-based procedure to support the detection of landslides

Figure 7. Comparison of segment’s area statistics related to different change detections.
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Figure 8. Histogram representing the differences between all the
compared segment’s area distributions, calculated according to the
p value of the Kolmogorov–Smirnov tests.

findings that most of the slopes in the study area are exposed
towards the west, with the aim of limiting the inclusion of
geometrical distortions in the change detection products.

The tuning of the segmentation parameters is the key ele-
ment for identifying areas affected by significant land cover
changes that are also induced by rapid slope movements.
This process is event dependent, requiring a well-known
landslide event that occurred in the past in the analyzed area
or in zones with similar topographic and land use charac-
teristics. In the case study described here, definite values of
the segmentation parameters were obtained by segmenting
the pre-post M7.5 earthquake LR layer and by testing differ-
ent value combinations (Fig. 3). This may represent a limit
of the proposed procedure if it is applied to different geo-
morphic settings without past landslide events or for identi-
fying different types of slope failures. On the other hand, if
a proper event-based tuning operation is performed, a con-
tinuous monitoring of slopes can be efficiently carried out
without temporal limitations, exploiting both available pre-
and post-event images, as has been done for the current
case history. The described application in fact highlighted
that by keeping the same parameters values, landslides and
other land cover changes triggered by the M6.7 aftershock
were also detected. Overlapping between the calculated seg-
ments (i.e., change detections 9 and 10) to ground truth data
revealed that largest SAR amplitude changes often corre-
sponded with landslides (Fig. 6). Further evidence was pro-
vided by the statistical distributions shown in Fig. 9, with
results similar to those estimated by other landslide-related
studies (Stark and Hovius, 2001; Malamud et al., 2004; Rossi
et al., 2012; Schlögel et al., 2015). The segments located
mostly outside the areas affected by landslides were caused
instead by other land cover changes that were out of the aims

of this study or by random noise effects. Segments related
to these changes can be easily identified because they are
composed of an average number of pixels close to 10, as de-
tected in all the change detections, whereas segments related
to landslides (i.e., change detections 9 and 10) are character-
ized by a higher number of pixels (Fig. 5c).

The occurrence and location of secondary failures (blue
pixels in Fig. 6) were not known before our analysis be-
cause they were not reported by news and local government
websites and were also missing in the maps of the Coper-
nicus Emergency Management Service (https://emergency.
copernicus.eu/mapping/list-of-components/EMSR270, last
access: 24 January 2020) activated for the disaster response.
The general lack of information related to these failures was
likely due to a series of issues affecting both the field and the
satellite surveys in the aftermath of the M = 6.7 earthquake.
In fact, an effective assessment in the field was impeded by
the road damage also caused by the mass movements trig-
gered by the previous major M7.5 event, whereas the use of
optical satellite images was hampered by a widespread cloud
cover that, as stated before, persisted during several weeks
after the two main seismic shakings. The first information
about the occurrence of these landslides was provided on-
line by Petley (2018b) about 1 month later, without a clear
indication of its relationship with the M6.7 earthquake. The
detection of this second set of failures in areas poorly af-
fected by previous slope movements triggered by the main-
shock demonstrates the relevant usefulness of the proposed
processing chain.

A suitable segmentation can hence allow us to get statisti-
cal evidence of the occurrence of event landslides. Statistical
distributions of the three parameters shown in Fig. 5 provided
distinctive signatures of widespread land cover changes trig-
gered by the M7.5 mainshock and by the M6.7 aftershock. It
is worth noting, however, that the 95th percentile highlighted
in the plots is also exceeded by other peaks (e.g., change de-
tection 13 in the segment count) that cannot be considered as
diagnostic of landslide occurrence since they are ephemeral
and are not as steady in all three plots as those of the change
detections 9 and 10. In the case of small-scale landslides oc-
curring in localized portions of a wide area, the related sta-
tistical signals may be imperceptible if these are of the same
magnitude as other previous and successive signals that are
not related to landslides. In cases like this, distinctive evi-
dence of slope failures can be achieved by starting the pro-
cessing chain with a smaller subset of the LR layer (i.e., mon-
itored area).

The outcomes of this study represent a concrete example
of how to exploit the relevant advantages of open-source soft-
ware with a command line interface (i.e., SNAP and GRASS
GIS) to implement automatic processing chains. Moreover,
the proposed methodology can be properly adopted to mon-
itor areas on the order of thousands of square kilome-
ters if powerful hardware resources are available. In fact,
the preprocessing and segmentation steps require significant
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Figure 9. Frequency–area distribution of segments resulting in the change detections 9 (a) and 10 (b) and fitting with a Double Pareto
simplified model.

amounts of calculation power and memory. It is well known
that the Mean Shift is a time-consuming algorithm for large
datasets (Wu and Yang, 2007) and that convergence for large
areas can be reached in dozens of hours. Segmentation times
are proportional to the dimensions of the monitored area and
to the selected spatial kernel size (hs).

A final remark concerns the occurrence of landslides in the
study area. Generally, landslides in the mountainous sectors
of Papua New Guinea are very common processes. Earth-
quakes with a magnitude greater than 5 are among the dom-
inant factors triggering widespread landslides. According to
Robbins and Petterson (2015), such earthquakes occur regu-
larly in the country, but records of the triggered landslides
are surprisingly lacking. The lack of systematic reporting
and the remoteness of communities affected by such events,
also impeded an adequate characterization of landslide haz-
ard and risk (Blong, 1986). Robbins et al. (2013) stated that
landslides occur annually, and failures tend to range from
few cubic meters of material to mass movements with es-
timated volumes of 1.8×109 m3, varying from debris slides,
avalanches and flows to translational and rotational slides. In
this framework, the landslide detection procedure described
in the article may result in a relevant tool for local authori-
ties of countries characterized by extensive remote areas re-
peatedly affected by slope failures, and for the humanitarian
organizations operating in response to geohydrological dis-
asters.

5 Conclusions

This study presents a procedure aimed at supporting the de-
tection of landslides inducing sharp land cover changes on
vast mountainous areas. It is based on SAR data acquired
systematically by the Sentinel-1 satellites. The computation

of the LR index and segmentation of the consequent raster
layers allow for detecting areas affected by multi-temporal
variations of the radar backscattered signal. Among them,
areas potentially related to rapidly moving landslides can be
identified with a robust statistical analysis. The performance
of the implemented procedure was tested in back analysis
in an area of about 3000 km2 in Papua New Guinea. Here,
in 2018, two consecutive earthquakes (M7.5 and M6.7) trig-
gered widespread slope failures causing more than 100 fa-
talities and severe damage to roads and buildings. The simu-
lation of a multi-temporal survey of about 7 months, before
and after the earthquakes, revealed the ability of the imple-
mented procedure to detect statistical evidence of significant
land cover changes in correspondence with the two events.
Moreover, results demonstrated that the zones characterized
by significant backscattering changes resulted in a reasonable
agreement with those affected by landslides, as compared to
the ground truth data.

The study highlights advantages of free SAR products that
may guide the scientific community and the local authori-
ties to develop archives of freely accessible data suitable for
implementing streamlines of information aimed at monitor-
ing natural and urbanized areas. As demonstrated in the case
study, the proposed procedure has the potential to be a valid
support in landslide emergency management, providing rele-
vant information in near real time for civil protection authori-
ties and scientists involved in the emergency response. Future
improvements may limit the user decisions in the model pa-
rameterization, optimizing the processing times and refining
the filtering of landslide-related changes by also considering
geological and geomorphological factors.
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