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Abstract

Different approaches exist to describe the seismic triggering of rockfalls. Statistical approaches rely on
the analysis of local terrain properties and their empirical correlation with observed rockfalls. Con-
versely, deterministic, or physically based approaches rely on the modeling of individual trajectories of
boulders set in motion by seismic shaking. They require different data, and allow various interpreta-
tions and applications of their results. Here, we present a new method for earthquake–triggered rockfall
scenario assessment adopting ground shaking estimates, produced in near real–time by a seismological
monitoring network. Its key inputs are the locations of likely initiation points of rockfall trajectories,
namely rockfall sources, obtained by statistical analysis of digital topography. In the model, ground
shaking maps corresponding to a specific earthquake suppress the probability of activation of sources
at locations with low ground shaking, while enhancing that in areas close to the epicenter. Rockfall
trajectories are calculated from the probabilistic source map by three-dimensional kinematic modeling
using the software STONE. We apply the method to the 1976 MI = 6.5 Friuli earthquake, for which an
inventory of seismically–triggered rockfalls exists. We suggest that using peak ground acceleration as
a modulating parameter to suppress/enhance rockfall source probability, the model reasonably repro-
duces observations. Results allow a preliminary impact evaluation, before field observations become
available. We suggest that the framework may be suitable for rapid rockfall impact assessment, as
soon as ground–shaking estimates (empirical or numerical models) are available after a seismic event.
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1 Introduction

The response of slopes to the action of strong
ground shaking, such as the propagation of seismic
waves generated by a large earthquake, can result
in ground deformations and failures. Responses
fall into two main categories: primary coseismic

effects, e.g., when morphological changes associ-
ated with the earthquake (i.e. permanent defor-
mations, faulting and fracturing) are visible on the
surface, and secondary coseismic effects, such as
liquefaction and gravitational movements [22].
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The CEDIT database, a comprehensive inven-
tory of earthquake—induced ground failures in
Italy, contains data on ground cracks, surface
faulting and landslides for events with Mercalli
intensity MI > VIII, which have occurred in
the last millennium [36]. [14] reveals that ground
effects are mainly rockfalls and earth/rockslides
(45 %), followed by ground cracks (32 %) and
liquefaction (18 %). The literature on earthquake–
induced landslides is conspicuous; a classic review
[32] shows that rockfalls are among the most
threatening type of landslide to human life.

Relevant, well–known examples are: the
Niigata Ken Chuetsu earthquake in 2004 (Mw 6.6)
triggered a vast number of landslides [34]; the
Northridge earthquake in 1994 (Mw 6.7), induced
thousands of landslides in a radius of about 25 km
from the epicenter [53]; the Wenchuan earthquake
of 2008 (Mw 7.9), China, induced numerous land-
slides, including shallow and deep–seated rock-
slides, rockfalls, debris slides, and debris flows [15];
the Gorkha Earthquake of 2015 (Mw 7.8), Nepal,
triggered more than 25,000 landslides [7, 42, 46].
Additional examples are in [56] and references
therein.

Earthquake–induced instability of natural
slopes manifests in the form of: (i) first–time
landslides, characterized by ruptures induced by
shear or traction stress along newly formed sur-
faces coinciding, in whole or in part, with strati-
graphic discontinuities or levels of lower com-
petence in inhomogeneous formations; (ii) reac-
tivation of quiescent landslides, with movement
along pre—existing fracture surfaces; (iii) resump-
tion or acceleration of active landslides, along
pre–existing discontinuities as well.

The response of a slope under ground shaking
depends on many factors. For example, variabil-
ity in the geological materials not only controls
rock mass resistance, but it might also mod-
ify ground motion. Site–specific geometry and
slope height are also relevant [37], providing mass
potential energy and affecting rockfall trajectories.
Nonetheless, knowledge of geology, topography,
and properties of the rock mass, although accu-
rate, does not guarantee a full understanding of
the mechanisms controlling the detachment of
rock blocks from a slope, nor the accurate pre-
diction of their origin location and evolution. A
probabilistic framework for modeling earthquake-
induced rockfall scenarios is a valid alternative. In

one such framework, the location of sources, the
trigger and the propagation components of falling
blocks are modeled statistically, with parameters
tuned on the basis of observations.

Based on a world collection of earthquake–
induced landslides [56], statistical approaches
proved successful in accounting for the different
predisposing factors and using ground motion as
dynamical factors to determine the spatial like-
lihood of earthquake–induced landslides [31, 57],
their magnitude [58], and the spatial distribution
described by accurate inventories prepared after
an earthquake event [18, 29, 42, 55].

In this study, we propose a method for prepar-
ing rockfall scenarios induced by specific seismic
events with a combination of statistical methods
and a physical model. The method includes a few
independent steps: (i) a probabilistic morphomet-
ric determination of potential rockfall sources [5],
(ii) an empirical estimate of ground motion using
the ShakeMap software [63], to produce realistic
ground motion maps [2, 39], (iii) a novel approach
to triggering of rockfall sources by ground shak-
ing, previously applied with return–time scenarios
[6, 8], and (iv) a physical model to simulate
rockfall trajectories.

We used the three—dimensional program
STONE [27], to simulate block trajectories. We
calibrated the model using data from the Friuli
Venezia Giulia region (hereinafter FVG), North-
ern Italy, and particularly from the landslide
inventory compiled by [25] after the 1976 Friuli
earthquake (Ml 6.5). We show that, within the
framework outlined above and summarized in
the flowchart of Fig. 1, one can use heteroge-
neous data and combine techniques for earthquake
ground shaking estimation and landslide numer-
ical modeling to obtain probabilistic maps for
seismically–induced rockfall runout. The proposed
approach is thus suitable for rapid impact evalu-
ation in civil protection applications, as it can be
readily implemented after the occurrence of any
major earthquake in almost real time, similarly
to existing examples of near—real time damage
estimation to infrastructure [41, 54]. A compa-
rable implementation was proposed by [62], who
used the model Hy–STONE in the same study
area using frequency of occurrence and magni-
tude relative–frequency relations obtained from
field data, with the aim of assessing the long–term
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Fig. 1 Summary of the proposed rapid assessment of earthquake–induced rockfalls. The seismic trigger can be coupled
with an actual earthquake alert system (e.g., from the OGS seismic network) or any earthquake scenario, as in this work.
Output impact evaluation is designed to be readily used in civil protection.

rockfall hazard (rather than for post–event rapid
impact evaluation).

The paper is organized as follows. Section 2
lists and describes the data used in this work,
including details of the 1976 earthquake in FVG.
Section 3 describes the ideas behind the identifi-
cation of rockfall sources on a digital topography,
and of the proposed seismic triggering mechanism.
Results are shown in Section 4, and discussed
in Section 5. Section 6 draws conclusions of this
study, and gives hints for future work.

2 Test–bed area and data

Italy is earthquake–prone, with many and exam-
ples of landslides triggered by earthquakes. [33]
explicitly mentions the 1973 earthquake swarm
in Calabria. Other relevant and well–documented
events are: Friuli (1976, Mw 6.4–6.1), with a preva-
lence of rock collapses and, secondarily, debris
avalanches [16, 25]; Irpinia (1980, Mw 6.9), with
collapses and overturns in rock, but also many
of triggered or reactivated flows, flows and com-
plex landslides [20]; Umbria–Marche (1997, Mw
5.5–5.8), with a prevalence of collapses but numer-
ous sliding phenomena, almost all reactivated
ancient landslides [45]; the 2016 central Apennines

earthquake sequence (Amatrice and Norcia Earth-
quakes, 2016), with numerous triggered rockfalls
[14, 50, 51].

This work focuses on the Friuli event, which
occurred between May and September 1976, and
consisted of a seismic sequence with two major
earthquakes. The first event occurred on May 6th,
with an intensity derived magnitude MI 6.5 (Fig.
2), followed by thousands of aftershocks, including
two major shocks on September 11th (MI 5.5)

and September 15th (MI 6.0). The sequence
caused almost 1,000 casualties and was respon-
sible for about 1,000 landslides, mainly rockfalls
(about 90 %), for a total mobilized volume of
about 100,000 m3, documented in the landslide
inventory by [25]; see Figure 2. Other instabil-
ity phenomena, such as slides or debris flow, were
observed in small numbers [16, 25].

We assumed that the documented rockfalls
from the Govi inventory are related to the occur-
rence of the main shock and thus we analyzed
them statistically as a whole for model calibration.
This might lead to some overestimation of the
initial seismically triggered events, but it is conser-
vative enough for the purpose of direct application
to civil protection, already intrinsically accounting
for the effects of possible aftershocks in the short
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Fig. 2 A shaded relief of the Friuli Venezia Giulia region,
North–East of Italy. Blue polygons show the landslide
(rockfall) inventory prepared by [25] (a yellow star shows
the location of the epicenter of May 6, 1976); red polygons
are a subset of the national IFFI catalog [30, 61] showing
only rockfall features. Size of the polygons are exaggerated
to allow resolving the smaller ones. The areas delimited
by black lines are physiographic units from [26]; namely
Central–Eastern Alps and Carso, containing the epicenter,
and Veneto Plain, south from the epicenter (cf. [4, 5]).

term. [25] shows that the most important factors
influencing the landslides at the same distance
from the epicenter were weakening of the rocks
by intense tectonic fracturing and slope steepness,
controlled by structure and lithology.

The FVG region has a rich geological and geo-
morphological setting, dominated by sedimentary
rocks (cf. Table 1). The results of metamorphic
actions of a low degree are subordinated, only
of interest in some Paleozoic formations. Among
the sedimentary deposits, terrigenous rocks (sand-
stones, argillites, siltstones, conglomerates, etc.)
and carbonate rocks (limestones, dolomites) pre-
dominate. Evaporite rocks (gypsum, dolomitic
breccias, carious dolomites, etc.) are subordinate,
even if widespread in local belts. Evaporite are
also relevant for the structural geomorphology and
instability of the areas. Intrusive rocks are absent.

The region is characterized by a compressional
seismotectonic regime, with E–W trending thrust
systems, mostly south dipping, with a subordi-
nate strike–slip component to the east. Seismicity,

spatial and kinematic characteristics of main seis-
mogenic sources of the area are summarized in
[52], [12] and [9].

The epicenter of the May 6th earthquake is
as reported in the parametric catalog of Italian
earthquakes, CPTI15 [49], although its location is
debated (e.g., [9]; cf. Fig. 2). The associated seis-
mogenic fault trace was likely oriented E–W, as
evidenced by the orientation of the nodal planes
from focal mechanism solutions and agrees with
the general orientation of active tectonic struc-
tures of the region. A southward dipping fault
plane is in accordance with a blind thrust derived
from seismic profiles and from the distribution of
aftershocks [24, 40, 44].

Data used in this work were the following:

• Digital elevation model (DEM) at 10–m resolu-
tion, TINITALY [59];

• Slope unit map, extracted from the national
map of [4];

• National landslide inventory map IFFI [30, 61].
Here, we extracted the subset of the national
IFFI inventory within the FVG region, and fur-
ther selected the features in the vector layer
labeled as “falls”. These features helped in par-
tially validating the results of simulations or
rockfall runout with STONE in FVG. Figure
2 shows the inventory, with landslide polygons
in red. We refer to [35] for a description of the
inventory.

• Landslide inventory map, containing polygons
of rockfalls triggered by the May–September
sequence in 1976 [25]. Figure 2 shows the inven-
tory, with landslide polygons in blue, prepared
using photointerpretation supplemented by field
surveys. The inventory is a key input to the
method presented here: it served as calibration
data to select the best dynamic (i.e., depen-
dent on a specific earthquake event) localization
method of rockfall sources.

• Geo–mechanical information based on a litho-
logical map of Italy, scale 1:100,000 [13].
The map served to assign terrain parameters
required by the software STONE. Table 1 lists
the numerical values of such parameters, also
used by [5].

• Peak ground acceleration map corresponding to
the 1976 earthquake in FVG generated using
ShakeMap [63].
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Table 1 Numerical values of parameters used in STONE. “Class ID” and “Lithological Class” refer to classes L1–L19
identified by [13]. The program performs a random sampling of the values, in a ± 10 % range around the values shown
here. The interested reader can find a figure of the lithological map in [5] and [13], not shown here.

ID
Lithological % % Dynamic Normal Tangential

Class Total Slope Friction Rest. Restitution

L1 Anthropic deposits 0.1 0.0 0.65 35 55

L2 Alluvial, lacustrine, marine, eluvial, colluvial dep. 43.0 9.0 0.80 15 40

L3 Coastal deposits, unrelated to fluvial processes 0.1 0.0 0.65 35 55

L4 Landslides 0.0 0.0 0.65 35 55

L5 Glacial deposits 4.8 7.3 0.65 35 55

L6 Loosely packed clastic deposits 7.3 8.7 0.35 45 55

L7 Consolidated clastic deposits 2.1 3.9 0.40 55 65

L8 Marl 0.9 1.6 0.40 55 65

L9 Carbonates-siliciclastic and marl sequence 2.6 4.5 0.35 60 70

L10 Chaotic rocks, mélange 0.0 0.0 0.35 45 55

L11 Flysch 7.3 11.9 0.40 55 65

L12 Carbonate Rocks 30.8 51.6 0.30 65 75

L13 Evaporites 0.1 0.1 0.35 45 55

L14 Pyroclastic rocks and ignimbrites 0.4 0.6 0.40 55 65

L15 Lava and basalts 0.0 0.1 0.30 65 75

L16 Intrusive igneous rocks 0.0 0.0 0.30 65 75

L17 Schists 0.4 0.7 0.35 60 70

L18 Non–schists 0.0 0.0 0.30 65 75

L19 Lakes, glaciers 0.0 0.0 0.95 10 10

• Location of the epicenter of the earthquake of
May 6th, 1976 [49].

• Roads and railways data extracted from
OpenStreetMap (https://www.openstreetmap.
org; accessed September 22nd, 2022). Licensed
Data are released under the Open Data Com-
mons Open Database License (ODbL) by the
OpenStreetMap Foundation (OSMF).

3 Methods

3.1 Data–driven selection of sources

They key input of simulations with STONE
requires identification of grid cells representing
rockfall sources, in which the program sets ini-
tial points of three–dimensional trajectories. The
overlap of all the simulated trajectories results in
the overall runout, the key output we are inter-
ested in here. Source selection is a non–trivial
step and, in principle, it can be carried out by
visual interpretation of orthophotos and manual
mapping of potential sources. This approach is
time–consuming, especially over large areas, and
subjective [28, 50, 51].

The traditional, straightforward way of select-
ing source areas for the model STONE, and
similar physically–based approaches, is to set a
slope–angle threshold and consider as potential

sources all of the grid cells with slope angles larger
than the thresholds [27, 38, 60]. This approach
has limitations, in that (i) different geomorpholog-
ical settings and/or DEM resolutions may require
different thresholds, (ii) it does not provide a
probability of each grid cell to actually trigger a
rockfall, (iii) it does not consider additional vari-
ables other than slope, and (iv) it neglects the
different possible triggers.

The approach introduced by [5], adopted here,
addresses points (i) and (ii) above, while it does
not yet include variables other than slope [6, 43].
Alternative approaches exist [48], which we did
not adopt here. Point (iv), instead, is the object
of the next section. Here, we briefly describe the
method of [5] to both locate sources and assign
a probability of failure in a homogeneous way
over a large area, on the 10 m–resolution DEM
of Italy TINITALY [59]. Expert geomorphologists
mapped potential sources in a conservative way, to
select locations where rockfalls may occur, map-
ping polygons where there is a combination of
steep slope, bare rock, substantial curvature, and –
where possible – apparent macroscopic fracturing
state.

The method is data–driven, in that it uses
information from expert mapping of potential
rockfall sources by photo interpretation in a few

5

https://www.openstreetmap.org
https://www.openstreetmap.org


selected, representative slope units [4] in the area
of interest. In each slope unit, expert mapping was
carried over in a complete manner: geomorphol-
ogists mapped each and every potential source.
Analysis of the distribution of slope angle values
underneath the mapped polygons, with respect
to slope angle distribution within the whole cor-
responding slope unit, provides a probability of
presence for sources as a function of slope. Sta-
tistical generalization with a quantile regression
procedure allows determination of the probabil-
ity as a function of slope, which was taken of the
following form:

Pstatic(S) = c

(

S

90

)4

, (1)

where S is a grid cell slope angle, and c a
parameter. The procedure was applied in 29 phys-
iographic units in Italy [26]; in this work, we used
the result of [5] in two units overlapping with the
FVG study area (values of the parameter c in Eq.
(1)).

The physiographic units used here and in [5]
were slightly modified with respect to the origi-
nal ones; [4] show the modified map. The units
relevant to this work are Central–Eastern Alps
and Carso, containing the epicenter, and Veneto
Plain, south from the epicenter (cf. Fig. 2). Figure
3 shows the probabilistic curves, corresponding to
the selected physiographic units, with correspond-
ing values of the parameter c in Eq. (1) (c = 4.32
for Central–Eastern Alps and Carso, and c = 5.54
for Veneto Plain). Calculation of the function in
Eq. (1) as a function of slope angle, using these
parameters, provides a probabilistic map of poten-
tial rockfall sources in FVG. Figure 4 shows the
map of such sources, in the whole of FVG. The
map is “static”, in that it is only dependent on
topography, and it is considered here as the start-
ing point to obtain a map of sources as a function
of a specific seismic trigger, as described in the
following.

3.2 Ground shaking model

The spatial distribution of ground motion associ-
ated with the May 6th, 1976 event was assessed
using an empirical ground motion prediction – the
ShakeMap software [63]. The tool allows for rapid
assessment of the shaking distribution (either in

terms of peak ground acceleration, peak ground
velocity, 5 % damped response spectral accelera-
tion at 0.1 and 0.3 seconds and Arias intensity)
over a large area, and it can also account for the
effects of local geology (using Vs30 from phys-
iographic slope [3] and existing ground motion
observations, where available. This last feature
makes ShakeMap particularly suitable for rapid
earthquake impact evaluation and in combination
with seismological monitoring networks, e.g., the
SMINO Seismological Monitoring Infrastructure
of North–Eastern Italy managed by the Italian
National Institute of Oceanography and Applied
Geophysics (OGS; see Fig. 1) [11]. SMINO pro-
vides in almost real–time magnitude, hypocenter
location and ground motion estimates of any
detected event [41].

For this simulation, we selected the robust
empirical ground motion prediction equation
(GMPE) model of [2], which accounts for source
geometry though the Joyner and Boore distance
metrics (RJB). Figure 4 shows the spatial distri-
bution of peak ground accelerations (PGA) in the
epicenter area. This ground shaking map is used
throughout this work, to infer selective activation
of subsets of previously obtained static rockfall
sources using a triggering model described in the
next section.

3.3 Earthquake trigger for rockfalls

in STONE

In this section we describe a probabilistic
approach to localize possible rockfall sources trig-
gered by a specific earthquake. We assume the
probabilistic, “static” map of potential rockfall
sources as a starting point, Eq. (1). We intro-
duce a simple mechanism to activate each grid
cell with non–zero probability of failing, assum-
ing that the probability of activation is a function
of PGA generated by seismic shaking. The pro-
posed mechanism assumes that cells where PGA
is null have zero probability of activation, and
probability increases up to a maximum value, cor-
responding to the point with maximum value of
PGA.

The latter intuitive assumption is supported
by the simple analysis in Figure 5(a), showing the
distribution of PGA values in the area of inter-
est. The figure contains three histograms, namely
(i) the distribution of PGA values (grid cells) in
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Fig. 3 Analysis of the properties of expert mapped rockfall source areas, represented by green dots. NLQR 90 % is the
method introduced by [5] and adopted in this work. The two red curves, Eq. (1), are obtained with the values c = 4.32 (a)
and c = 5.54 (b), corresponding to the two different physiographic areas in FVG region, shown in Fig. 2.

the entire area (blue); (ii) the distribution of PGA
values within the bounding box containing all of
the landslide (rockfall) polygons in the inventory
from [25] (yellow); the distribution of PGA val-
ues restricted to the landslide polygons (red). This
suggests that the presence of landslides is strongly
dependent on PGA values, with an increasing
number of landslide cells for increasing values of
PGA, supporting the approach adopted here.

The activation mechanism is implemented
multiplying the static probability Pstatic(S) of Eq.
(1) by a factor F varying in the interval [0,1]
and depending on the value of PGA in each grid
cell. For the factor F we propose two different
functional dependencies on PGA, namely a linear
dependence:

FL(PGA) =
PGA − PGAmin

PGAmax − PGAmin

, (2)

and a non–linear dependence, using a functional
form known as normalized tunable sigmoid func-
tion (NTSF), as follows:

FNTSF (PGA) =
1

2
+

PGA′ − k PGA′

k − 2 k |PGA′|+ 1
, (3)

where k is a parameter and PGA′ is itself a linear
transformation of the PGA values into the interval
[0,1], defined as follows:

PGA′ = 2
PGA − PGAcut

PGAmax − PGAcut

. (4)

Both Eqs. (2) and (3) map values of PGA in
the [0,1] interval. The free parameter PGAcut >
PGAmin in Eq. (4) introduces a minimum acti-
vation threshold (different from the observed
PGAmin), below which failure probability is
forced to null. In this study we selected a single
value k = −0.5 and investigated three different
values of PGA cutoffs (see Fig. 5(b)), namely: the
actual minimum value PGAmin = 2.7 found in the
area (labeled NTFS I in Fig. 5(b)), (PGAmax −
PGAmin)/4 = 9.25 (NTSF II), and (PGAmax −
PGAmin)/2 = 15.67 (NTSF III). Values of PGA
are given as percent of g, Earth’s acceleration of
gravity.

The final, dynamic probability Pdynamic of
a grid cell to represent a rockfall source is the
product of the static probability and of the event–
dependent activation factor Fα(PGA), where α
stands either for L, Eq. (2), or for NTSF , Eq. (3)
[6, 8]. As a result, Pdynamic depends on both S
and PGA as follows:

Pdynamic(S, PGA) = Pstatic(S)Fα(PGA) . (5)

Curves for Fα(PGA) corresponding to Eqs. 2 and
3, for the values of PGA that occurred during
the Friuli Earthquake in 1976, are in Fig. 5(b).
The curve labeled as NTSF I reduces the rela-
tive probability of smaller values of PGA, and
enhances higher the probability of larger values,
with respect to the linear function. On the other
hand, using NTSF II or NTSF III would set to
null the probability for PGA values below 9.25 %
of g, and 15.67 % of g, respectively.
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Fig. 4 The “static” rockfall source map, obtained only from morphometric properties in the whole FVG region, using Eq.
(1). The contour lines in (a) show the values of PGA corresponding to the earthquake considered throughout this work,
expressed in percent of the acceleration of gravity. In (b), the detail within the dashed rectangle in (a), one can resolve
different values of probabilities, obtained from the red curves in Fig. 3, colorized with different shades of blue. Values in the
raster map represent the number of simulated trajectories originating from each grid cell.

Given that no robust physical justification
exists to support either the linear or one of
the three proposed NTSF functional models, we
selected the most suitable option a posteriori,
based on the fit between their prediction and data
from the [25] inventory. Four independent rock-
fall runout calculations were performed using the
software STONE, and the results compared with
observed rockfall runout using different classifica-
tion methods (Section 4).

We stress that Pdynamic(S, PGA) in Eq. (5)
represents a model for the possibility of source
presence. The model can be applied in any area in
Italy or elsewhere, for any seismic event for which
the PGAmap is known, and calibration data exist.
We expect the calibration procedure to be specific
of the study area, and less related to a specific
event. This allows, in principle, to run a simula-
tion with STONE a few hours after an earthquake
takes place.

3.4 Rockfall runout calculation

The software STONE is a three-–dimensional
modeling tool for simulating rockfall trajectories
[27]. It assumes point—like boulders and calcu-
lates individual trajectories starting from user—
defined source points. Trajectories describe the
paths of boulders, and simulation includes free
falling, bouncing, and rolling on the ground, dur-
ing which the falling mass loses kinetic energy. The
end point of each trajectory is obtained when the
velocity of a falling boulder reaches a value close
to zero.

Inputs to the software, in addition to a digital
elevation model needed to constrain the three–
dimensional topography, are source points loca-
tion and maps of numerical coefficients (Table 2),
used to describe energy loss during bounces and
rolling. During the simulation, STONE randomly
samples the possible value of model parameters,
such as the detachment angle, friction, normal and
tangential restitution, in a ±10 % range of the
tabulated central value for each lithological inter-
sected class, thus producing different trajectories
along different paths for each simulation.

Outputs from the software are raster maps,
containing the count of trajectories, maximum
height, and maximum velocity and blocks, for
each DEM grid cell; in this work we only consid-
ered the first output. Values of the rockfall count
usually vary wildly; for this reason, a classifica-
tion method of the output raster is a crucial step
to evaluate model predictions. For the sake of
transparency, in this work we considered different
classification methods, namely percentiles, head-
/tail breaks, and decades of values in the output
maps. Results are presented as a function of the
different classification methods.

We ascribe a probabilistic meaning to the dif-
ferent values in the raster map of sources in
input to the model. Different values in the source
map (up to 100, herein) correspond to a different
number of simulated trajectories, initiated from
each source grid cell. Each trajectory evolves into
a different path, thanks to the random genera-
tion of different parameters in the STONE code,
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Fig. 5 (a) Normalized histograms of PGA values on the whole study area (light blue) and restricted either to the rectangular
region including landslides from the [25] inventory (BBox; yellow), or to the only grid cells with landslides (red). (b) Different
methods used in this work to modulate the probability of each grid cell to represent a source of a simulated rockfall trajectory
[5]; Linear refers to a simple min-max rescaling of the PGA values to the [0,1] interval, Eq. (2), and NTSF I–II–III to
different non–linear mappings, Eq. (3).

namely the detachment angle, friction, normal
and tangential restitution of the parameters. Each
such parameter is changed up to 10 % from its
nominal value, listed in Table 2 for terrain param-
eters as a function of lithology, and specified by
the local slope for the angle. That, eventually,
results in a higher probability of trajectories cross-
ing locations downhill from sources with higher
probability of detachment, and lower probability
otherwise.

3.5 Impact evaluation

Earthquake–induced landslides can cause up to
11 % of fatalities caused by earthquakes [19]
Aside from direct damage, landslides and rock-
falls can significantly impact the transportation
networks [5, 43, 64], thus affecting commercial
viability, disrupting traffic, and limiting access to
emergency operators in the aftermath of an earth-
quake [47]. This leads to additional human and
economic losses and exacerbate the impacts on
affected population by isolating small but vulner-
able villages. [31] and [57, 58] proposed assessment
of expected earthquake–induced landslides casu-
alties at global scale based on empirical data and
available ground shaking scenarios. An extension
of that approach to assess expected damages for
specific scenarios requires locally calibrated vul-
nerability curves for the main exposed assets (e.g.,
buildings, transportation infrastructures, bridges,
etc.). [1] proposed a method to obtain physi-
cal vulnerability functions for buildings based on

empirical data. In the case of transportation cor-
ridors, the European project SYNER-G project
(Systemic Seismic Vulnerability and Risk Anal-
ysis for Buildings, Lifeline Networks and Infras-
tructures Safety Gain; https://cordis.europa.eu/
project/id/244061) collects existing vulnerability
curves which account for expected ground shaking
and secondary effects [10]. In many near real–time
applications, vulnerability/fragility is assumed to
be maximum, in order to produce rapid and con-
servative results [17]. Following this approach,
[28] investigates the occurrence of potential rock-
fall damages on transportation corridors based on
the simulation of rockfall trajectories. [47] pro-
posed a near real–time damage assessment method
based on a rapid but simplified approach, and
demonstrated the relevance of this information
in the emergency response phase. However, the
simulation of rockfall trajectories has not been
yet applied to near real–time damage assessment
of seismic–induced landslides. In this section we
propose an approach to support rapid assess-
ment of earthquake–induced rockfall damages to
infrastructure.

In this study, as in [6], potential damage is
estimated combining the proposed dynamic tra-
jectory mapping and the locations of exposed
assets. For the purpose, rockfall trajectory count
is first reclassified into 5 classes (ranging from
very low to very high occurrence frequency), while
exposure data are extracted from OpenStreetMap,
which provides georeferenced layers of buildings
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footprints and road paths. The exposure spatial
resolution is comparable with the one of the tra-
jectory count (10 m). Then, by overlapping the
rockfall trajectory count layer and the exposure
layer, we can identify those assets potentially in
the rockfall path, assuming that each exposed
asset is impacted by at least one rockfall trajec-
tory.

4 Results

In this section we first present results of rock-
fall runout simulated using the three–dimensional
model STONE with both “static” sources
Pstatic(S), independent of any specific trigger (Eq.
(1)), and “dynamic” sources Fdynamic(S, PGA),
depending on an earthquake trigger and obtained
from the approximations for the PGA–probability
mapping functions (Eq. (5).

4.1 Simulations with static sources

Figure 4 shows results from different approxi-
mations of the source map of rockfalls triggered
by the earthquake of 1976 in FVG. This is the
key input of the model STONE, and can only
be evaluated subjectively – we have no observed
counterpart. The lack of it is one of the main
obstacles we want to overcome. On the other hand,
results of simulations with STONE, represented
by rockfall runout corresponding to the different
approximations for sources, can be compared with
observed rockfalls. Available observations are of
two kinds, shown in Fig. 2. A geomorphological
inventory of rockfalls in FVG, extracted from the
IFFI inventory (“falls”), and the event inventory
compiled after the 1976 earthquake.

In the static case, the comparison is between
IFFI polygons and the modeled runout obtained
from static sources. This is the map of sources
obtained from statistical generalization of expert–
mapped potential sources, i.e., independent of any
trigger; Fig. 6 shows the corresponding results of
STONE. Even if this is not the main focus of this
work, we still list a few numerical results from
the comparison with IFFI. The polygonal inven-
tory contains 666 rockfalls in FVG, of which 604
overlap with the predicted runout, and 62 do not.
Percentages of overlap between IFFI and STONE
predicted trajectories are listed in Table 2. For the
sake of completeness, we calculated percentages

for the overlap of runout from static sources and
the earthquake–induced rockfalls of [25]; results
are listed in Table 3. In this case, misses (i.e., false
negatives) are substantially larger than in the IFFI
comparison.

Results in Tables 3 and 4 are given for three
different runout classification methods: “decades”
refers to five classes delimited by powers of 10;
“head/tail breaks” corresponds to this well known
classification method; “percentiles” corresponds
to classes delimited by the 20th, 40th, 60th, and
80th percentiles of the distribution of values in
each map. We stress that the head/tail breaks
method is particularly suited for highly asym-
metrical distributions, as the ones we are dealing
with, here, given that maps of trajectories con-
tains the vast majority of very small values and
a increasingly smaller number of grid cells with
many occurrences (number of simulated trajecto-
ries crossing the cell).

4.2 Simulations with dynamic

sources

The earthquake–induced landslide inventory from
[25] should be linked to the PGA map for that
event. Comparison of the inventory and the runout
results obtained from the different approximations
allows to determine which one produces a bet-
ter trigger for activating static sources; in other
words, a satisfactory model Pdynamic(S, PGA),
Eq. (5), for a dynamic trigger for earthquake–
induced rockfalls.

The model Pdynamic(S, PGA) allowed prepar-
ing different source maps, using a damping func-
tion Fα(PGA) either in linear form, Eq. (2), or in
the form of a sigmoid with different parameters k
and PGAmin, Eq. (3). The corresponding source
maps are in Figs. 7(a)–(d). The figures suggest a
dependence of the suppression factor upon PGA;
the static source map, previously shown in Fig.
4, is now vanishing for values of PGA approach-
ing zero. The values of the dynamic sources peak
at PGAmax, for all of the approximations, by
construction.

The “counter” maps resulting from simula-
tions, i.e., raster maps whose values reports the
number of trajectories crossing each grid cells, are
in Figs. 8(a)–(d) and Figs. 9(a)–(d), in areas at
different distance from the epicenter, and at two
different zoom levels. As in the case for the sources
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Fig. 6 Rockfall runout simulated with STONE, using the “static” rockfall source map, of Fig. 4, classified with the head/tail
breaks algorithm. It represents a susceptibility map, in that it does not describe magnitude, nor it contains indications
on the trigger and its expected temporal occurrence. Black polygons, filled in (a) and empty in the detail, (b), show the
location of polygons classified as “falls” in the national inventory IFFI [30, 61].

in the previous figure, the different dependence of
rockfall runout upon the values of PGA, in the

four different approximations, is manifest, from a
visual perspective.
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Table 2 Comparison between counts of
trajectories obtained by the method of [5] on the
whole FVG region and rockfalls in the IFFI
catalog [30, 61]. We use three classifications of
the counter raster map. ”Decades”: 1–10; 11–100;
101–1000; 1001-10000; more than 10000;
”head/tail breaks” refer to the well–know
classification method; ”percentiles” are 0 %–20
%–40 %–60 %–80 %–100 % classes.

Class Decades
Head/tail

Percentiles
Breaks

Null 8.9 % 8.9 % 8.9 %

1 – VL 2.7 % 61.5 % 6.0 %

2 – Lo 18.1 % 22.7 % 11.3 %

3 – Me 51.6 % 5.0 % 16.8 %

4 – Hi 17.9 % 1.4 % 26.1 %

5 – VH 0.9 % 0.5 % 30.9 %

Numerical results about the comparison of
the inventory from the event in 1976 and differ-
ent approximations for the dynamic sources are
listed in Table 4. The table lists results for two
different runout classification methods, namely
the head/tail breaks and percentile methods. We
used these two methods as they provided extreme
cases, in previous comparisons with observations,
Tables 2 and 3. Results suggest that for decreas-
ing spatial extent of the source map (maximum
for linear, and minimum for NTSF III), the over-
lap between observed landslides and simulated
runout decrease, consistently for both classifica-
tion methods. Further comments are in Section
5.

4.3 Example of impact evaluation

In this section we describe results obtained by
overlapping the rockfall trajectory count layer and
the exposure layer (cf. Section 3.5). The appli-
cation of the proposed methodology to the 1976
FVG earthquake scenario highlights that such
an event, on the current transportation network,
would potentially disrupt more than 150 km of
roads and 12 km of railway, while damaging to
more than 5,000 buildings (Table 6). Under the
considered scenario, both the Alpe Adria highway
and the primary road SS13 would be affected by
many rockfalls in the upper Tagliamento Valley.
The potential disruption of highway and primary
roads is particularly relevant and can affect the
activities of emergency managers and local com-
munities. In addition, damages may occur to

Table 3 Comparison between counts of
trajectories obtained by the method of [5] on the
whole FVG region and rockfalls in the [25]
inventory. ”Decades”, ”head/tail breaks” and
”percentiles” as in Table 2.

Class Decades
Head/tail

Percentiles
Breaks

Null 16.2 % 16.2 % 16.2 %

1 – VL 3.4 % 58.1 % 6.8 %

2 – Lo 15.8 % 18.0 % 9.5 %

3 – Me 47.8 % 4.4 % 15.4 %

4 – Hi 15.2 % 2.3 % 25.1 %

5 – VH 1.6 % 1.0 % 27.0 %

many buildings and secondary or tertiary roads
located in mountain areas. On top of that, build-
ings might be hit by rockfalls in villages with
documented damages caused by the 1976 earth-
quake (e.g., Vito D’Asio) or with known rockfall
hazard concerns (e.g., Portis, relocated after the
1976 seismic sequence).

5 Discussion

The rockfall source maps used for this work were
defined as “static”, Eq. (1), and “dynamic”, Eq.
(5). The former is simply an extension to the
whole of Italy of the data–driven method by [5],
while the latter is new to this work and aims at
introducing an existing event trigger. A similar
approach was introduced by [6] and applied all
over Italy by [8]; in that case, though, only Eq. (2)
was used (and non–linear factors were not consid-
ered, as in Eq. (3)). Moreover, [8] calibrated the
the limits PGAmin and PGAmax against scenar-
ios with specific return times, unlike in here. The
source maps developed herein link a specific event
to a specific STONE output. Optimization of the
model of Eq. (5) is new to this work, and repre-
sents a further step for the rapid assessment of
earthquake–induced rockfall hazard.

We first initialized STONE using full “static”
sources, and investigated different classification
strategies for the results. In fact, the values in the
main raster map produced by the model are the
number of trajectories crossing a given grid cell;
more precisely, they report about the locations in
which the trajectories hit the ground – by bounc-
ing or rolling. Figure 6 shows the output of this
run. Values in the output maps have a huge varia-
tion range, because we simulated up to a hundred
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Fig. 7 The different approximations for event–dependent rockfall source maps, proposed in this work, obtained from Eq.
(5), where α stands either for L (linear, panel (a)), Eq. (2), or for NTSF (panels (b)–(c)–(d)), Eq. (3). The raster of the
sources (white), as well as the observed rockfalls (blue), were slightly exaggerated for better visibility. The corresponding
runout simulated with STONE is shown in Fig. 8, within the area in the blue dashed rectangle, and in Fig. 9, for the red
rectangle.

trajectories from each source. This results in tra-
jectory counts ranging from unity to a few tens
of thousands, with a distribution skewed towards
small values. The results summarized in Table 2
show the difference in classification using different
methods, considering the IFFI inventory for rock-
falls in FVG. Classes based on head/tail breaks
and percentiles show two extreme cases; in the
former, most grid cells in IFFI polygons are in
the Very Low class, while in the latter Very High
class contains most. The “decades” method pro-
duced an intermediate picture, where most of the
values were in the Medium class. Table 3 shows
corresponding results, for the inventory compiled
after the 1976 earthquake; comments are practi-
cally the same, though the percentage of misses
(false negatives) is double that in the case of IFFI.

Given the large differences between results
using the three classification methods shown in
the tables, we examined more in depth the distri-
butions of trajectory count values for one specific

case. We considered the count map resulting from
STONE using the “static” map of sources. The
map contains 10,028,244 non–null cells, with max-
imum value 40,746; 9 % of the cells have value 1,
and 25 % of them have values smaller than 10.
The inset in Fig. 10 shows a histogram of the nor-
malized frequency values, spanning seven order of
magnitudes. The main plot in the figure, instead,
show boxplots as follows. The black whisker cor-
respond to the same distribution of the inset, with
outliers removed, for they would make the figure
unreadable as they represent the vast majority
of values. This is also true for the remaining
whiskers, which show distributions within each
class (1–5), for the three classification methods
described herein. One should appreciate that the
percentile method is not a satisfactory one, nor is
the decades method, for a distribution so skewed
as shown in the inset. In fact, all of the five
whiskers for the percentiles method show similar
content; in the case of the decades method, this is
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Fig. 8 Rockfall runout simulated with STONE initialized with the different approximations for sources, Pdynamic(S, PGA),
shown in Fig. 7. Here, we show details in the area within the rectangle of the previous figure. Blue polygons represent the
inventory prepared by [25] after the earthquake corresponding to the PGA contours shown in the figure. Numerical values
describing the agreement between simulations and observed rockfalls are listed in Table 4.

still true for the first three classes. Whiskers for
the head/tail method, instead, show that the five
classes are well distinguished from each other. We
suggest that this classification is better suited for
a skewed distribution. We do not show maps col-
orized with the three methods, because they are
not really informative and it would be difficult to
visually show the effect discussed here.

Figure 6(b) shows a detail of the results for
the static case, in a small area. This was chosen
in an area with few records in the IFFI inventory.
The figure shows that most of areas predicted with
non–null, and even high and very high susceptibil-
ity, do not find correspondence in the inventory.
Besides the fact that the inventory may not be
complete in that area [35], or that new rock-
falls can still occur where they had not occurred
before, we stress a trivial but important fact,
here. The model STONE initiated with sources
based on morphometric arguments but otherwise
independent of any trigger may substantially over-
estimate rockfall susceptibility in specific areas.

Such sources result from extrapolation of obser-
vations (morphometric properties) in a few spots
to a substantially larger area. Figure 6 shows that
enhancing/damping static sources using specific
triggers, as the seismic trigger introduced in this
work, could provide much more reliable predic-
tions. On the other hand, observed landslides that
have no match in the predicted susceptibility map,
cannot be improved using a specific trigger; the
dynamic source map is always a spatial subset of
the static map, though with different probability
values.

Optimization of dynamic sources requires
assessment of the agreement between simulated
STONE runout, and rockfalls observed after the
earthquake under investigation [25]. Considering
different approximations for the Fα(PGA) func-
tion, Eq. (2) and Eq. (3) plotted in Fig. 5(b),
we obtained results shown in Fig. 7 (sources) and
Figs. 8 and 9 (details of the runout). In the figures,
contours show PGA values, and a star shows the
quake’s epicenter. By inference, sources are null
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Fig. 9 As in Fig. 8, but for the area delimited by the red rectangle in Fig. 7.

where PGA values approach zero; the damping
factor is less important for increasing values, up
to the maximum where Fα(PGA) = 1 and the
model earthquake–induced sources are identical to
the static sources. The damping is different in the
linear and non–linear approximations; the figures
suggest that the observed rockfalls have different
degrees of agreement with the model runout, in
the four cases. Agreement is quantified in Table
4; the values in the table should allow one to sin-
gle out the best approximation for the Fα(PGA)
damping factor.

One may use different strategies to select a
good match, though. First, Table 4 lists results
for two classification methods, given the large dif-
ferences, as discussed above; we considered only
the two extreme cases, head/tail breaks and per-
centiles. Analyzing the numerical results one may
follow different strategies to select the dynamic
sources providing better match. The number of
misses increases consistently from Linear to NTSF
III – again, by inference, because the source map
“shrinks” as we move left to right in the table.
The percent variation of “Non–null” from left

to right is smaller between Linear and NTSF I
(0.37 %) than other changes (Static to Linear:
2.86%; NTSF I to NTSF II: 3.82 %; NTSF II to
NTSF III: 1.03 %), which could suggest NTSF I as
best match. Looking at the content of individual
classes, as already noted, the percentiles classifi-
cation method accommodates most of the values
in class 5, VH, and the opposite for head/tail
breaks. However, moving from left (Static/Linear)
to right (NTSF III), the trend is not always mono-
tonic. In fact, in the head/tail breaks method,
there is a maximum in NTSF I for classes 3 and
4, in Linear for classes 2 and 5, and in Static for
class 1. In the percentiles method the maximum is
always for static, except for Linear being the class
5 maximum; because of this behavior, we deem
this classification method ineffective. We believe
the NTSF I provides an overall better match, with
smallest true positives percentage variation from
Linear and the largest true positives percentage
variation going to NTSF II. Moreover, individual
classes also seem to provide a more consistent split
of the distribution of true positives.

15



Table 4 Comparison between counts of trajectories and rockfalls in the [25] inventory. Sources were selected by either
the method of [5], Eq. (1) for “static” sources, or with the “dynamic” method introduced here by Eq. (5) with a
dependence on peak ground acceleration. Different approximations for Fα(PGA) are linear dependence (Eq. (2)), and
three different parameterizations for a normalized tunable sigmoid function (NTSF, Eq. (3) also shown in Fig. 5). Classes
correspond to head/tail breaks for the upper part of the table, as in the second column of Tables 2 and 3, and to
0–20–40–60–80–100 percentiles of each map in the lower part of the table, as in the third column of Tables 2 and 3.

Class Static Dynamic sources

(Head/tail
breaks)

Sources Linear NTSF I NTSF II NTSF III

Null 16.2 % 18.5 % 19.0 % 19.8 % 22.7 %

1 – Very Low 58.1 % 35.7 % 37.5 % 40.7 % 41.0 %

2 – Low 18.0 % 30.0 % 27.6 % 27.8 % 25.6 %

3 – Medium 4.4 % 8.8 % 9.3 % 7.6 % 6.9 %

4 – High 2.3 % 3.7 % 3.9 % 2.3 % 2.1 %

5 – Very High 1.0 % 3.1 % 2.8 % 1.9 % 1.7 %

Non–null 83.8 % 81.4 % 81.1 % 78.0 % 77.2 %

Class Static Dynamic sources

(Percentiles) Sources Linear NTSF I NTSF II NTSF III

Null 16.2 % 18.5 % 19.0 % 19.8 % 22.7 %

1 – Very Low 6.8 % 3.4 % 3.4 % 3.8 % 3.7 %

2 – Low 9.5 % 5.1 % 6.0 % 6.5 % 5.7 %

3 – Medium 15.4 % 8.0 % 8.6 % 10.0 % 10.4 %

4 – High 25.1 % 17.9 % 18.3 % 18.7 % 20.5 %

5 – Very High 27.0 % 47.0 % 44.8 % 41.3 % 36.9 %

Non–null 83.8 % 81.4 % 81.1 % 78.0 % 77.2 %

An alternative/additional way to determine a
good match may be to consider a full confusion
matrix determination of observed/predicted pos-
itives/negatives. However, we note that the large
number of false positives and true negatives (of
the order of many millions, in contrast with a few
thousands for false negatives and true positives)
could unbalance the confusion matrix and we pre-
ferred not to follow that strategy. Nevertheless, for
the sake of completeness, we report results of a
standard training/validation procedure.

We split the landslides data into a training
sample (70 % of the landslides, selected randomly)
and a validation sample (the remaining 30 %),
repeating the random selection ten times. For each
selection, we calculated the true positive rate,
TPR = TP/(TP + FN), and true negative rate,
TNR = TN/(TN + FP) where T, F, P, N stand for
true, false, positives and negatives, respectively.
For all of the selections, and within the numeri-
cal variability across different selections, we found
monotonic decrease (increase) of TPR (of TNR)
going from the linear to the NTSF I–III. The large
numbers representing TN and FP values make
TNR less relevant in our case. In this view, the
best result would be the linear approximation, and
validation consists in calculating TPR and TNR

for the only linear approximation, using the 30 %
landslides that did not enter the previous analysis,
for each random selection. Numerical results are
in Table 5. As this analysis does not distinguish
classes, the classification strategy is irrelevant,
here. We still consider this procedure less informa-
tive than the assessment of Table 4. Eventually, we
stress that we did not aim at a finer determination
of the parameters of the NTSF approximation, nor
to experiment with different functional forms. A
finer determination would probably require more
than one example of an earthquake inducing rock-
falls to obtain a more robust result, and that may
be performed elsewhere for historical events in
Italy, and for additional scenarios.

6 Conclusions

This work implemented an event–based earth-
quake trigger for seismically induced rockfalls,
within a three-dimensional physically based mod-
els. The traditional method, common to different
existing models [21, 23, 27, 38], considers a given
set of locations as possible block detachment
points and calculates the geometrical extent of
rockfall trajectories on the downslope topography.

The typical input source map is a static one;
simulations initiated with such input data provide
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Table 5 A simulation of training/validation procedure, considering landslide data as truth and the full model runout in
the four approximations discussed in this work. The negligible varation in TNR is given by the large numbers representing
TN and FP cases.

Data partition Model TPR TNR TNR-TPR

Training

Linear 0.811±0.016 0.931±0.00 0.121±0.016

NTSF I 0.806±0.016 0.962±0.00 0.157±0.016

NTSF II 0.798±0.018 0.980±0.00 0.181±0.018

NTSF III 0.765±0.020 0.986±0.00 0.221±0.020

Validation Linear 0.818±0.039 0.931±0.00 0.113±0.039

a spatially–distributed likelihood of rockfall occur-
rence. A full assessment of rockfall hazard requires
the joint knowledge of the magnitude of rockfalls,
and temporal frequency, return times, or explicit
dependence on specific triggering events. Previous
work, by a few of us, considered different spa-
tial probabilities for the source map, instead of a
uniform probability [5]; recent developments using
the same 3D model include a seismic trigger, con-
sidering scenario–like shake maps with different
return times [8].

Here, we introduced fully dynamic source
maps, by calibrating a triggering mechanism on
both the shake map and the observed rockfalls.
Calibration concerned the parameters of a func-
tion, used to map peak ground acceleration values
into a damping factor for morphological, static
sources. The damping function was either a linear
mapping, or a parametric sigmoid. An in–depth

Fig. 10 The distribution of rockfall trajectory count val-
ues, in the map obtained from “static” sources and used
for the comparison in Table 2. The inset shows the normal-
ized frequency. The black whisker in the boxplot also refers
to the distribution in the inset (outliers always removed).
The colored whisker correspond in each class (1–5) to the
distributions obtained in the three classification methods
considered in this work.

investigation and calibration of the damping func-
tion may also consider more refined estimates of
the seismic ground shaking, which should account
for topography and soil type, among the others,
and can be matter for future research.

Results of simulations with STONE, a three–
dimensional rockfall runout model, support the
following conclusions for the simulations in the
area of 1976 earthquake, in the FVG region,
North–Eastern Italy:

• Rockfall runout obtained with static sources
showed a reasonable match (8.9 % false nega-
tives) with the relevant subset of the national
polygonal inventory IFFI, restricted to “falls”;
match with the inventory prepared after the
1976 earthquake event was poorer (16.2 % false
negatives).

• We deem the head/tail breaks method as the
most suitable classification method for the tra-
jectory count output of the model STONE.

• Introduction of a dynamic trigger, driven by the
peak ground acceleration associated with a spe-
cific seismic event, effectively linked the event
to a specific set of sources, and corresponding
simulated runout.

• Simulations with different functional forms of
a damping function, Fα(PGA), allowed cali-
bration of the parameters of the function itself
against observed rockfalls; our analysis favored
the NTSF I version, with PGAmin correspond-
ing to the minimum existing PGA and k = 0.5
(cf. Eq. (3) and Table 4).

The conclusions above deserve a few additional
remarks. Results from the dynamic map can-
not be better than those from the static map –
the number of false negatives does not decrease
– because the triggering factor of Eq. (5) only
damps the static sources, but no new sources
are introduced. On the other hand, the balance
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Table 6 Impact assessment of rockfalls on infrastructure, based on the scenario simulated in this work, the 1976
earthquake. Figures for buildings represent a count; any other result represent a length, in kilometers. the classification of
roads is from OpenStreetMap. For road bridges, the total affected length refers to the overall length on the different road
types.

Exposed asset Asset type Very low Low Medium High Very high

Buildings – 5,046 141 6 0 0

Roads Motorway 25.8 0.5 0.0 0.0 0.0

– Primary 23.0 1.8 0.1 0.0 0.0

– Secondary 67.3 7.6 0.9 0.3 0.1

– Tertiary 65.0 5.2 0.6 0.1 0.0

Railways Railway 12.1 0.0 0.0 0.0 0.0

Bridge Road bridge 12.2 0.7 0.2 0.1 0.0

– Railway bridge 1.0 0.0 0.0 0.0 0.0

between different classes is changed, due to differ-
ent values of probability in corresponding static
and the active dynamic grid cells. This calls for
further improvements of the static probabilistic
map, here motivated only by morphometric argu-
ments, though based on statistical generalization
of expert mapping.

We stress that our approach does not consider
expected magnitude of the rockfalls, necessary for
a full assessment of hazard; this would amount
to implementing blocks of different sizes in the
code. We are working on an effective method to
cope with different sizes, without the need to
modify the code, as we did here for the trigger-
ing mechanism. Nevertheless, we considered an
example impact assessment, calculating the over-
lap between the existing infrastructure and the
model output, in the simulated scenario. This is
a preliminary example of the outcome one would
obtain in a real–time application of the framework
proposed here.

The automation of this framework in almost
real time would support the rapid assessment
of expected damages caused by rockfalls induced
by a seismic event in a study area, which is
paramount for first respondents and emergency
managers after a seismic event. The potential
implications for emergency management will be
explored in future work using more sophisticated
approaches for both landslides and exposure mod-
eling, such as traffic and social exposure data.
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