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Highlights 

● Urban and climatic changes have not yet been considered jointly in regional landslide susceptibility 

assessments. We present a methodology to account for these environmental changes at regional 

scale. 

● The methodology is based on repeated simulations of a hillslope-scale mechanistic model. 

● We find that unplanned urban sprawl can be more detrimental than climate change for slope 

stability; and that their joint impact is greater than the sum of its parts. 

● Our regional susceptibility maps can be updated with new data, projections and planning strategies  

Abstract   
Empirical evidence shows that climate, deforestation and informal housing (i.e. unregulated construction 

practices typical of fast-growing developing countries) can increase landslide occurrence. However, these 

environmental changes have not been considered jointly and in a dynamic way in regional or national 

landslide susceptibility assessments. This gap might be due to a lack of models that can represent large 

areas (>100km2) in a computationally efficient way, while simultaneously considering the effect of rainfall 
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infiltration, vegetation and housing.      We therefore suggest a new method that uses a hillslope-scale 

mechanistic model to generate regional susceptibility maps under changing climate and informal 

urbanization, which also accounts for existing uncertainties. An application in the Caribbean shows that the 

landslide susceptibility estimated with the new method and associated with a past rainfall-intensive 

hurricane      identifies ~67.5% of the landslides observed after that event. We subsequently demonstrate 

that the hypothetical expansion of informal housing (including deforestation) increases landslide 

susceptibility more (+20%) than intensified rainstorms due to climate change (+6%). However, their 

combined effect leads to a much greater landslide occurrence (up to +40%) than if the two drivers were 

considered independently. Results demonstrate the importance of including both land cover and climate 

change in landslide susceptibility assessments. Furthermore, by modelling mechanistically the overlooked 

dynamics between urban growth and climate change, our methodology can provide quantitative 

information of the main landslide drivers (e.g. quantifying the relative impact of deforestation vs informal 

urbanisation) and locations where these drivers are or might become most detrimental for slope stability. 

Such information is often missing in data-scarce developing countries but is key for supporting national 

long-term environmental planning, for targeting financial efforts, as well as for fostering national or 

international investments for landslide mitigation. 

1. Introduction  
 

Worldwide empirical evidence shows that landslide incidence can increase under expanding deforestation 

(Glade, 2003; Pisano et al., 2017; Reichenbach et al., 2014), informal housing (i.e. housing that does not 

conform with building regulations such as unregulated hill cutting or unmanaged water drainage - 

Anderson et al., 2008; Diaz, 1992; Smyth and Royle, 2000) and changing precipitation patterns (Haque et 

al., 2019; Gariano et al., 2015). These environmental changes should therefore be included in landslide 

predictions, especially in the Tropics where informal urban population is rapidly expanding (Ozturk et al. 

2022) and rainfall events can be very intense (Seneviratne et al., 2012). However, current methods to 

quantify landslide susceptibility (which identifies where hillslopes are more prone to failure) are not 

adequate in fast changing environments, as they fail to capture the dynamic effects of changing climate and 

expanding urbanisation, and do not consider the potentially large uncertainties in these landslide drivers, 

underlying slope or soil characteristics. Amongst these methods, the most employed use statistical and 

mechanistic slope stability models.  

Statistical models are typically used to derive landslide susceptibility maps at national and regional 

(>100km2) scales. These models employ data available at these scales (such as Digital Elevation Models - 

DEM) to derive their correlation with historical landslides: more failures are predicted to occur in locations 

similar to those where they happened before (see Reichenbach et al., 2018 for a review on the topic). 
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Unfortunately, this approach is inapplicable in places where (1) landslide records are missing or unreliable 

(as in many landslide-prone tropical countries - Maes et al., 2017), (2) urbanisation is growing fast, and thus 

landscape properties are changing (UN 2019); (3) decision makers want to consider environmental 

conditions yet unseen, such as unprecedented extreme rainfall events due to climate change.  

Spatially distributed mechanistic slope stability models rely less on landslides records because they 

parameterize causal relationships rather than correlations in historical data. As a consequence, they can be 

used to predict the effects of future, unseen environmental conditions. Nonetheless, these models have 

mostly been applied in small areas (<5-20 km2), and almost always treating land cover and climate change 

separately (e.g., Van Beek and Van Asch, 2004; Vanacker et al., 2003; Melchiorre and Frattini, 2012). Only 

recently, efforts have been made to fill this gap. For example, Alvioli et al. (2018) explored the impact of a 

future climate scenario on landslide occurrence over an area of 420 km2 in Central Italy. In their analysis, all 

geotechnical and hydrological parameters were fixed at ‘worst case’ values to better detect the impact of 

climate change on landslide occurrence. Bernardie et al. (2020) and Hürlimann et al. (2022) quantified the 

changes in regional landslide susceptibility under both vegetation and climate change scenarios for the 

French (70 km2) and Spanish (326 km2) Central Pyrenees respectively, while considering the uncertainty of 

some soil parameters. Although these studies are interesting in the spatial extent they have been able to 

tackle, they still only consider a limited number of possible climate/land cover scenarios and uncertain 

input data (the variation of which could lead to significantly different slope stability results, Melchiorre and 

Frattini, 2012) – probably due to the high computational running time of these models. Furthermore, none 

of these studies included the impacts of informal urban activities that are known to be detrimental for 

slope susceptibility, such as slope cutting or leaking pipes (e.g., Larsen, 2008; Anderson and Holcombe 

2013). 

In this paper, we therefore suggest a new method that smartly uses a fast hillslope-scale mechanistic model 

to generate regional susceptibility maps under a wide range of climate change and - for the first time – 

informal urban expansion scenarios. In a previous study at hillslope scale (Bozzolan et al., 2020), we have 

shown that the joint effect of different climate and localised urban construction activities can lead to 

significantly different slope stability responses. We did this by using a mechanistic model that can represent 

dynamic hydrological changes due to changes in climate (rainfall), vegetation and localised urban 

construction activities. Furthermore, as the model is fast to run, it could be applied within a Monte-Carlo 

(MC) simulation framework to account for uncertainty in the rainfall and urban drivers as well as in all 

hillslope properties. 

Here, we take that approach to the next level.      Through Monte Carlo simulations, we generated a large 

library of synthetic hillslopes representative of the study area (the Caribbean island of Saint Lucia) and we 

analysed their stability under a wide range of different rainfall, vegetation and urban conditions. Differently 
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from Bozzolan et al. (2020), we sampled the hillslope’s geometric, geotechnical and soil properties to 

represent the variability of slopes across a region (the island of Saint Lucia) instead of the uncertainty about 

one specific hillslope location. By creating a sufficiently large catalogue of model runs, we could then map 

back the landslide predictions across that region, and so produce landslide susceptibility maps for many 

different storm events and land cover scenarios. For this work, we first tested the new method against 

observed landslides and we then created new susceptibility maps under hypothetical land cover and 

climate change scenarios. The research questions we aimed to answer are:  

1) Which are the model’s input factors that dominate the slope stability response at regional scale, 

whose uncertainty thus most affect our landslide susceptibility assessment? 

2) How well can our landslide susceptibility map built under the scenario of a known rainfall event 

represent the landslides observed after that event? 

3) How does current landslide susceptibility change under hypothetical scenarios of unregulated 

housing, deforestation and climate? How does the joint impact of these environmental drivers 

affect landslide predictions? 

     The suggested approach is therefore capable of dealing with non-stationary conditions (as suggested by 

Gariano and Guzzetti, 2016; and van Westen et al., 2006) and it can be updated as soon as new information 

(e.g. climate projections or urban plans) become available, just by selecting the most relevant modelled 

scenario. This is not possible for other methods such as statistically-based models, where the functional 

relationship between landscape attributes and past landslides might not hold under changed 

environmental conditions and new output maps must be re-calculated when new information becomes 

available (Reichenbach et al., 2018). Furthermore, the results presented are unique as they include for the 

first time both informal housing and climate change in regional landslide susceptibility assessments. We 

show that the comparison between scenarios allows the quantification of the relative and joint impact of 

rainfall and urban drivers on landslide predictions. Such quantitative information is often missing in 

developing, data-scarce nations but is key      for policy decision makers to prioritise funding in urban 

planning and landslide mitigation actions (e.g. reforestation vs urban regulation) as well as for increasing 

awareness on the relative impact of different environmental changes (Burciaga, 2020).        

2 The case study: Saint Lucia, Eastern Caribbean  
 

Saint Lucia is an Eastern Caribbean island (617 km2) with a humid tropical climate. The main landslide 

trigger is rainfall, and shallow rotational landslides dominate on both steep and shallow slopes (Anderson 

and Holcombe, 2013; Migoo, 2010). The geology is almost entirely comprised of volcanic bedrock and deep 

volcanic deposits. Due to the climate, these volcanic parent materials are subjected to deep weathering, 
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which decreases their strength and increases landslide susceptibility. The strata of a typical slope cross 

section comprise weathered residual soils and colluvium overlying decomposed rock and volcanic bedrock. 

These three types of strata typically correspond, respectively, to the weathering grades V–VI, III–IV, and I–II 

of the Hong Kong Geotechnical Engineering Office weathering grade classification (GEO, 1988). The textural 

composition and geotechnical characteristics of the upper soil strata are highly variable , but they can 

broadly be classified as fine-grained soils such as silty clays, clayey silts, and sandy clays (DeGraff, 1985). 

The combination of tropical climate, steep topography, and volcanic geology renders the region particularly 

susceptible to rainfall-triggered landslides. Furthermore, landslide risk is increased by informal housing 

which occupies steep slopes and employs unregulated engineering practices (World Bank, 2012; p. 226-

235).  

3 Method  

 
This section describes the method used to generate ensembles of susceptibility maps of Saint Lucia under 

changing rainfall and/or urban expansion scenarios. We first generated a library of synthetic 2D cross-

sectional hillslopes, whose properties are representative of the study area. Then, we analysed their stability 

response with a hillslope-scale mechanistic model (here the Combined Hydrology And Stability Model, 

CHASM) under different land covers and rainfall conditions. Finally, we linked these 2D synthetic hillslopes 

to 3D slope units – SUs (i.e. mapping units bounded by drainage and divide lines - Carrara et al., 1991; 

Guzzetti et al., 1999; Carrara et al., 1995), assigning to the SUs the stability response that corresponded to 

the rainstorm and land cover scenarios of interest.  

Specifically, the methodological workflow (Fig. 1) develops in the following steps: 

1. We identified the main land covers from available maps and subdivided the study area into SUs 

using a Digital Elevation Model (DEM). Each SU was defined by summary measures describing the 

variability of its height and slope gradient (e.g. the mean of the pixels’ gradients) across Saint Lucia.  

In this analysis, four land covers were considered: forest, shrub, bare and urban. 

2. We defined the probability distributions of the input factors. In this context, the input factors 

represent all the input data needed to define the synthetic hillslopes within CHASM. This data 

includes the hillslope cross-sectional geometry (extrapolated from the SUs properties defined in 

the previous step) as well as the soil, urban and rainfall properties. The probability distributions aim 

to represent both the variability and the uncertainty of these properties across Saint Lucia and 

were defined based on a combination of: information available in the literature, data collected 

from the field in collaboration with local experts (critically including previous studies within 

informal communities which provided information on soil strata depths, cut slope angles, and other 

type of urban construction practices), or to best represent our lack of knowledge (e.g., using 
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uniform distributions). Definitions of the probability distributions and their parameters are given in 

section 3.2 and supplementary material.  

3. We employed a statistical sampling approach to randomly sample different values of input factors 

from their probability distributions. This process generated thousands of combinations of input 

factors, each one defining a possible synthetic hillslope in Saint Lucia. The sampling was carried out 

for the four main land cover types (bare, urban, forest, shrub) identified in step 1, thus generating 

four libraries of synthetic hillslopes. The stability of each hillslope was assessed with respect to a 

selected rainfall event (such as Hurricane Tomas) with CHASM (able to represent dynamic rainfall 

infiltration) and categorised according to the resulting minimum factor of safety (FoS): stable if FoS 

≥ 1, unstable otherwise.  

4. We applied Global Sensitivity Analysis (Saltelli et al., 2008) to the dataset generated in step 3, in 

order to identify the input factors, including rainfall intensity and duration, that mostly control the 

CHASM’s slope stability response. We defined these factors as ‘dominant’. Determining dominant 

factors is important to reduce the complexity of the next step, where we will link the synthetic 

hillslopes in our libraries to the Slope Units (SUs) in our study area. 

5. Using various data sources (DEM, land cover maps, etc.), we assigned the dominant factors (e.g. a 

slope angle value – step 5 in Fig. 1) to each SU. We could then associate each SU with those 

CHASM’s simulations that have sufficiently ‘similar’ values of the dominant factors (e.g. a slope 

angle ± 5°). Note that multiple synthetic slopes are linked to the same SU, as in building the 

libraries (step 3) we sampled the input variability space very densely (for example in the Results 

presented later, we had about 6500 SUs and generated 30,000 synthetic slopes for each land cover 

type). Once this linking was established, we could retrieve those linked synthetic hillslopes forced 

by the rainfall intensity-duration combination of interest (or sufficiently similar). We then 

calculated the percentage of these slopes that were predicted to fail: this value (failure rate, FR) 

will be displayed in the susceptibility map as the measure of failure frequency of that SU under the 

chosen rainstorm conditions (step 7-8 in Fig. 1). Similarly, we could generate susceptibility maps for 

different land cover scenarios by choosing the linked synthetic hillslopes from the library 

corresponding to the new land cover (e.g. from forest to bare, if we want to assess the impact of 

deforestation), and updating the failure rate accordingly. 

In the next sections, we describe each methodological step represented in Fig. 1 more in detail. 

 

3.1 Identify the main land cover and subdivide the study area into 

Slope Units  
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The main land covers in Saint Lucia were identified using a land cover map from 2015. This map was 

prepared by the British Geological Survey applying object-oriented image classification of satellite images 

(Jetten, 2016). From the original map, we merged the classes representing deep-rooted vegetation (e.g., 

mixed and lowland forest) into a single ‘forest’ class, and all shallow-rooted (e.g., shrubland and 

herbaceous agriculture) vegetation into a single ‘shrub’ class. The class ‘urban’ encompasses both buildings 

and roads. Figure 2A shows the resulting land cover map used for this work, with the main three land cover 

classes considered: forest, shrub, urban. We also considered the land cover bare (which is present but not 

dominant) to allow comparison between the stability of non-urbanised bare slopes and vegetated slopes.  

To automatically delineate SUs, we employed the open source r.slopeunits software (Alvioli et al., 2016) 

and the optimization strategy of Alvioli et  al. (2020, 2022). We used a 5 m resolution DEM obtained from 

contour lines, derived from a national topographic map using photogrammetric methods in 2009-2010 

(before the hurricane Tomas). Due to tropical vegetation and cloud cover the number of photogrammetric 

points was however often not sufficient to generate accurate contour lines in forested and cloud covered 

areas. The resulting DEM thus does not accurately represent the terrain situation in many locations (as 

shown in Fig. 5-2 in van Westen, 2016). 

Figure 2B shows the resulting SUs map. Details about execution of r.slopeunits software in the study area 

are reported in the supplementary material accompanying this paper, section 1. The map contains 6,496 

Slope Units. Each SU is a polygon with size and shape dictated by local drainage setting, as captured from 

the DEM by the software r.slopeunits. 

3.2 Definition of the variability range of input factors 

 
The method involves the generation of synthetic hillslopes representative of Saint Lucia. The stability of 

these hillslopes was evaluated with CHASM, a model that requires information on hillslope geometry (e.g. 

slope angle, slope height and slope material strata), soil (geotechnical and hydrological), rainfall (i.e. 

intensity and duration) and initial boundary conditions (e.g. initial water depth) of 2D cross-sectional 

hillslopes. These properties are described by 32 input factors, which were all varied according to their 

probability distribution (Table 1). The vegetation properties (defined in Table 2) were kept fixed (e.g., root 

depth always 1 m), whereas urban properties were treated as random variables (bottom of Table 1) in 

accordance with the analysis performed by Bozzolan et al. (2020).  

In the supplementary material section 2, we described how we obtained the parameters of the probability 

distributions. Here, we just delineate how the range of variability of current and future rainfalls are treated, 

which can be of interest for those analyses that include climate-related uncertainty. 
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Rainfall properties are specified in terms of rainfall intensity and duration. Their ranges of variability were 

based on intensity-duration-frequency (IDF) relationships derived for the design of the Roseau Dam in Saint 

Lucia (Klohn-Crippen 1995). From these IDF curves (represented by the blue lines in Fig. 3), we derived a 

minimum and maximum rainfall intensity and duration (with maximum respectively 200 mm h−1 and 72h). 

As suggested by Almeida et al. 2017, we sampled from these ranges independently and uniformly (no a 

priori knowledge). Under such an assumption we generated a wide range of rainfall intensity-duration 

combinations that should capture both rainstorms that might have been observed in the past (light-grey 

area under the IDF curves in Fig. 3) and rainstorms that might be observed in the future (dark-grey area 

above the IDF curves in Fig. 3).  

We could then pick from this wide range of rainfall drivers those rainfall intensity-duration combinations of 

interest (which might correspond to past events, design/planning requirements, or to different future 

climate scenarios) and evaluate the corresponding landslide susceptibility.  The whole range of simulated 

rainstorms and corresponding slope stability responses could also be used to derive rainfall thresholds 

under changing land covers (as in Bozzolan et al. 2020).  

 

3.3 Generation of libraries of slope stability responses  

 
We used a random uniform approach to randomly sample combinations of input factors from their 

probability distributions (defined in Table 1). Each combination defines a synthetic hillslope (Fig. 4 is an 

example for the land cover urban). By repeating the sampling for each land cover, we generated four 

libraries of synthetic hillslopes (forest, shrub, bare and urban – 30,000 synthetic hillslopes per library with 

120,000 synthetic hillslopes in total – Step 2, Fig. 1). Due to the randomness of the sampling, we explicitly 

checked that combinations of factors were realistic; if not, they were discarded and replaced by another 

randomly generated, feasible combination. The criteria for these ‘feasibility’ checks are reported in the 

footnote of Table 1 (letters a–f).  

 

The stability of each hillslope was assessed in CHASM (Combined Hydrology and Stability Model). CHASM is 

a 2-D mechanistic model which analyses dynamic slope hydrology and its effect on slope stability over time 

(Anderson, 1990; Anderson and Lloyd 1991, Wilkinson et al. 2002a, b). The cross section of a slope is 

represented as a regular mesh of cells (with 1m resolution in this analysis, as in Fig. 4). Hydrological and 

geotechnical parameters are specified per each cell, while the initial hydrological conditions define the 

depth of the water table (DWT) and the matric suction of the top cell of each column.  

The dynamic forcing is rainfall, specified in terms of intensity and duration. For each computational time 

step for the hydrology (here 60 s), a forward explicit finite-difference method is used to solve the Richard’s 

(1-D, vertical flow) and Darcy’s (2-D flow) equations, controlling the unsaturated and saturated 

groundwater flow, respectively. At the end of each simulation hour, the resulting soil pore water pressures 
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(positive and negative) are used as input for the slope stability analysis, which implements Bishop’s 

simplified circular limit equilibrium method (Bishop, 1955). Amongst all possible slip surfaces (centred on a 

user-defined grid - Fig. 4), an automated search algorithm identifies the one producing minimum FoS, which 

is given as output.  

CHASM can represent cut slopes, house loading, and vegetation. In particular, vegetation is represented 

through rainfall interception, evapotranspiration, root water uptake, vegetation surcharge, and increased 

permeability and soil cohesion due to the root network (see Wilkinson et al., 2002b). The new extended 

version CHASM+ (Bozzolan et al. 2020) also includes surface urban water management, through the 

representation of roof gutters on houses, leaking superficial pipes and buried septic tanks. 

 

Given the large number of simulations, CHASM was run using high performance computers at the 

University of Bristol – the BlueCrystal Phase 3 which contains 16 × 2.6 GHz Sandy Bridge cores; and Catalyst, 

an ARM (Advanced RISC Machines) based system which contains 64 cores and 256 GBytes of RAM in each 

node and runs at 2.2 GHz. Once the simulations were completed, we classified each synthetic hillslope as 

unstable and stable according to the minimum FoS (respectively below and above unity). If the hillslope 

was predicted as unstable prior to the initiation of the rainfall event, then it was excluded in the landslide 

susceptibility assessment because it would represent an unconditionally unstable hillslope (for example, a 

random combination of steep slope angle with deep soil). However, we used these discarded simulations to 

assess the maximum soil depths (and therefore soil weight) that hillslopes with certain slope angles could 

bear before being predicted as unconditionally unstable. Specifically, we defined a ‘soil thickness-slope 

angle threshold’ over which hillslopes cannot exist, at least according to CHASM. This threshold was used to 

facilitate the mapping of the CHASM’s slope stability predictions into SUs, as it will be shown in the results 

section. 

 

3.4 Identification of dominant input factors  
 

In this step we quantified the relative impact of hillslopes, urban and rainfall properties on the slope 

stability response and identified those that ‘dominate’ the landslide prediction (Step 4, Fig. 1). We 

performed this step with a methodology called Global Sensitivity Analysis (Saltelli et al., 2008) that 

quantifies how the variations in a model’s outputs can be attributed to the variations in input factors. Since 

in our case the model output was binary, as simulated slopes were categorised as unstable (if FoS < 1) or 

stable (FoS ≥ 1), we used the regional sensitivity analysis (RSA) approach (Hornberger and Spear, 1981), 

which is particularly suitable when dealing with categorical outputs (but other GSA methods could be used 

in different applications – for a review see Iooss and Lemaître, 2015). In the RSA approach, the cumulative 

marginal distribution of each input factor is computed for each output category, i.e., the stable slopes and 
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the unstable ones. If the distributions significantly separate out, we infer that the model output (slope 

stability) is significantly affected by variations in the considered input factor. The level of separation 

between the cumulative distributions can be formally measured with the Kolmogorov–Smirnov (KS) 

statistic and used as a sensitivity index (Pianosi et al., 2016). The confidence intervals of the sensitivity 

indices can be estimated via a bootstrap technique (Efron and Tibshirani, 1994). The bootstrap randomly 

draws Z samples (with replacement) from the available data to compute Z KS statistics for each input factor. 

The magnitude of fluctuations in the KS statistic from one sample to another represents the level of 

confidence in the estimation of the sensitivity indices. For this application, we used the SAFE (Sensitivity 

Analysis For Everybody) toolbox (Pianosi et al., 2015) to perform RSA and to calculate the sensitivity indices 

and their confidence intervals by the bootstrap technique. 

 

3.5 Assign dominant input factors to Slope Units and calculate their 

Failure Rates under changing rainfall and land cover conditions  
 

The RSA identified the dominant input factors, i.e. those input factors that contribute the most to 

determine whether a slope was predicted as stable (FoS ≥ 1) or unstable (FoS < 1). In the next step, we 

assign each SU with a single value of these dominant factors in order to be able to link each SU with its 

most similar 2D cross-sectional hillslopes simulated by CHASM.  In general, the way to carry out this step 

depends on the input factors that are found to be dominant and the available data to determine the value 

of those factors for each SU.  

Usually, dominant factors corresponding to geometrical properties can be inferred from a DEM, which are 

globally available (even if at different resolutions across the globe). In this analysis for example, slope angle 

was identified as a dominant input factor, so we assigned each SU with a slope angle value equal to the 90th 

percentile of all the slope angles extrapolated from the DEM for that SU. We then used these slope angles 

to derive the corresponding soil thickness for each SU. We did this by using a mechanistic-based ‘slope 

angle-soil thickness’ relationship derived with our simulation results (as we will explain in the results 

section and supplementary material).  

Soil properties are the most difficult to determine because their estimation is inheritably uncertain over 

large areas. If available, field and lab data supported by regional geological map and topographical 

information (e.g. Salciarini et al., 2006) could be used to assign each SU with soil properties estimates. 

Here, we did not follow this approach as the soil maps for Saint Lucia, in common with most soil maps, do 

not contain sufficient geotechnical information for stability analysis. Given the lack of reliable information 

about spatial patterns of the required soil properties, we simply assigned all SUs with the median of the soil 

properties across the entire island.  
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Once each SU is defined by its dominant soil and geometrical factors, we can choose a combination of 

rainstorm and land cover conditions, and look for all the synthetic hillslopes in the simulation library that 

represent that SU. First, based on the chosen land cover, the library of synthetic hillslopes associated with 

that particular land cover are retrieved. Then, a search is conducted within that library for the hillslopes 

with the most similar geometrical, soil and climate properties. Figure 5 shows how this search is performed. 

A SU that is, for example, defined by three dominant input factors (X, Y, and Z in the figure) identifies a 

point (blue dot) in the 3D variability space of the simulated slope stability responses (grey and black dots 

represent the predicted stable and unstable synthetic simulations respectively). A cubic window centred in 

that point (red cube in Fig. 5) contains N simulations with hillslopes properties and drivers similar to that 

SU. If N is equal or greater than a fixed quantity (here, N ≥ 30), the FR of the SU is calculated as the ratio 

between the hillslopes predicted as unstable (M) over N (unstable and stable), otherwise the size of the 

window is increased until N is reached. By repeating this process for all SUs, we obtained a susceptibility 

map conditioned by the rainstorm and land cover scenario considered. If we then, for example, wanted to 

increase the rainstorm intensity, we moved the window in Fig. 5 up along the Z axis and a new FR was re-

assessed for all SUs without the need to re-run the model. The same concept applies if a new soil dataset 

becomes available. In this case, the search would change according to the updated SU properties, making 

this methodology highly adaptable to changes of the input conditions.  

 

3.6 Evaluation of the quality of landslide susceptibility maps 

 
In order to evaluate our methodology, we generated a landslide susceptibility map under current land 

cover (Figure 2A) for a rainfall event with the characteristics of 2010 Hurricane Tomas, and compared it to 

the real landslide inventory associated with that event (available at http://www.charim-

geonode.net/layers/geonode:landslides_2010_2014). The quality of the map will be high if the areas 

flagged by the model with high Failure rates are the same areas where landslides were observed after the 

Hurricane. To evaluate the quality of the map, we used      two different techniques: the success rate curve 

and the Receiver Operating Characteristic (ROC) curve (for discussion about these and other techniques, 

the reader is referred to Frattini et al., 2010). In the success rate curves, the cumulative percentage of the 

area of the SUs containing observed landslides is plotted against the cumulative percentage of the area of 

SUs associated with different FR values (from high to low FR). In the ROC curves, the True Positive rate is 

plotted against the False Positive Rate, where True and False positive rate are defined as in Fig. 6. In both 

approaches we therefore obtain a curve similar to those reported in Fig. 6. Steep curves are associated with 

accurate maps, i.e., maps where the SUs predicted with the highest FR also host the majority of the 

observed landslides. A quantitative measure of the map’s performance can then be obtained by calculating 

the area under both curves: the larger the area the better the map (Hanley and McNeil, 1982). 
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4 Analysis and results  
 

4.1 Identify the input factors dominating slope stability in Saint Lucia 

and assign these factors to Slope Units 
 

In this section we analyse the 120,000 outputs generated by CHASM for the four land covers considered: 

forest, shrub, bare and urban (30,000 simulations each). We performed RSA to identify the input factors 

dominating slope stability. Specifically, we computed the sensitivity index of each input factor: a high value 

of the sensitivity index suggests that the variation of that input factor significantly influences the slope 

stability response (i.e., the predicted FoS) whereas a value close to zero means that factor has negligible 

influence. Figure 7 shows that slope stability is insensitive to many input factors and highly sensitive to five, 

namely slope angle, effective cohesion, thickness of the layer 1 (residual soil), rain duration and rain 

intensity. 

There is no significant difference in sensitivity between land covers, except for the urban case (darkest bars 

in Fig. 7) where the sensitivity of cohesion of layer 1 (fifth input from the left) increases while the sensitivity 

of soil thickness of layer 1 (third input) and of rainfall duration decreases. This is consistent with previous 

findings, where the change in sensitivity was explained by the fact that when hillslopes are urbanised they 

are more prone to failure even on less susceptible soils and under less severe rainfall (Bozzolan et al., 

2020). The stability of urbanised slopes is also significantly influenced by variations of house density. More 

considerations on this input factor are reported in the supplementary material, section 3. 

 

In the next step, we assigned the five dominant input factors found with the RSA to the SUs in Saint Lucia. 

We did this based on the information available, as described in section 3.5: 

● Slope angle: we assigned to each SU the 90th percentile of all slope angles extrapolated from the 

DEM pixels within that SU.  

●  Soil thickness of layer 1:  we did not have data for this property, but empirical evidence suggests 

the existence of a threshold that limits the maximum soil thickness able to be maintained for a 

given slope angle (Patton et al., 2018; Catani et al., 2010). We therefore decided to associate each 

SU with such ‘maximum thickness’, calculated as a function of the SU slope angle. We used the 

library of simulated hillslopes to infer this ‘slope angle-soil thickness’ relationship. Specifically, we 

identified the synthetic hillslopes predicted to fail before the beginning of the rainfall events (i.e., 

hillslopes that are inherently unstable) and derived from these the maximum thickness sustained at 

each slope angle value. This method is fully described in the supplementary material, section 4. 
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● Soil cohesion of layer 1:  each SU was assigned with a constant value of 8 kPa, which represents the 

mode of the probability distribution employed in the stochastic sampling for layer 1 (see Table 1). 

This is the best available estimate, given the lack of soil cohesion data (inherent at regional scale). 

Once each SU was defined with these three input factors, we chose the rainfall conditions of interest 

(defined by rainfall intensity and duration, which are also two dominant input factors – Fig. 7) and 

calculated the SUs’ FR according to the SUs’ land cover (assigned from current land cover maps of Fig. 2A or 

hypothetical) using a moving window as the one described in the methodology section 3.5 (see also the 

supplementary material, section 5).  

In the next sections, we report the results of two applications. The first represents the susceptibility 

assessment under rainfall conditions similar to Hurricane Tomas and current land cover (Fig. 2A). In the 

second application, we generated the susceptibility maps corresponding to hypothetical land covers 

(expanding deforestation and informal housing) and rainstorm intensities greater than Hurricane Tomas.  

4.2 Regional landslide susceptibility for a known rainfall-triggering 

event  
 

We started by evaluating the landslide susceptibility map corresponding to Hurricane Tomas, which in 

October 2010 caused severe damage due to flood and landslides throughout Saint Lucia (Van Westen, 

2016). The total rainfall was estimated to be 660 mm in some locations, over about a 24 hour period, 

corresponding to a return period between 180 and 200 years depending on the source (van Westen, 2016; 

Mott MacDonald, 2013). To build the corresponding landslide susceptibility map, we thus retrieved per 

each SU the ensemble of (about 30) simulations that have similar slope angle, soil thickness, soil cohesion 

to that SU and similar rainfall intensity and duration to the Hurricane (as described in section 3.5). 

Specifically, we      considered a cube      (see Fig. 5) with      precipitation intensity centred on 28 mm h-1 (i.e. 

660 mm over 24 hours) and duration on 24 h (the range of variation is defined in the supplementary 

information, section 5).      Results are shown in Fig. 8A, together with the locations of 714 real landslides 

recorded after the hurricane (we considered only the landslides fully contained within the SUs). The quality 

of the map is evaluated by calculating the area under the curve (AUC) of success rate (Fig. 8B) and under 

the ROC curve (Fig. 8C) (see section 3.6). These areas are AUCSR = 0.66 and AUCROC = 0.69 respectively.  Both 

values indicate an acceptable performance as they fall between 0.5 (the area of a ‘random’ model that 

would randomly assign high and low FR values to the SUs containing landslide observations) and 1 (the area 

of an ‘exact’ model that would identify high FRs only in those SUs containing landslide observations). 
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4.3 Regional landslide susceptibility under hypothetical climate and 

land cover change   

 
We then explored the effects of land cover and climate change on landslide susceptibility by considering 

five hypothetical scenarios. Scenarios (A) and (B) are associated to a rainstorm event comparable to 

Hurricane Tomas but with expanding informal urbanisation (A) and deforestation (B) in all the SUs with 

angles less than 50° (i.e. SUs that might be hypothetically urbanised in the future). Scenario (C) uses current 

land cover conditions but forced by a rainstorm event 10% more severe than Hurricane Tomas (i.e., a 

potential future climate scenario – Knutson et al., 2015). Finally, scenarios (A+C) and (B+C) use a 

combination of the previous land cover and climate change. Figure 9 shows the resulting susceptibility 

maps. The arrows report the increase in the number of SUs associated with a FR greater than 0.5 (defined 

as ‘hazardous’ SUs). In general, the number of hazardous SUs increases in all scenarios. However, the 

greatest increase occurs when both climate and land cover change (about +30% and +40%), with a 

disproportionate increase in the number of hazardous SUs compared to the scenarios where they are 

considered independently. For example, the scenarios with only deforestation (B) and only climate change 

(C) lead respectively to a +6.4% and +5.6% increase in hazardous SUs, while their combined effect (B+C) 

lead to an increase of +39%, which is 4 times the sum of its parts.  

 

5 Discussion   
 

Our Global Sensitivity Analysis (Figure 7) shows that for all the land covers considered, there are five 

dominant landslide drivers: slope angle, thickness and cohesion of material layer 1 (i.e., the top strata 

comprising colluvial and residual soil) and rainfall intensity and duration. The fact that a single model 

output (the Factor of Safety in our case) is largely controlled by a relatively small number of input factors is 

not surprising as this almost always is the case when applying GSA to earth system models (Wagener and 

Pianosi, 2019). The fact that these five factors in particular are dominant is also reasonable, as in general, 

the steeper the hillslope, and the heavier and weaker the material it’s made from, the more unstable it will 

be; more rainfall penetrating the soil instead decreases soil strength and thus its stability. The      relevance 

of these factors for slope stability is in fact widely recognised (e.g., Guzzetti et al., 2006; Melchiorre and 

Frattini, 2012; Salciarini et al., 2006; van Westen et al., 2006), but the GSA we performed helpfully 

quantifies their relative influence on slope stability. In particular, Fig. 7 shows that variations of the 

geometrical and soil properties influence slope stability more than variations of the rainfall properties in 

Saint Lucia, regardless of the land cover considered. These results are confirmed also by other studies 

(Almeida et al., 2017; Folberth et al., 2016; Parker et al., 2016; Samia et al., 2017) and suggest that climate 
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change might have a smaller influence on landslide rates than the intrinsic hillslope properties and their 

evolution, such as slope topography, lithology, or soil mantle formation and modification due to previous 

failures. The fact that soil properties have the highest sensitivity indices also suggest that improving the 

quality of soil databases and better predict soil thickness and soil cohesion across landscapes (Catani et al., 

2010; Patton et al., 2018; Dietrich et al., 1995) should be prioritised to improve the accuracy of landslide 

susceptibility maps (Medina et al. 2021).  

 

Figure 8 shows that the landslide susceptibility map generated with rainstorm conditions similar to the 

Hurricane Tomas (Figure 8) via a comparison to the landslides recorded after that event, gave satisfactory 

results, with an area under the ROC curve comparable to other similar slope stability analyse that use 

mechanistic models (Raia et al., 2014; Frattini et al., 2010). Results could be further improved by using a 

more accurate representation of the precipitation hyetograph (here uniform across the 24h) (Arnone et al., 

2016) or by new datasets, as soon as they become available. For example, if fieldwork in a certain location 

provides more accurate information about local soil properties, then the FR of the SUs representing that 

location could be changed by simply searching for those simulations associated with the updated soil 

information (without re-running the slope stability model). Given that the initial water table is stochastically 

varied, the impact of antecedent rainfall on stability could also be analysed by retrieving those simulations 

with higher (or lower) initial water tables. Additionally, if a given rainfall duration/intensity is associated 

with a known return period we could associate the same return period to the corresponding susceptibility 

map, as a function of the remaining input factors.  

Figure 9 shows a quantitative comparison between the landslide susceptibility maps under hypothetical 

scenarios of expanding informal urbanisation/deforestation (which is plausible as a consequence of the 

growing urban population in the island – UN-Habitat, 2020), increasing rainstorm severity (potentially 

representing future climate change) and a scenario where these changes are combined. Three main 

conclusions can be drawn. First, FR generally increases when SUs pass from vegetated to bare or urbanised 

land cover, which is compatible with previous empirical and statistical analyses (Reichenbach et al., 2014; 

Vanacker et al., 2003; Pisano et al., 2017; Persichillo et al., 2018). Plants can increase stability by 

intercepting rainfall (so by decreasing the pore water pressure within hillslopes) and by strengthening the 

soil with their root network; unregulated housing can instead make a hillslope more likely to fail by 

steepening its angles via hill cutting, and by increasing the water infiltrating the soil via poorly managed 

urban water systems. A second conclusion is that      expanding informal housing significantly increases 

landslide susceptibility under current rainfall conditions (scenario A in Fig. 9) and such an increase is greater 

than the one obtained when only more severe (yet unobserved) rainfall intensities are considered (scenario 

C in Fig. 9). That informal urbanisation can enhance landslide activity is empirically well documented 

(Anderson et al., 2008; Smyth and Royle, 2000; Diaz, 1992) but few studies quantify its influence on slope 
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susceptibility (Holcombe et al. 2016; Bozzolan et al. 2020). In this analysis, we showed how the impact of 

potential future urbanisation can be compared to the impact of potential climate change. More of these 

comparisons should be performed to better support targeted landslide mitigation decisions. Finally, Fig. 9 

shows that when we combine land cover and climate change scenarios (A+C and B+C), landslide 

susceptibility disproportionally increases (i.e. “the whole is greater than the sum of its parts”), highlighting 

the importance of considering both these environmental changes in landslide predictions. A comparison of 

our results with previous findings is difficult, since only very few investigations have included both 

vegetation and climate change in landslide susceptibility assessments, while none included informal 

housing. Hürlimann et al. (2022), for example, found that the stabilising influence of a hypothetical increase 

in forested area was considerably larger than the destabilising effects related to rainfall changes – assuming 

that the beneficial effect of root reinforcement on stability dominates over the increase in pore water 

pressure due to the larger precipitation. In this analysis, we demonstrate that (the lack of) vegetation can 

have different impacts on stability depending on the rainfall scenario considered (scenario B vs scenario 

B+C) and that such an impact is not linear with the increase of precipitation severity (scenario B+C).  

The susceptibility maps presented in this paper are only examples of how the synthetic library of slope 

stability responses could be used.      Risk reduction consultants, city planners, engineers and those involved 

in community development could for example explore the catalogue of simulations results to test the 

effectiveness of landslide mitigation measures by comparing those simulations with or without the 

intervention (for example, increasing vegetation in      hotspot areas for landslide susceptibility) in order to 

quantify the corresponding decrease in landslide failure rates (as suggested in Ozturk et al. 2022). Another 

application could include the construction of rainfall thresholds for triggering landslides for different 

hillslopes angles (e.g. a threshold for the steepest and shallowest part of a catchment) or different land 

covers (as natural vs urban in Bozzolan et al. 2020). By adapting the input parameters and forcing scenarios, 

the suggested methodological approach enables the type of analysis advocated by Galasso et al. (2021) “in 

which different development scenarios and detailed urban design and policy options can be considered, 

evaluated, modified and rated by a range of stakeholders”. Importantly, the modelling includes the 

uncertainty of both urban and rainfall drivers as well as of the hydrological and geotechnical properties of 

the hillslopes: if the assessed range of slopes/scenarios is found to be stable over and above these 

uncertainties, the confidence in the model’s predictions increases. This type of quantitative information is 

particularly relevant in the Tropics, where urban growth and rainfall-triggered landslides have the potential 

to significantly increase in the future (Tabari, 2020; UN, 2019; Ozturk et al. 2022), but where the data 

scarcity and limited economic capacity is tackling landslide risk awareness and mitigation. Similar 

applications might become useful mainly for small islands like the Caribbean, where it is often difficult to 

obtain land cover change information or future rainfall projections due to the limited data sources 

(Seneviratne et al., 2012). 
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Given that the generated synthetic library of slope stability responses may be relevant for all other type of 

analyses suggested above as well as for other locations with similar natural, climate and urban 

characteristics, we rendered it available for download at … (to be inserted RDSF – freely available link 

provided by the University of Bristol). 

 

 5.1 Limitations 

 
All of the results presented here are subject to the limitation of the input data and the assumptions made 

in this study. However, utilisation of Global Sensitivity Analysis as part of our modelling strategy enables us 

to test the influence of assumptions and choices on the input factors (such as soil and rainfall parameters) 

even in the context of climate change impact studies where we cannot rely on a comparison with 

observations of the impact we analyse (Wagener et al., 2022). Using different probability distributions for 

the stochastic sampling of CHASM input factors might lead to identifying different influential factors 

through global sensitivity analysis (Paleari and Confalonieri, 2016). Vegetation is represented in a simplistic 

way (although the physical representation of vegetation in CHASM is relatively sophisticated) as only two 

types (forest and shrub) are simulated and the effect of variations of their physical features on slope 

stability is not analysed. Vegetation properties might change with climate (Dixon and Brook, 2007; Collison 

et al., 2000), but in this analysis they are considered independent. We assigned the same cohesion value to 

all the SUs (specifically, we used the mode of the distribution of values obtained from measurements in 

different locations of the region) in the absence of further data to enable allocation of different values to 

different SUs. However, soil composition and strength vary from one location to another, even within 

homogeneous layers (Burton et al., 1998). The large uncertainty associated with the spatial distribution of 

soil cohesion and soil thickness is common for this type of analyses (Salciarini et al., 2006; Melchiorre and 

Frattini, 2012). Yet, the impact of this uncertainty may be reduced in this analysis, given that we use our 

methodology not to predict in absolute values landslide probability but to gain insights on the relative 

change of landslide occurrence between different scenarios – a piece of information that is often sufficient 

to inform environmental planning (Van Beek and Van Asch, 2004). Furthermore, as previously noted, our 

approach allows for individual SUs to be re-assessed as new data is obtained, or if hillslope-specific 

assessment is required for determining site-specific stability behaviours and mitigation measures. 

6 Conclusions 
 

In this paper we propose a new methodology to generate national-scale landslide susceptibility maps under      

a      a wide range of combinations of      current or hypothetical      urban expansion scenarios and climate 

change drivers     . We test our approach for the island of Saint Lucia, which is representative of data scarce 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 
 

18 
 

and landslide-prone regions in the humid tropics.       These results are unique as, for the first time, they 

include informal urbanisation and climate change in a regional (in our case 617 km2) susceptibility 

assessment     , while also considering the influence of model parameter uncertainty     . 

     For the case study of Saint Lucia, we can summarise our main findings as follows: 

1)      Geometrical (slope angle and the thickness of the first layer of residual soil) and soil properties 

are the predisposing factors that most dominate the slope stability response – their influence is 

greater      than rainfall, at least at this island-wide scale. 

2) The susceptibility map generated under rainfall conditions similar to Hurricane Tomas identifies the 

location of the landslides triggered by that rainstorm event with reasonable accuracy. 

3)      Expanding informal housing increases landslide susceptibility than hypothetical climate change 

scenarios. Furthermore, the joint effect of land cover and climate change increases landslide 

susceptibility disproportionally, i.e. more than the sum of the two scenarios considered 

independently.   

Our method offers two main advantages compared to other methods currently in use. First, it detects the 

dominant slope stability drivers and quantifies their relative importance. Such information can help 

stakeholders to assess where investments should be prioritised to attempt to reduce uncertainty in slope 

stability predictions. Second, it is capable of dealing with non-stationary conditions and so it can be 

updated as frequently as required, just by picking the most relevant modelled scenarios. Such flexibility also      

allows the quantification of the relative and joint impact of a wide range of hypothetical scenarios on 

regional landslide predictions. This information could better support national climate adaptation planning 

and landslide risk reduction investments in data-scarce developing countries.  
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Figure 1: Flowchart of the proposed method. 
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Figure 2: (A) Land cover map where different land cover types have been grouped into 5 classes: forest, shrub, bare, urban and 

water bodies (original version: http://www.charim.net/stlucia/maps). (B) Slope Units (SUs) across Saint Lucia. On the right-hand 

side, a zoom-in of the map, showing the SUs overlaying the terrain aspect (derived from the DEM, available at http://www.charim-

geonode.net/layers/geonode:dem ). 

 

 

Figure 3: Rainfall intensity–duration–frequency (IDF) curves for Saint Lucia developed by Klohn-Crippen (1995) using Gumbel 

analysis of 40 years of daily rainfall data from 15 rainfall gauges across Saint Lucia. Future climate change may increase the 

frequency of storms and the position of these lines, but such change is still highly uncertain. We thus generated synthetic rainstorm 
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events with rainfall intensity-duration values randomly sampled within the whole grey area, where the light grey area includes 

rainfall events from observed data (below IDF curves) and the dark grey area (above IDF curves) represents combinations of rainfall 

intensity-duration not recorded before 1995 but have occurred in the recent past or might occur in the future.  

 

 

Figure 4: Example of an urbanised synthetic hillslope generated by randomly sampling from the probability distributions of the 

input factors specified in Table 1. The hillslope shown in the figure is part of the library representative of the land cover ‘urban’. For 

this reason, not only the geometrical, soil initial boundary conditions and rainfall properties were varied, but also the urban 

properties (reported at the bottom of Table 1 and represented in the box on the right-hand side of the figure) were considered in 

the sampling. Under land covers ‘forest’ and ‘shrub’, synthetic hillslopes were conceived as fully covered by respectively deep- and 

shallow-rooted vegetation, while in the ‘urban’ land cover, trees were inserted in between cuts as shows in the figure. All hillslopes 

of all landcovers were discretised using a cell size of 1 m × 1 m, and the computational time step for the hydrology was 60 s. The 

position and size of the slip circle search grid was defined depending on the slope height (H) and length (L) as shown.  
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Figure 5: Representation of the window (red cube) used to calculate the failure rate of the SUs by retrieving the most similar 

synthetic hillslopes across the variability space. The variables varying along the axis (X, Y, Z) represent the dominant input factors 

found in the GSA (might be more or less than three). The points represent the stable and unstable simulated synthetic hillslopes. 

The labels (a), (r), (s) represent the ranges of the input factors whose intersection define such window. The initial width and rate of 

increase of these ranges are chosen heuristically according to the input factor. When the window includes a number of simulations 

less than N, the rate of increase is used to iteratively widen the ranges (a), (r), and (s) in the direction of the black arrows until N 

simulations are included in the cube. For example, if we are interested in calculating the failure rate of a slope with angle 30°, the 

initial window is centred in 30° with an initial width of 2°, thus including simulated slopes with angles between 29° and 31°. If such 

initial window does not contain N simulations, the range is increased with a rate of 0.5° in each side (e.g., in the first iteration the 

range will contain angles between 28.5° and 31.5°). 
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Figure 6: Accuracy statistics for the calculation of the ROC curve. The FR of each SU is compared to different FR thresholds (e.g., 

calculate how many SUs are predicted with FR greater than 0.7, 0.6, etc.). We would expect that SUs with predicted FR above high 

FR thresholds also contain observed landslides (True Positive) and that SUs with predicted FR below low FR thresholds do not 

contain observed landslides (True Negative) for the Hurricane Tomas event   

 

 

 

Figure 7: Sensitivity index of each input factor in the four land cover scenarios. The bars correspond to the mean value of sensitivity 

for each input factor calculated with bootstrapping, while the black vertical lines at the top of the bars represent the confidence 

interval (Number of bootstrap resampling Z = 100; significance level for the confidence intervals 0.05). 
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Figure 8: (A) Landslide susceptibility map associated with a rainstorm event similar to Hurricane Tomas in 2010. The black polygons 

represent the landslides recorded after the event. The quality of the map is quantified with (B) the success rate curve and (C) the 

ROC curve.  
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Figure 9: The framed landslide susceptibility map is the same reported in Fig. 8 while the other maps represent the susceptibility 

under the hypothetical scenarios considered. In all maps, each SU has the same slope angle, soil depth and soil cohesion whereas 

the rainfall intensity and duration and/or the land cover change from one map to the other. These changes define different 

ensemble of simulations and therefore different FRs. Note that our analysis did not account for planning restrictions such as those 

preventing  deforestation and development in National Forest Reserves. 

Tables 
 

Table 1: Varying input factors and their probability distributions. 

Input factors Symbol/Unit Variability range   
Slope geometric properties:      Layer 1 * Layer 2 * Layer 3 * 

Slope angle δ *degrees+ U (5, 70)    

Slope height H [m] U (5, 100)    

Thickness of layer H1 – H2 [m]  U (1,6) U (1,6)  

Soil properties:        

Effective cohesion a c [kPa]  Ln (2.368, 0.569) Ln (3.4121, 0.577) 80 

Effective friction angle b φ *degrees+  Ln (3.293, 0.209) Ln (3.1559, 0.325) 60 

Dry unit weight c γd *kN m-3]  U (16,18) U (18, 20) 23 

Saturated moisture content d VG θsat *m3 m-3]   N (0.413, 0.074) N (0.413, 0.074) N (0.413, 0.074) 

Residual moisture content d VG θres *m3 m-3]   
Ln (-1.974, 
0.376) 

Ln (-1.974, 0.376) 
Ln (-1.974, 
0.376) 
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VG alpha parameter d VG α *m-1]  Ln (1.264, 1.076) Ln (1.264, 1.076) Ln (1.264, 1.076) 

VG n parameters d VG n  Ln (0.364, 0.358) Ln (0.364, 0.358) Ln (0.364, 0.358) 

Saturated Hydraulic 
Conductivity 

Ksat [m s-1]  
Ln (-11.055, 
0.37) 

Ln (-13.357, 0.37) 1xe-8 

Initial hydrological condition:       

Water table height e DWT [%] U (50,100)    

Rainfall properties:       

Rain intensity  I [m h-1] U (0 0.2)    

Rain duration  D [h]  Ud (1 72)       

Urban properties:           

Cut slope angle f β *degrees+ N (65.2, 12.6)     

Roof gutters g - Ud (0 1)    

Septic tank and Pipe leak h Qt/p [m3 s-1] Ud (0 1)       

Urban density  U_d [%] Ud (0, 100)    

Vegetation on urban hillslopes i - Ud (0 1)    
 

There are 32 input factors, considering that soil properties are independently sampled for the three soil layers considered.  
U = Uniform distribution; Ud = Discrete uniform; N = Normal distribution; Ln = Log-normal distribution. 
*Layer 1: Residual Soil, Weathering Grade V-VI; Layer2: Weathered material Grade III–IV; Layer3: bedrock Grade I–II; Weathering grades 
defined according to GEO (1988). 
a 

Effective cohesion > 0. Effective cohesion c (layer 3) > c (layer 2)> c (layer 1). 
b 

Effective friction angle > 0. Effective friction angle φ (layer 3) > φ (layer 2)> φ (layer 1). φ < 90 degrees 
c 

γs =γd +2, where γs is the saturated unit weight. γd (layer 3) > γd (layer 2) > γd (layer 1) 
d 

Values from Hodnett and Tomasella (2002) for Sandy Clay Loam material. We impose n > 1; θsat > θres; θres > 0. 
VG: Van Genuchten parameters for defining suction moisture characteristics curve. 
e
 Water table height is defined as a percentage of slope height measured to the toe of the slope. 

f 
Slope of the cut forced to be between 39 and 89 degrees and it is always greater than natural slope angle  

g 
Roof gutters on houses. Absent = 0; Present on all houses = 1. Roof type = double pitch (see Fig. 4) 

h 
The leak of the septic tank is equal to the leak of the pipe. Absent = 0; Leak from both pipe and tank present = 1 (see Fig. 4).  

i
 Vegetation on urban hillslopes to quantify its benefit for landslide mitigation. Absent = 0; Present = 1 (on space left unbuilt – see Fig. 4). 
 

Table 2: Parameters defining the vegetation properties of trees (land cover: forest) and shrub. Trees properties were 

used in both land cover ‘urban’ (as in Fig. 4) and land cover ‘forest’. The values are taken from Holcombe et al., (2016) 

(online Supplement, Table S5). 

Parameter Unit Value 
Tree canopy parameters: 
Max leaf storage  mm 5 

Wet canopy evaporation ms-1x10-7 2 

Leaf-drip rate  % 0.8 

Stem portion  % 0.0012 

Max trunk storage  Mm 0 

Atmospheric parameter:   

Net radiation Wm-2 700 

Average daily temperature  Degrees 30 

Average daily rel. humidity sm-1 0.7 

Canopy resistance  sm-1 70 

Soil aerodynamic resistance  sm-1 50 

Veg. aerodynamic resistance  sm-1 40 

Pressure head 
sink terms  

Oxygen deficiency  M -0.1 

Constant M -0.35 

Constant  M -5 

Wilting point  M -14 

Tree/grass parameters:  Trees Shrub 

Surcharge  kNm-2 2 0.3 

Leaf area index   mm-2 10 5.8 

Canopy cover  % 0.8 0.4 

Rooting depth  M 4 1 

Max transpiration ms-1x10-7 2 1 

Root tensile strength  MPa 50 32 

Root area ratio m2m-2 0.002 0.002 
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