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d Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
e Institute of Astronomy, Geophysics and Atmospheric Sciences, Universidade de São Paulo, Rua do Matão 1226, 05508-090, São Paulo, SP, Brazil
f Methods for Model–based Development in Computational Engineering, RWTH Aachen, 52062, Germany
g Norwegian Geotechnical Institute, 0484 Oslo, Norway
h Department of Civil Engineering, Indian Institute of Technology, Indore, India
i Departamento de Geografía, Prehistoria y Arqueología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz 01006, Spain
j Faculty of Geo–Information Science and Earth Observation (ITC), University of Twente, PO Box 217, Enschede AE 7500, the Netherlands
k Center for Climate Change and Transformation, Eurac Research, Bolzano, Italy
l GeoSphere Austria, Vienna, Austria
m Dipartimento di Scienze della Terra "A. Desio", Università degli Studi di Milano, Milan, Italy
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A B S T R A C T

Landslide susceptibility shows the spatial likelihood of landslide occurrence in a specific geographical area and is
a relevant tool for mitigating the impact of landslides worldwide. As such, it is the subject of countless scientific
studies. Many methods exist for generating a susceptibility map, mostly falling under the definition of statistical
or machine learning. These models try to solve a classification problem: given a collection of spatial variables,
and their combination associated with landslide presence or absence, a model should be trained, tested to
reproduce the target outcome, and eventually applied to unseen data.

Contrary to many fields of science that use machine learning for specific tasks, no reference data exist to assess
the performance of a given method for landslide susceptibility. Here, we propose a benchmark dataset consisting
of 7360 slope units encompassing an area of about 4, 100 km2 in Central Italy. Using the dataset, we tried to
answer two open questions in landslide research: (1) what effect does the human variability have in creating
susceptibility models; (2) how can we develop a reproducible workflow for allowing meaningful model com-
parisons within the landslide susceptibility research community.
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With these questions in mind, we released a preliminary version of the dataset, along with a “call for
collaboration,” aimed at collecting different calculations using the proposed data, and leaving the freedom of
implementation to the respondents. Contributions were different in many respects, including classification
methods, use of predictors, implementation of training/validation, and performance assessment. That feedback
suggested refining the initial dataset, and constraining the implementation workflow. This resulted in a final
benchmark dataset and landslide susceptibility maps obtained with many classification methods.

Values of area under the receiver operating characteristic curve obtained with the final benchmark dataset
were rather similar, as an effect of constraints on training, cross–validation, and use of data. Brier score results
show larger variability, instead, ascribed to different model predictive abilities. Correlation plots show simi-
larities between results of different methods applied by the same group, ascribed to a residual implementation
dependence.

We stress that the experiment did not intend to select the “best” method but only to establish a first benchmark
dataset and workflow, that may be useful as a standard reference for calculations by other scholars. The
experiment, to our knowledge, is the first of its kind for landslide susceptibility modeling. The data and workflow
presented here comparatively assess the performance of independent methods for landslide susceptibility and we
suggest the benchmark approach as a best practice for quantitative research in geosciences.

1. Introduction

Landslide susceptibility assessment with statistical and machine
learning methods requires a substantial amount of topographic,
geomorphological, and environmental data to train and test a specific
model. The combination of input data and the method of choice are the
ingredients to prepare a classification of the study area based on specific
mapping units - i.e., elementary portions of the area. A simple square
grid may be effective to discretize spatially distributed variables, but
slope units work substantially better in representing topographic units
with uniform likelihood of landslides to occur. Use of slope units, which
are portions of the domain separated by drainage and divide lines, has
conceptual advantages (Carrara et al., 1991; Alvioli et al., 2016; Jacobs
et al., 2020; Rolain et al., 2023), although their delineation represented
a practical limitation for a long time (Reichenbach et al., 2018).

Relevant input data, usually referred to as “predictors,” “factors,”
“covariates,” “features,” or “independent/explanatory variables,” are a
mixed set of morphometric quantities and a variety of thematic data. A
landslide inventory is also needed, representing the “dependent,”
“target,” or “response” variable to be reproduced by the model (Guzzetti
et al., 2012). Different landslide inventories may lead to different sus-
ceptibility maps (Bordoni et al., 2020; Pokharel et al., 2021; Bajni et al.,
2022; Bornaetxea et al., 2023a; Dias and Grohmann, 2024), implying
that a given inventory must be selected for a benchmark, which is a
common dataset used to compare models developed by different users.

The choice of a specific method/model used to obtain a susceptibility
map depends on software availability, personal background, and exis-
tence of relevant literature for the area of interest. New methods are
proposed regularly; however, due to the lack of a benchmark dataset, it
is difficult to judge the relative performance of methods across different
studies, and the methods’ applicability in a specific area (Süzen and
Doyuran, 2004; Yesilnacar and Topal, 2005; Akgun, 2012; Thai Pham
et al., 2020; Tien Bui et al., 2016; Merghadi et al., 2020).

Many publications exist on the subject of landslide susceptibility
(Reichenbach et al., 2018; Merghadi et al., 2020), and several updated
reviews about landslide susceptibility methods appear every year (e.g.,
Lee, 2019; Shano et al., 2020; Dias et al., 2021; Das et al., 2022; Yong
et al., 2022; Liu et al., 2022, 2023). For example, Lima et al. (2022)
presented a bibliographic–oriented summary of the landslide suscepti-
bility literature, Huang et al. (2024) centered their review on data-
–construction strategies, and Budimir et al. (2015) focused on aspects
related to the choice of the common predictor sets. However, a mean-
ingful comparison of many different methods requires a common
benchmark dataset to train and test each of them in a systematic way.
This is a standard procedure in machine learning science and practice:
benchmark datasets exist for medical sciences, image recognition, lin-
guistics and, in general, any data–driven research. The “Iris dataset” is a
famous example of a benchmark in classification of numerical data into

three different variants of the flower Iris (Fisher, 1936). Examples of
open datasets for this purpose, listed in alphabetical order, are available
on GitHub (2022); another example is the University of California Irvine
machine learning repository (UCI, 2024).

Despite machine learning having been applied to landslide studies,
no benchmark dataset exists for machine learning applications in land-
slide susceptibility. Benchmark data exist in other fields of the Geo-
sciences. For example, Buiter et al. (2016) and Schreurs et al. (2016)
benchmarked numerical models of thrust wedges with brittle materials,
Kirby et al. (2022) discussed comparison of models for landslide tsunami
generation, and Leung et al. (2024) described a benchmarking exercise
for rock mass discontinuity mapping.

Here, we propose a benchmark dataset and describe the results of an
array of different methods, using a consistent workflow, which can be a
standard reference for landslide susceptibility studies. Of note, the
benchmark dataset and associated comparison of methods were devel-
oped with input from many experts active in the field of landslide
science.

This study was carried out over the course of about one year, and we
summarize it as follows: (1) introducing a preliminary dataset to
compare the outcome of different methods for landslide susceptibility
assessment in a meaningful way, (2) collecting contributions of re-
searchers active in the field of landslide susceptibility to use such dataset
with their method of choice, (3) reviewing results and feedback of
contributors, (4) revising the dataset to obtain a final benchmark data-
set, distributed again with prescriptions about the workflow to obtain
landslide susceptibility maps (LSMs), and (5) collecting final calculation
results from different contributors and making them publicly available.

This work is the first attempt to achieve model comparability beyond
the result provided by individual research groups but rather as a com-
munity effort. For this reason, our contribution aims at addressing a
different task as compared to existing reviews. We certainly include
elements of literature review, but these are systematically presented
through a practical experiment run by as many research groups as we
could gather. This process has undergone a two–step procedure to first
explore differences among different methods, and then bring together
the participating groups and devise a common modeling protocol. This
procedure has ultimately been translated not only into a shared list of
modeling recommendations but also into a shared dataset.

2. Review of essential literature on landslide susceptibility

Studies on landslide susceptibility have benefited from several
notable technological advances over the last five decades. The earliest
digital document on landslide susceptibility dates back to the 1970s,
where Brabb et al. (1972) provided an expert–based susceptibility
classification of a study site in California, United States, on the basis of
his expectation whether a slope could be prone or not to fail. Since then,
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the literature has witnessed a radical change in the spectrum of possible
answers to the same question. Specifically, the following decades
welcomed contributions that explored more numerical–oriented
approaches.

With the advent of geographical information system software, in-
formation on landscape characteristics associated with potential failures
became available in digital form. This first era of innovation produced a
wave of contributions centered around heuristic models (Luckman,
1987; Leoni et al., 2009). These were later replaced by bivariate statis-
tical approaches. Among these, tools such as certainty factor (Wislocki
and Bentley, 1991) or weight of evidence (WoE – Bonham-Carter et al.,
1990; Agterberg et al., 1990; Luzi et al., 2000) offered good performance
and easy to implement models that were used until recent times (e.g.,
Regmi et al., 2010). However, these methods suffered from a lack of
quantitative outputs, which diminished model interpretability.

Statistical and machine learning susceptibility models provided a
more quantitatively robust method of estimating landslide susceptibil-
ity, which led to its dominance in the field up to the present. The
introduction of binomial statistical model by Atkinson and Massari
(1998) increased susceptibility model performance and interpretation
(Huang et al., 2020). Nevertheless, these models only allow for the re-
lations between dependent and independent variables to be estimated in
a linear fashion, an assumption that may not hold in many cases. For this
reason, nonlinear extensions such as generalized additive models (GAMs
– Brenning, 2008) have superseded them.

In the early 2000s, machine learning also made its appearance in the
landslide susceptibility science, with a number of applications that
extended widely to encompass (i) tree–based models (Yeon et al., 2010)
and their three main derivatives: random forest (RF – Ho, 1995; Brei-
man, 2011; Hong et al., 2019), boosted regression trees and XGBoost
(Zeng et al., 2023), ii) support vector machines (Huang and Zhao, 2018),
(iii) artificial neural networks (ANNs – Amato et al., 2023; Bragagnolo
et al., 2020). Historically, statistical and machine learning approaches
occupied very distinct areas, with the former being sought after for its
interpretability and uncertainty estimation components (Di Napoli et al.,
2023), whereas the latter was used in performance–oriented applica-
tions (Marjanović et al., 2011). Only recently have these differences
became more blurred, with statistical models incorporating spatial
dependence information (Chalkias et al., 2020) and machine learning
approaches offering tools to facilitate their interpretation (Dahal and
Lombardo, 2023).

Notably, with the introduction of all these models, the landslide
susceptibility community entered a somewhat dormant era between the
years 2010 and 2020. During this time, a plethora of publications aimed
at comparing certain models against others, each time taking a different
set of tools under consideration and a different dataset to build such
comparison. As a result, hundreds of articles appeared with no explicit
research question other than comparing a set of models and a set of data
in a particular context or setting. This practice does not allow for the
systematic comparability required for general advancements in the
landslide susceptibility field, and it is precisely with this idea in mind
that the present work proposes a standard for a benchmark dataset (refer
to Section 3).

In addition to exploring the effectiveness of different susceptibility
model types, much work has investigated the effects of the ratio of
landslide presence and absence data. The standard definition of land-
slide susceptibility, as given by Carrara et al. (1995) or Guzzetti et al.
(1999), does not formally require retrieving an absolute probability as it
is often the case in statistics. Conversely, the susceptibility definition
corresponds to a relative probability between different mapping units. In
other words, susceptibility assessment seeks to define which locations
are more prone than others to experience a slope failure rather than
assigning them an exact probability value (Akgun et al., 2008; Sterlac-
chini et al., 2011).

To strictly compute probabilities, a model should be fit with all the
available presence/absence data. However, the common approach in the

literature is to keep all the presences while subsampling the absences
(Huang et al., 2024). Many examples can be found where a balanced
sampling strategy is pursued (e.g., Erener et al., 2017; Lucchese et al.,
2021). In other contributions, the absences are still subsampled from the
whole dataset but kept at a greater proportion with respect to the
presences (Heckmann et al., 2014; Moreno et al., 2024; Bornaetxea
et al., 2018). Importantly, sampling strategies vary between machine
learning and statistical modeling.

If we consider statistical modeling, the implication of varying the
proportion of the presence/absence label can essentially be seen in the
global intercept. The first work to refer to this effect is by Petschko et al.
(2014). There, the authors note the effect of sampling a subset of the
absences on the global intercept and propose an equation to correct for
this effect, thus effectively bringing the obtained relative probabilities to
the standard strictly prescribed in statistics. The same line of research
has been further explored (refer to the supplementary materials in
Lombardo and Mai, 2018), where the effects on the global intercept have
been demonstrated in a simulation exercise. In short, a dataset with
much fewer presences than absences would estimate very negative
global intercept values. This, in turn, applies a constant probability shift
towards the left side of the susceptibility distribution. In other words, a
balanced sampling choice returns probability values shaped according
to a Gaussian or near–Gaussian distribution centered at around 0.5.
Thus, as the absence proportion progressively increases, the distribution
of susceptibility values becomes more and more positively skewed
(Lombardo and Tanyas, 2022). A more positively skewed or even
heavy–tailed susceptibility distribution matches the reality, with few
locations being highly susceptible and most of the landscape is consid-
ered stable (Jia et al., 2021). The artificial transposition of this shape
towards a normal distribution implies that any landscape is approxi-
mately split into two sides, 50 % to be considered stable and 50 % to be
considered unstable. This is obviously not what happens in reality and it
is also the reason why susceptibility values are almost always presented
in a reclassified form. In such a way, grouping probability into low-
–to–high susceptibility classes removes the differences induced by
values concentrated either in the bulk or tails of the distribution. This is,
therefore, another area where many differences exist in the literature. In
this sense, the Jenks natural break classification is quite common
(Mărgărint et al., 2013; Elia et al., 2023), and alternatives can be found
in an equal interval (Kavzoglu et al., 2014; Chen et al., 2016) or quantile
descriptions of the susceptibility range (Steger et al., 2020; Wang et al.,
2022).

The sampling strategies using machine/deep learning tools are more
regulated. Machine learning largely prescribes that users select balanced
sampling strategies (e.g., Batista et al., 2004), unless custom–made loss
functions are used to account for data imbalance (Prakash et al., 2020;
Dahal et al., 2024). For this reason, many fewer studies explore absence
selection effects (e.g., Hong et al., 2019; Liang et al., 2021; Rabby et al.,
2023).

3. Methods and data

The first action of this study was devising a tentative dataset, and
publishing a call for expressions of interest in participating in a quan-
titative experiment comparing susceptibility methods on a proposed
benchmark dataset. We proposed this experiment as a topical session at
the annual European Geosciences Union General Assembly 2023.1 Par-
ticipants presented their calculations to obtain landslide susceptibility in
the study area using the proposed dataset. The approaches of the 11
participating groups were different in many respects. In Sections
4.1–4.11, we report for each participant group information about (i)
type of model, (ii) variable selection, (iii) calibration/validation
approach, and (iv) performance assessment. Section 4.12 summarizes

1 https://meetingorganizer.copernicus.org/EGU23/session/47046.
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similarities and differences of the participants’ results.
The second set of actions, collectively aimed at devising a final

dataset, was based on the results of the previous step and is described in
Section 5. Feedback from the previous step suggested that the dataset
should be updated to remove collinearity, which was an issue for most of
the contributions. Moreover, it was clear that the workflow applied to
obtain LSMs should be standardized both for a meaningful comparison
of results from different methods and for benchmarking independent
calculations against the results presented here. To this end, a final
benchmark dataset was obtained adding new predictors and removing
collinearity by reducing the number of variables, as described in Section
5.1. The updated data were distributed to the contributors, with well-
–defined requirements for cross–validation (CV), so that the individual
groups produced a more informative set of results.

3.1. Data

We selected a slope–unit (SU)–based dataset because SUs have a
meaningful correspondence with topography (Guzzetti et al., 2006). We
extracted a subset of the dataset used by Loche et al. (2022) for landslide
susceptibility maps in Italy, who adopted an SU set previously optimized
for Italy by Alvioli et al. (2020).

Out of the entire SU map of Italy, containing about 330,000 poly-
gons, we selected a subset of 7360 units encompassing an area of
4, 095 km2 in Central Italy. Fig. 1 shows the spatial location of the area
of interest. The data had an attribute table containing several different
morphometric and thematic variables. The morphometric variables
were calculated using the European digital elevation model EU–DEM
with 25–m resolution.2 A few variables were obtained from the SoilGrids
global dataset (Hengl et al., 2017). Table 1 lists the full set of variables.

The SoilGrids dataset is an application of machine–learning models
trained on over 230,000 soil profile observations from the world soil
information WoSIS database (ISRIC, 2024)). Lower and upper limits of a
90 % prediction interval quantify prediction uncertainty. Global data-
sets and models are increasingly being used to make use of data–hungry,
high–performance, large–scale, machine–learning models. The accuracy
of global datasets depends on the density and quality of data points used
for building the models. Freely available global products aer useful both
in the context of this work, aiming at becoming a reference dataset for
landslide susceptibility mapping, and for similar datasets, developed in
different areas.

The original landslide location map in Loche et al. (2022) contained
eight different presence/absence flags, corresponding to the point lo-
cations (highest point of landslide crown) of eight types of landslides
from the Italian National landslide database assembled by the Italian
Geological Survey (ISPRA; Trigila et al. (2010)). For this work, we
selected only presence/absence of translational landslides.

To provide the contributors with two different landslide presence
scenarios, we flagged landslide presence with two attribute fields, called
p1 and p2, which is similar to flagging an SU as unstable if it contains a
minimum landslide area (Guzzetti et al., 2006; Schlögel et al., 2018).

To define p1, we selected SUs labeled as “without landslide” (p1 flag:
0) where an SU contained no points at all, in 3766 cases (1,443.1 km2),
and as “with landslides” (p1 flag: 1) in the remaining 3594 cases
(2, 652.1 km2). For p2, we selected SUs labeled as “without landslides”
(p2 flag: 0) where an SU contained up to one point, in 5089 cases
(2, 087.1 km2), and as “with landslides” (p2 flag: 1) in the remaining
2271 cases (2, 008.2 km2).

Note that, using p1 as landslide presence, one would have an
approximately balanced dataset with respect to the number of zeros/
ones; using p2, instead, one would have an approximately balanced
dataset with respect to the total surface area covered by the SUs labeled

either with zero, or one. Fig. 2 shows the spatial distribution of SUs
labeled as positive/negative in the two cases. In such a varied method-
ological landscape pertaining to sampling ratios (Section 2), a detailed
exploration of the selection of non–landslide data is beyond the scope of
this work.

We invited participants to consider both landslide presence flags to
produce two different LSMs for the study area. Moreover, we invited
them to use their best strategy, or the strategy that best fits their model
of choice, to produce a result for a landslide susceptibility index – a float
number ranging from zero to unity – and an associated uncertainty,
where possible.

4. Preliminary assessment of the benchmark dataset for
landslide susceptibility

The following describe the methods applied in step one of the
experiment, by each participating group. In each contribution, we have
distinguished model selection, variable selection, calibration–validation
approach, and model evaluation. In cases where no exclusion of vari-
ables is described, all variables were retained for the group’s results.

4.1. Group 1. Application of the LAND–SUITE multi–model software

This contribution was presented as the (EGU) abstract by Bornaetxea
et al. (2023b).

Model selection. Group 1 (G1) utilized the LAND–SUITE software
(Rossi et al., 2022), a suite of R script modules (R Core Team, 2021)
designed to support the landslide susceptibility inference process.
LAND–SUITE contains several statistically driven approaches, including
linear discriminant analysis (LDA), logistic regression (LR), and
quadratic discriminant analysis (QDA). Additionally, the software pro-
vides an option to combine the outputs of the selected statistical
methods into a single combination forecast model (CFM), where LR is
used to determine the best fit among the original outputs (Rossi and
Reichenbach, 2016). They tested all of the mentioned approaches (LDA,
LR, QDA, and CFM), considering the two proposed landslide presence
scenarios (p1 and p2), along with the explanatory variables, resulting in
eight LSMs.

Variable selection. Each modeling process was preceded by an
exploration phase to identify possible correlations among pairs of
explanatory variables and, in such cases, to select only the most signif-
icant variable. Including highly correlated variables in the model
training would likely inflate the model error and uncertainty estimate,
thus negatively affecting the overall performance and the interpretation
of variable effects (Amato et al., 2019). This in turn would increase
computational time and, in some extreme collinearity cases, may even
hinder the model convergence, especially for statistical models. To
address this, G1 computed mutual correlation coefficients among the 26
explanatory variables (including SU area) and considered two variables
as highly correlated if the Pearson correlation coefficient exceeded |0.7|.
A leave–one–out (LOO) test assessed the individual significance of each
variable with respect to the others (Gong, 2006; Sin Yin et al., 2010).
With n preliminary runs of each model, excluding one variable at a time,
G1 determined which variable’s absence resulted in the largest loss in
model performance, and they excluded the less significant variable from
each highly correlated pair. This approach is referred to in different
ways depending on the user background, including terms such as jack-
knife tests in ecology (Shcheglovitova and Anderson, 2013), or ablation
studies in computer science (Aguilera et al., 2022). Additionally, for the
LR outputs, G1 verified the p–value corresponding to each variable.
Variables with p–values ≫ 0.05 were excluded from the analysis. This
process was performed for each of the provided target variables (p1 and
p2). The original values of the explanatory variables were scaled be-
tween their minimum/maximum values.

Calibration–Validation approach. Every experiment (LDA, QDA, LR,
and CFM) used the same training and validation data partition, which2 https://www.eea.europa.eu.
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involved a simple (one–fold) random CV approach. Group 1 allocated
75 % of the dataset for training and the remaining 25 % for validation.
They made sure that a balanced number of landslide presence (1) and
absence (0) were found in both the training and validation sets. To assess
the internal variability of the results due to the randomly obtained
training samples, G1 used the bootstrap resampling method (Davison
and Hinkley, 1997). They conducted 100 resample iterations for each
tested model and plotted the average and standard deviation of the re-
sults on variability plots (Rossi and Reichenbach, 2016).

Model evaluation. Validation of the results was performed using the
area under the receiver operating characteristic (ROC) curves (AUCROC,
Fawcett (2006)), calculated for both the training and validation sam-
ples. Group 1 obtained four–fold and histogram plots to visualize the
overall agreement of the model compared to the observed results in the
validation dataset. In all figures and tables, results corresponding to this
paragraph are labeled as LDA, QDA, LR1, and CFM (cf. Fig. 3).

4.2. Group 2. Generalized additive models with shrinkage option and
geomorphological plausibility check

This contribution was presented as the EGU abstract by Camera and
Bajni (2023).

Model selection. Group 2 (G2) applied GAMs, using the mgcv library
in R (Wood, 2017). This class of models was selected because these
models are easily interpretable and widely applied in recent literature
with good results (e.g., Goetz et al. (2011); Bajni et al. (2023); Fang et al.
(2024); Wang et al. (2024)).

Variable selection. An exploratory correlation analysis was carried out
between the 27 independent variables (SU area included). Variable se-
lection was done during the GAM fitting through shrinkage, which
consists in removing the variables that explain a small part of model
variance (usually variables highly correlated with others). This
approach is quite intuitive in the linear case, with a penalization term
used to shrink the regression coefficient values towards zero, checking at
each time whether the shrinkage leads to loss in performance or not
(Ranstam and Cook, 2018). In a nonlinear case, the penalization is
executed in two dimensions, both for the regression coefficients as well

Fig. 1. Geographical location (inset) of the area covered by the slope unit set (main figure) selected in this work as a benchmark dataset for landslide susceptibility
zonation. The dataset is a subset of the slope unit map obtained by Alvioli et al. (2020), and used by Loche et al. (2022) for a landslide susceptibility map of Italy. In
the dataset proposed here, we selected point locations of translational landslides from the Italian national inventory known as ‘IFFI’ (Trigila et al., 2010). Map is in
EPSG:32632 projected reference system.
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as across the spline applied to the domain of the explanatory variable of
interest (Wood and Augustin, 2002). First, models were fit using all
variables as input for both p1 and p2 in the two areas. Predictors were
analyzed through the associated component smoothing functions (CSFs)
to check for physical plausibility (Steger et al., 2016, 2021; Camera
et al., 2021; Bajni et al., 2022, 2023). In addition, the rugs and confi-
dence bands of the CSF graphs were analyzed to consider the possible
introduction of variable cutoffs, to reduce model uncertainties due to
scarce data with extreme values. Model fitting was then performed again
with physically plausible variables only and cutoffs values. The penali-
zation frequency of each variable was analyzed and only variables with
CV penalization frequency lower than 75 % were kept in the final cal-
culations. A variable was considered penalized for a component
smoothing function with effective degrees of freedom lower than 0.7
(Bajni et al., 2023). Concurvity among independent variables was
checked too, and in case of pairs of variables showing concurvity higher
than 0.8, considered critical (Camera et al., 2021), the variable penal-
ized most often than the other was excluded. Group 2 did not apply any
rescaling nor standardization of the input variables.

Calibration–Validation approach. A non–spatial, k–fold CV (five folds,
20 repetitions) was carried out. To consider uncertainties, 100 instances
of the model were fit with the selected variables using a random sample
of 80 % of the available SUs in each study area. The 100 instances were
applied to all SUs. Mean, median, and the difference between the 95th
percentile and the 5th percentile susceptibility values were used as un-
certainty. The remaining 20 % of the SUs were used for the optimized
model validation.

Model evaluation. Model evaluation was performed based on AUCROC,
and variable importance was checked calculating the mean decrease in
explained deviance. This procedure was adopted for both step 1 and step
2, with the exception of the calibration–validation scheme that in step 2
was modified for comparability with results of other groups. In all fig-
ures and tables, results corresponding to this paragraph are labeled as
GAM1 (cf. Fig. 3).

Table 1
Variables in the attribute table of the preliminary dataset. In the table, SD stands
for standard deviation and SU stands for slope unit. Depth to bedrock, bulk
density, percentage weight of clay, sand and silt particles are from Hengl et al.
(2017).

Column name Variable Short name

id Unique slope unit identifier –
slope_aver Mean Slope Steepness [deg] Sav
slope_stdd SD of Slope within SU [deg] Ssd
pcurv_aver Mean Planar Curvature PCav
pcurv_stdd SD of Planar Curvature PCsd
tcurv_aver Mean Profile Curvature TCav
tcurv_stdd SD of Profile Curvature TCsd
nthns_aver Mean Northerness NTav
nthns_stdd SD of Northerness NTsd
easns_aver Mean Easterness EAav
easns_stdd SD of Easterness EAsd
elev_avera Mean Elevation [m] ELav
elev_stddd SD of Elevation [m] ELsd
twi_averag Mean Topographic Wetness Index TWav
twi_stddev SD of Topographic Wetness Index TWsd
BDRICM_ave Mean Depth to bedrock (<2.4 m) [cm] BDRav
BDRICM_std SD of Depth to bedrock [cm] BDRsd
BLDFIE_ave Mean Bulk density [kg/m3] DLBav
BLDFIE_std SD of Bulk density [kg/m3] DLBsd
CLYPPT_ave Mean Weight % of clay particles CLYav
CLYPPT_std SD of Weight % of clay particles CLYsd
SNDPPT_ave Mean Weight % of sand particles SLTav
SNDPPT_std SD of Weight % of sand particles SLTsd
SLTPPT_ave Mean Weight % of silt particles SNDav
SLTPPT_std SD of Weight % of silt particles SNDsd
Max_Distan Maximum Distance within SU [m] MaxD
D_sqrt_A Maximum Distance/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
SUArea

√ DsqrA
presence1 Binary landslide presence flag p1

presence2 Binary landslide presence flag p2

area Area [km2] –

Fig. 2. Spatial distribution of positive (with landslides; orange) and negative (without landslides; green) slope units, in the dataset proposed in this work (cf. Fig. 1).
Landslide presence is either from the field p1 (a) or p2 (b) in the attribute table (cf. Section 4, Tables 1 and 3). Background is a shaded relief map obtained from the
European digital elevation model (EU–DEM). Maps are in EPSG:32632. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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4.3. Group 3. LSM via Bayesian generalized additive models

This contribution was presented as the EGU abstracts by Loche et al.
(2023); Scaringi and Loche (2023).

Model selection. Group 3 (G3) used a GAM to investigate a specific
research question related to the recently published national suscepti-
bility maps of Italy (Loche et al., 2022). Because the proposed dataset is
a subset of the data used at national scale, G3 compared the national
LSM with the result for the smaller area, and evaluated the response of
fixed and random effects, used in both works. For the within–sample
step (calibration), G3 implemented a Bayesian version of a binomial
GAM in R–INLA (Fang et al., 2023), which can explain the spatial dis-
tribution of landslides via a family of the Bernoulli exponential function
(Lindgren and Rue, 2015). This framework allowed G3 to model fixed
effects as linearities and random effects as nonlinearities, and to assess
their associated uncertainty. The fitting procedure returned satisfactory
results (acceptable or excellent performances) in terms of AUCROC, with
values around 0.8 (Hosmer Jr. et al., 2013).

Variable selection. The model performance is affected by the number
of variables, which was intentionally kept low for ease of interpretation
and to keep calculations as simple as possible (Lombardo and Mai,
2018). Group 3 used the corrplot R package (Wei and Simko, 2021) to
explore multicollinearity issues (Allen, 1997). They computed a coeffi-
cient for each of the independent variables and produced a graphical
display of a correlation matrix, regressing all the independent variables
against each other. As a general rule, multicollinearity is a potential
problem when the coefficient is higher than 0.75, and a serious problem
when it is higher than 0.9 (Mela and Kopalle, 2002). Based on this
analysis, excluded variables were slope_stdd, tcurv_aver,
tcurv_stdd, and BDRICM_std (refer to Table 1). Instead, elev_aver
and elev_stdd have not been considered a priori, following the orig-
inal setting of Loche et al. (2022). Group 3 did not apply any rescaling
nor standardization of the input variables.

Calibration–Validation approach. The within–sample test (calibration)
is described in the paragraph ‘Model selection.’ Mirroring the good-
ness–of–fit assessment, G3 also evaluated the out–of–sample

performance. They performed a ten–fold CV with mutual exclusion to
guarantee that no influence from repeated samples would affect the
validation replicates. The variability resulting from the repetitions did
not compromise the model output, for both landslide presence scenarios.

Model evaluation. Model evaluation was performed based on AUCROC.
In all figures and tables, results corresponding to this paragraph are
labeled as GAM2 (cf. Fig. 3).

4.4. Group 4. Effect of cross–validation within the XGBoost method

This contribution was presented as the EGU abstract by Samodra
et al. (2023).

Model selection. The XGBoost algorithm integrates multiple classifi-
cation and regression trees (CARTs) and successively combines the
output of weak learners to improve performance (Chen and Guestrin,
2016). The Tidymodels collection of R packages (Kuhn and Wickham,
2020) by Kuhn and Silge (2022) was used by Group 4 (G4) to execute the
XGBoost algorithm.

Variable selection. Each SU has information about 26 controlling
factors, in which all factors were used in the landslide susceptibility
modeling processes using the XGBoost algorithm. Group 4 did not apply
any rescaling nor standardization of the input variables.

Calibration–Validation approach. The XGBoost model with spatial and
non–spatial CV was used to estimate the performance and the accuracy
of landslide susceptibility model based on SUs. Group 4 split data into
75 % (5519 SU) for training and 25 % (1841 SU) for testing/success rate
slope. The training dataset was used for CV and hyperparameter tuning,
and the test data was set aside for independent validation.

A model without CV (XGB1) was also used to show the existence of
overfitting. Non–spatial CV (XGB2) applied the random 10–fold CV, in
which the samples were partitioned randomly into 10 folds of roughly
equal size. Spatial CV was applied by partitioning 10–fold data spatially
based on block CV (XGB3) and clustering CV (XGB4). The grid Latin
hypercube implemented in Tidymodels was applied to tune both
non–spatial and spatial CV strategies. Best tuning was automatically
selected to evaluate the performance of XGBoost model applied to the

Fig. 3. Results of the survey proposed to the participants of step one of the experiment, described in Section 4. Positive “Y,” negative “N,” partial “P” are the possible
answers to the question of whether the features in each column were implemented; asterisks in CFM⋆, STK⋆, and BLD⋆ denote that they were obtained as com-
bination of other methods; asterisks in the “Cross–validation” row correspond to application of spatial CV.
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training set. Hyperparameter values from best tuning were selected to
create the best model and to obtain the performance of XGBoost model
represented by AUCROC.

Model evaluation. The performance of the model was assessed by
AUCROC. In all figures and tables, results corresponding to this paragraph
are labeled as XGB1...4 (cf. Fig. 3), corresponding to no CV, non–spatial
CV, spatial block CV, and spatial clustering CV, respectively.

4.5. Group 5. Weight of evidence versus random forest methods for LSMs

This contribution was presented as the EGU abstract by Sinčić et al.
(2023).

Model selection. Group 5 (G5) selected the WoE and RF methods. The
two methods were chosen as representative of two opposite approaches
because WoE is a bivariate method used since early works on landslide
susceptibility assessments and RF is a recent machine learning algorithm
already commonly used (Reichenbach et al., 2018). Moreover, WoE
requires only specifying unstable areas, whereas RF also requires
knowledge of stable areas. Calculations for WoE method were performed
in ArcMap 10.8.1 using the “Spatial Analyst Toolbox” and Microsoft
Excel, whereas the “Statistics and Machine Learning Toolbox” in MAT-
LAB software (version 9.10.0.1602886) was used for RF method.

Variable selection. Predictors were reclassified using natural breaks in
ArcMap 10.8.1 into 10 classes, followed by testing collinearity using
LAND–SUITE software (Rossi et al., 2022), which showed a significant
number of predictors having a Pearson R absolute value of 0.5 or greater.
This resulted in keeping 11 variables, namely: slope_stdd,
pcurv_aver, nthns_aver, nthns_stdd, easns_aver,
easns_stdd, twi_stdd, DBRICM_ave, CLYPPT_ave, CLYPPT_std,
Max_Distan (refer to Table 1).

Calibration–Validation approach. To apply the two methods on similar
footing, the same unstable SUs were selected for both WoE and RF,
separately in the p1 and p2 scenarios. Thus, 50 % of available unstable
SUs were selected for training the model, i.e., 1797 in p1 and 1136 in p2.
The selection of an equal number of stable SUs for the RF method was
done with the assumption that they can be anywhere, except the 50 % of
unstable SUs already selected for training. In other words, stable SUs
were selected from the area which had excluded only the previously
selected unstable SUs, assuming that information about stable SUs in the
original dataset is unknown. As a result, 573 stable SUs in p1 and 211
stable SUs in p2 scenarios for RF model training were flagged as unstable
in the original dataset, thus overriding the original classification. The
latter resulted in a skewed landslide datasets for training RF but ensured
an unbiased landslide sampling procedure for stable SUs. The WoE
method required no pre–processing, whereas the predictors were
normalized for the RF method.

Model evaluation. For fitting performance, 50 % of unstable SUs
selected for implementing the methods were examined, whereas for
predictive performance the remaining 50 % of unstable SUs were used.
The AUCROC values were defined with cumulative percentage of study
area in susceptibility classes and the cumulative percentage of landslide
area in susceptibility classes. The latter resulted in success and predic-
tion rates for fitting and predictive performance, respectively (Chung
and Fabbri, 1999, 2003). On the other hand, all unstable and all stable
SUs were used to define a hit rate and false alarm rate curve for which an
AUCROC was calculated. Moreover, overall accuracy was determined at
the 0.5 threshold for all four LSMs. To compare the approach of two
different methods where WoE uses only unstable SUs and RF uses both
unstable and stable SUs, the fitting and predictive performance were
measured by observing only unstable SUs, whereas classification pa-
rameters present additional metrics to measure the LSMs considering
both stable and unstable SUs. Model evaluation calculations in all cases
were performed in ArcMap 10.8.1 using the Spatial Analyst Toolbox and
Microsoft Excel software. The focus of the described approach was on
modeling properties including different methods, stable and unstable SU
sampling, and the two presence flags differences. In all figures and

tables, results corresponding to this paragraph are labeled as WOE and
RF1 (cf. Fig. 3).

4.6. Group 6. Random forest as a high accuracy model for LSM

This contribution was presented as the EGU abstract by Sirbu (2023).
Model selection. Group 6 (G6) selected RF, a regression and classifi-

cation algorithm that uses multiple CART to produce high–accuracy
models (Breiman, 2011). Random forest is non–parametric (Merghadi
et al., 2020) and is able to handle both linear and nonlinear processes.
Thus, RF is increasingly used in landslide modeling (Reichenbach et al.,
2018; Zeng et al., 2023), and it often outperforms other statistical and
machine learning algorithms (Goetz et al., 2015). In this work, the
model was set up as a script in R software (R Core Team, 2021) using the
following packages: (i) randomForest (Liaw and Wiener, 2002) to run
the algorithm, (ii) ROCR (Sing et al., 2005) to evaluate the performance
of the model and to run the validation for the results, and (iii) rgdal
(Bivand et al., 2023) to read input data and to produce the output. The
only parameter of the model was the number of CARTs, which was set
using ntree = 1, 501.

Variable selection. The model set up by G6 produced a ranking of the
input variables based on two algorithms, mean decrease in accuracy and
the decrease in node impurity (using the Gini index), for each presence
scenario. Ranking means neglecting one predictor, assessing the accu-
racy of the model and Gini index, and repeating for every predictor. If
the model has a high accuracy without one predictor, that is considered
less important. The model was trained using all of the 26 independent
variables and 7360 SUs. Because the method performs multiple classi-
fications based on CARTs, the results are robust and outliers have little
relevance; thus a multicollinearity test of the variables was not essential
(Lee et al., 2018). Group 6 did not apply any rescaling nor standardi-
zation of the input variables.

Calibration–Validation approach. The input data was split 70 % and
30 % into training and validation data, respectively. The first split was
used to train the model, to assess the model settings (e.g., ntree param-
eter), and to compute the input variable ranking.

Model evaluation. The validation data were used to assess the accu-
racy of the model using the AUCROC metric for each of the two presence
scenarios. In all figures and tables, results corresponding to this para-
graph are labeled as RF2 (cf. Fig. 3).

4.7. Group 7. LSM with logistic regression and artificial neural networks

This contribution was presented as the EGU abstract by Torizin and
Schüßler (2023).

Model selection. Following an initial in–depth exploration of the
preliminary dataset, which revealed significant correlations among
covariates and poor bivariate separability of landslide presence labels
with a specific single covariate, Group 7 (G7) decided to use multivar-
iate methods. Their choice encompassed a linear model utilizing LR (e.g.,
Steger et al. (2016); Lombardo and Mai (2018)) and an ANN in the shape
of a multi–layer perceptron (MLP; Ivakhnenko and Lapa (1967)). The
latter should uncover possible non–linear effects and increase the
separability in multivariate cases. Logistic regression was trained on the
labeled dataset using stochastic gradient descent to minimize the loss
given by the binary cross entropy.

An ANN is trained by adjusting the connections’ weights between
neurons through error backpropagation (Rumelhart et al., 1986). Group
7 used a relatively simple ANN with one hidden layer (Ermini et al.,
2005; Lee and Evangelista, 2006), with 100 neurons and one output
layer, giving the probability for the target label to be unity. The neurons
in the hidden layer use rectified linear unit (ReLU) as an activation
function to handle possible non–linear relations in the data. Group 7
used binary cross entropy as a loss function, and Adam (which stands for
adaptive moment estimation) as a solver (Kingma and Ba, 2017).

To build the models and conduct the analysis, G7 harnessed the
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powerful Scikit–Learn Python library (Pedregosa et al., 2011) to
perform the analysis, capitalizing on its slim coding and high efficiency
for building machine–learning models.

Variable selection. To assess the predictive power of each variable, G7
conducted individual bivariate modeling, evaluating the performance
using the preliminary dataset. They proceeded with the most influential
predictor and incrementally added covariates stepwise. Model perfor-
mance was assessed at each step, removing the last added covariate if
the AUCROC did not increase. The stepwise approach resulted in fewer
predictors, with 9 to 10 for LR and 10 to 14 for ANN depending on the
used presence label, exhibiting robust performance on the test data for
both models. Additionally, predictors were scaled to a range of [0,1]
using min–max normalization.

Calibration–Validation approach. The data preparation phase involved
randomly splitting the dataset into training and test sets using a 70:30
ratio for CV.

Model evaluation. To evaluate the performance, G7 utilized AUCROC
and success rate (Chung and Fabbri, 2003). In all figures and tables,
results corresponding to this paragraph are labeled as LR2 and ANN1 (cf.
Fig. 3).

4.8. Group 8. Bayesian logistic regression and optimized XGBoost models
for LSMs

This contribution was presented as the EGU abstract by Mirus and
Woodard (2023).

Model selection. Group 8 (G8) used two methods, XGBoost (Chen and
Guestrin, 2016) and a Bayesian implementation of logistic regression
(BLR). XGBoost is fast, straightforward to implement, and has produced
accurate susceptibility maps at other locations (Sahin, 2020). Group 8
optimized the model hyperparameters suggested by the model de-
velopers (i.e., ‘max_depth,’ ‘min_child_weight,’ ‘subsample,’ ‘gamma,’
and ‘colsample_bytree’) using a Bayesian CV procedure. Logistic
regression is the most used algorithm for susceptibility analysis
(Reichenbach et al., 2018) and its Bayesian implementation allowed G8
to account for uncertainty in the estimated model coefficients.

Variable selection. For each of the two methods, G8 generated models
with three groups of input data for each target variable (six datasets
total): (1) all the available predictors except area; (2) only slo-

pe_aver and slope_stdd; (3) all predictors with a variance inflation
factor (VIF, a measure of collinearity between variables within a model)
less than five, which is a conservative value (James et al., 2013).

For each data group, G8 first standardized the predictors to have a
mean of zero and standard deviation of one to increase computational
efficiency and to better constrain the coefficient priors for the BLR
method. They measured VIF values of the predictors using an iterative
approach. Specifically, they generated a frequentist LR model, measured
the VIF of the predictor variables, eliminated the highest tenth percen-
tile of variables with VIF values greater than five, and repeated the
process until all predictors had a VIF value less than five. This imple-
mentation allowed G8 to account for differences in the measured VIF
values from different predictor combinations. Using this approach,
slope_aver, tcurv_stdd, BDRICM_std and SNDPPT_ave (refer to
Table 1) were excluded in the p1 target variable dataset and slo-

pe_aver, twi_averag, BDRICM_std and SNDPPT_ave were
excluded from the p2 target variable dataset. Group 8 standardized
variables to have a mean of zero and standard deviation of one.

Calibration–Validation approach. Group 8 used k–fold CV (10 folds
and 10 repeats) with XGBoost after optimizing the model hyper-
parameters with half of the available data, and used the LOO CV tech-
nique (70:30 random split) with the LR model. The chosen CV
techniques provided uncertainties in model performance for both
algorithms.

Model evaluation. Group 8 measured model performance using
AUCROC and the Brier score (B, mean–square error). Brier score is
defined as follows:

B =
1
N

∑N

i=1
(Pi − Oi)

2
, (1)

where P is the model prediction (i.e., probability), O is a binary variable
(here, landslide presence), and N is the number of observations (Brier,
1950). In all figures and tables, results corresponding to this paragraph
are labeled as XGB5 and BLR (cf. Fig. 3).

4.9. Group 9. Exploring the role of slope unit size in LSM using GAMs

This contribution was presented as the EGU abstract by Moreno and
Steger (2023).

Model selection. The approach of Group 9 (G9) leveraged GAMs to
address the challenge of spatially varying SU sizes in landslide suscep-
tibility modeling. Generalized additive models are flexible extensions of
the well–known generalized linear models that allow accounting for
non–linear relationships between predictors and the target (Zuur et al.,
2009). The approach builds upon the comprehensive R package mgcv

(Wood, 2017).
The SU–based approach for LSMs has recently garnered substantial

attention for their flexibility in accommodating diverse responses,
encompassing binary output (presence/absence), and count (number of
landslides), and reduced sensitivity to inaccuracies in landslide posi-
tional referencing. However, a pivotal aspect to underscore is the
inherent variability in SU sizes across a study area, potentially resulting
in spatially varying likelihoods of SUs being affected by landslides.
Group 9 assumed that larger SUs are not necessarily more susceptible to
landslides but are more likely to be categorized as unstable. This
methodological aspect may affect the subsequent susceptibility models,
especially if predictors correlate with SU size.

Variable selection. Group 9 formulated four distinct strategies
described below. The first strategy (Model 1) involved all predictors,
including the SU area, in the model fitting and prediction. Building upon
this setup, the second strategy (Model 2) maintained the same suite of
predictors while explicitly ignoring the SU area in model fitting and
spatial prediction. The third strategy (Model 3) was devised to showcase
the discriminatory capacity of SU size in discerning SUs with landslides
from those without, relying on a single–variable model that hinges solely
on the SU area as a predictor. Finally, the fourth strategy (Model 4) used
all predictors during model fitting but excluding the effects of SU size
from spatial prediction. This is achieved by setting to zero the smooth
component of the SU size; in other words, the model was allowed to
learn from the SU size, but its explained variability was zeroed during
the predictions. In that way, G9 ensured that the effect of SU size and its
potential confounding effects were contained within the model fitting
process but not reproduced directly or indirectly into the predictions.

Calibration–Validation approach. The performance of the models was
evaluated through 10–fold random CV and 10–fold spatial CV, each
conducted with ten repetitions in the R package sperrorest

(Brenning, 2012). The analysis and comparison of the four strategies
started with exploratory analyses, which involved correlation plots and
relative variable importance assessments. These analytical procedures
were carried out to identify potential correlations among predictors in a
straightforward manner. Subsequently, the four models were fit and
initially assessed through the interpretation of partial effect plots, and
their dependency on the SU area was examined via scatterplots. As a last
step, G9 visually compared the four resulting susceptibility models and
discussed the benefits and limitations, highlighting the proposed solu-
tion (Model 4).

Model evaluation. Model evaluation was performed based on AUCROC.
Here, we only report performance results for Model 4. In all figures and
tables, results corresponding to this paragraph are labeled as GAM3 (cf.
Fig. 3).
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4.10. Group 10. Role of feature selection on the prediction performance of
a neural network–based LSM

This contribution was presented as the EGU abstract by Satyam et al.
(2023).

Model selection. Group 10 (G10) used an RF and an MLP, a variety of
ANN, to develop LSMs using the selected features. The choice of model
was also based on trial and error; G10 applied both models for the same
dataset. They used RandomForestClassifier and MPLClassifier from the
Python package Scikit–learn (Pedregosa et al., 2011). Even though
RF provided better performance metrics, it was not chosen for the final
analysis, considering the computational time taken for optimizing the
hyperparameters. Group 10 used the GridsearchCV function
(Pedregosa et al., 2011) to tune the hyperparameters of the MLP. The
hidden layer size, initial learning rate, and the activation function were
selected using GridsearchCV, for each set of input variables.

Variable selection. Group 10 used all variables except SU area and
checked the correlation matrix and VIF. They found that several vari-
ables were highly correlated with each other, and there were VIF values
as high as 535.19 in the dataset. From this observation, they decided not
to consider all variables for the analysis. Group 10 used the
SelectKBest function (Pedregosa et al., 2011), a feature selection
function based on univariate statistical tests. All of the predictors were
scaled to a range of [0,1] using min–max normalization.

Calibration–Validation approach. The benchmark dataset was divided
into 80 % data for training and testing using a 5–fold CV, and the
remaining 20 % was kept for independent validation. The first 80 % of
data was used to select the K “best” variables. In this study, G10 varied
the number of ‘best variables’ from 5 to 15, to understand the effect of
the number of variables. After selecting the variables, the data were
updated with only the selected variables and the target variable (p1 or
p2).

Model evaluation. Accuracy and AUCROC were used to compare the
performance of different outputs. The trained model was then used to
predict the probability of occurrence of landslides on the validation
dataset, and the accuracy and AUCROC values of this dataset were used
for comparing the performances. It was observed that the AUCROC values
increased with a larger number of variables. However, the VIF values
were too high in such cases, and again by trial and error, G10 limited the
number of variables to 10, searching for a balance between importance
of variables and AUCROC values. In all figures and tables, results corre-
sponding to this paragraph are labeled as ANN2 (cf. Fig. 3).

4.11. Group 11. Ensemble learning with spatial cross–validation

This contribution was presented as the EGU abstract by Aguilera
et al. (2023).

Model selection. Group 11 (G11) used an ensemble machine learning
approach to enhance the performance and generalization ability of the
LSM using the preliminary dataset. They utilized various ensemble
techniques, including bagging, boosting, stacking, and blending.
Bagging techniques, specifically RF and extremely randomized trees
(EXT), trained independent models on different bootstrap samples of the
training data. The predictions from these models were combined
through voting, resulting in a strong and accurate model. Random forest
utilized random feature selection to increase diversity and reduce
overfitting, and EXT further randomized feature selection and splitting
thresholds, potentially improving computational efficiency.

Boosting techniques, such as Gradient Boosting Classifier (GBC),
Extreme Gradient Boosting (XGB), Light Gradient–Boosting Machine
(LightGBM), CatBoost (CBT), and AdaBoost (ADA), were aimed at
building powerful models by iteratively training weak models and
emphasizing misclassified instances. The final predictions were obtained
through weighted voting, reducing bias, and improving overall accu-
racy. Each boosting algorithm used unique optimization strategies and
offered distinct advantages.

Stacking (STK) involved training a meta–model on out–of–fold pre-
dictions from different base models during k–fold CV. This technique
aims to leverage the strengths of different models and achieve improved
performance.

Blending (BLD), a simplified version of STK, directly combines pre-
dictions from multiple models without any meta–model. The final pre-
dictions were obtained using soft voting, which involves summing the
predicted probabilities for class labels and predicting the class label with
the largest sum probability.

Variable selection. Group 11 implemented their calculations as a
script in Python v3 using the following packages: (i) for data analysis
and manipulation, they used NumPy (Harris et al., 2020), Pandas
(McKinney, 2010), and GeoPandas (Jordahl et al., 2020); (ii) to
develop the machine learning models, they utilized PyCaret (Ali,
2020), an AutoML package based on Scikit–learn (Pedregosa et al.,
2011), which allows integration with many other packages. Group 11
conducted experiments with these ensemble methods using the raw
dataset, excluding area, and did not apply any rescaling or standardi-
zation of the input variables.

Calibration–Validation approach. Group 11 applied spatial CV using
spatial blocks. Spatial CV is particularly relevant where spatial auto-
correlation exists in the training data, such as clustering of data points in
space (Beigaitė et al., 2022; Meyer et al., 2019; Schratz et al., 2019). This
approach prioritizes consistency over accuracy. In the case of the
benchmark dataset, the SUs in the landslide susceptibility maps
exhibited spatial patterns. For each method, G11 used 10–fold spatial CV
and averaged the results of 100 runs from the best–performing classifiers
to estimate uncertainty.

Model evaluation. Model performance evaluation was based on the
different classification metrics (AUCROC, accuracy, precision, recall, F1
score, and Kappa coefficient). In all figures and tables, results corre-
sponding to this paragraph are labeled as CTB, EXT, XGB6, GBC, RF3,
ADA, STK, and BLD (cf. Fig. 3).

Table 2
A summary of the models applied by all participant groups in step one of the
experiment, described in detail in Sections 4.1–4.11. The columns p1 and p2

describe whether each group calculated results for the corresponding landslide
presence scenario.

Model Group p1 p2 Description

LDA G1 x x Linear discriminant analysis
LR1 G1 x x Logistic regression
QDA G1 x x Quadratic discriminant analysis
CFM G1 x x Combined forecast model
GAM1 G2 x x Generalized additive model
GAM2 G3 x x Generalized additive model
XGB1 G4 x XGBoost, no cross validation (CV)
XGB2 G4 x XGBoost, non–spatial 10–fold CV
XGB3 G4 x XGBoost, spatial block CV
XGB4 G4 x XGBoost, spatial clustering CV
WoE G5 x x Weight of evidence
RF1 G5 x x Random forest
RF2 G6 x x Random forest
LR2 G7 x x Logistic regression
ANN1 G7 x x Artificial neural network
XGB5 G8 x x XGBoost
BLR G8 x x Bayesian logistic regression
GAM3 G9 x Generalized additive model
ANN2 G10 x x Artificial neural network
CTB G11 x x CatBoost
EXT G11 x x Extreme gradient boosting
XGB6 G11 x x XGBoost
GBC G11 x x Gradient boosting classifier
RF3 G11 x x Random forest
ADA G11 x x AdaBoost
STK G11 x x Restaker linear regression (combined model)
BLD G11 x x Blender (combined model)
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4.12. Overview and results of methods chosen by contributors in step one

The above sections outlined a plethora of approaches and choices
intrinsic to an LSM exercise. Fig. 3 shows answers to specific questions,
provided by the contributors along with results of their calculations for
step one of the experiment. One can observe that the only features
common to all of the groups were to produce a vector output and
calculate AUCROC as a performance metric. Many groups also provided
an uncertainty along with their results, most of them checked for
collinearity and dropped a few variables, using only a subset of the
initial variables for their classification, with different mixtures. Most of
the contributors performed the frequently used training–validation data
split, and a few implemented spatial cross validation.

Table 2 lists all the models considered at step one of this experiment,
including model names, group who applied the models, whether they
calculated results for p1 and/or p2, and a one–line description of the
model.

Overall, we identified a few key points in which these approaches
differ, and that can potentially affect the susceptibility values and model
performance. Firstly, both statistical (e.g., LR, LDA, QDA, and WoE) and
machine learning models (e.g., ANN, RF, and XGBoost) were used.
Secondly, a few authors have included all variables, and others have
used analytical or heuristic approaches prior to – or during the modeling
exercise – to remove some variables. Thirdly, the approaches differed in
the way data were split to calibrate and validate the model. Although all
authors performed separate calibration and validation with variable
fractions of input data, the use of CV and spatial CV was not systematic.
In particular, only G4 and G11 applied spatial CV.

A few groups selected more than one method, two groups (G1 and
G11) proposed ensemble modeling with different ways of combining a
few results into a single one. A few groups selected the same method: LR
and Bayesian LR were used by G1, G7, and G8; generalized additive
models were adopted by G2, G3, and G9; a tree boosting system called
XGBoost was used by G4, G8, and G11; RF was adopted by G5, G6, and
G11.

Although many contributing teams chose to remove some variables,
they differed in how they decided to do so, ranging from pre–modeling
heuristics (e.g., based on a VIF–thresholding, G8 and G10), and penal-
ization–based methods during modeling (e.g., G2). Likewise, although
many groups performed a CV, they differed in the number of folds/
repetitions.

As expected, all of the participants used AUCROC as a performance
metric. In addition, G1 considered explicitly the graphical representa-
tion of four–fold plots (not shown here); G5 and G7 utilized success/
prediction rate to evaluate performance on the basis of SU ranking of the
results of classification; G8 suggested the use of Brier score, equivalent
to the mean of squared differences between the (probabilistic) predic-
tion and the target variable in each SU; G11 used several performance
metrics, including accuracy, precision, F1, and Cohen’s Kappa.

Due to the large number of methods applied in the first part of the
experiment, and the heterogeneity of the application approaches, we do
not show susceptibility maps in this section. We will show maps corre-
sponding to the final benchmark dataset devised in this experiment,
instead, described in the next section.

Fig. 4 shows a pairwise comparison of results of step one, calculated
as follows:

Fig. 4. Pairwise comparison of the results of different methods, in step one of the experiment, described in Section 4, calculated as in Eq. (2). Panels (a) and (b)
correspond to the target variables p1 and p2, respectively. Names of the different methods are as in Fig. 3, Sections 4.1–4.11. Grey color denotes missing data.

Fig. 5. As in Fig. 4, but for pairwise correlations between results for different methods. Grey color denotes missing data.
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Dij =
∑NSU

k=1

(
Ski − Skj

)2
, (2)

where i and j run in the set of methods, k labels the SUs in the dataset,
and 0 ≤ Ski ≤ 1 is the susceptibility value of the i–th SU, calculated with
the k–th method. One can observe from Fig. 4 that adoption of the same
method did not necessarily lead to very similar results. For example, the
largest differences, according to the criterion of Eq. (2), are between
XGB1, XGB5 and all other methods; the difference between RF1, RF2,
ADA and other methods stands out as well (Fig. 4(a), corresponding to
p1). For the target label p2, Fig. 4(b), the classification from XGB1...4
gave the (exactly) same results in this case, and for p1 XGB1 differs
slightly from the XGB2..4: they differ from the former only for the spatial
CV strategy which, thus, seems to be marginally relevant, here. A few
values are missing in the figures because no results were provided by the
participants at step one. On the other hand, we note that results for the
GAM method (p1) in the variants GAM1 and GAM2 are similar, although
they somewhat differ from the variant GAM3. The reason for that may
reside in the different way of using predictors in the application of
GAM3, in which the role of SU size (area) was emphasized.

In both panels of Fig. 4 (for p1–p2), the results by G1 (LDA, QDA,
LRM, and CFM with the software LAND–SUITE) and by G11 (CTB, EXT,

XGB6, GBC, LGB, RF3, ADA, STK, and BLD with an ensemble machine
learning) show similarities within each subset, indicating that different
methods applied by the same author somehow produce more similar
results. This may reside in pre–processing of data, variable selection, and
training–validation strategy. We reached the same conclusion looking at
Fig. 5, which shows pairwise correlations between results, calculated
with the cor() function of the corrplot package in R (Wei and Simko,
2021).

Fig. 5 also shows a few high–correlation blocks (e.g., the blueish
blocks between methods GAM1, GAM2, and XGB2..4; the methods within
the ensemble machine learning by G11 for the p1 case; and similar cases
for p2). Interpretation of this occurrence is not straightforward, because
they correspond to multiple methods applied by different authors. Re-
sults for XGB1..4 and GAM3 were not provided for p2 (grey bands in the
figures).

Figs. 6 and 7 show AUCROC values for all the different methods, for
training and validation reported by the authors. Moreover, we obtained
AUCROC independently, from susceptibility values in the attribute tables
provided by the users and the target values p1–p2, using the roc()

function of the pROC R package (Robin et al., 2011). In the figures, a few
missing entries are due to a few authors providing only results for p1
and/or only for the training step. Colors are consistent between the same
method applied by different groups; combined models (CFM, STK, and
BLD) also share the same color (dark green).

A general comment about AUCROC results is that the validation
values are systematically lower than the training (fit) values, which is by
design. We observe that the calculated performance is often different
from the values provided by the users, both in excess or in deficiency.

Fig. 6. Comparison of area under the receiver operating characteristic
(AUCROC) values for the different methods considered in step one of the
experiment, limited to the p1 landslide flag. Both in calibration (a) and in
validation (b) the same method gives different results, due to the different
workflow of application by different research groups. The plot in (c) was ob-
tained by the organizers of the experiment, calculating AUCROC from the nu-
merical results provided by contributors. Names of the different methods are as
in Fig. 3, Sections 4.1–4.11.

Fig. 7. As in Fig. 6, but for the p2 landslide presence flag.
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This is also partially expected because most authors classified the final
maps using a different subsample of the provided dataset. However, the
XGB1...4, WOE, RF2, and XGB5 (p1) models resulted in higher AUCROC
measured by the organizers than both training and validation values,
denoting some effect on how the final maps were assembled, possibly
other than a combination of training (fit) and validation (predicted)
results.

Lower values for the validation case are more prominent for a few
methods. They are prominent in RF1, for both landslide presence sce-
narios (likely due to the stable SU sampling strategy), and in CTB, XGB6,
RF3, and BLD, to a lesser degree. This indicates potential overfitting of
the training data and diminished performance on unseen data. However,
ensemble methods from G11 (including CTB, XGB6, RF3, and BLD)
exhibit the highest validation scores among all methods (Figs. 6 and 7).
Thus, the results obtained from the spatial CV scheme appear consistent
and generalizable in these cases, despite the slight overfitting observed
in the models.

The findings described in this section allowed us to draw the
conclusion that a truly useful benchmark dataset for LSMs would be
complemented by a minimal and well–defined set of prescriptions about
application of the classification methods. As a result, the variability in
the output LSMs include a substantial component due to such choices. In
the next section, we describe both changes in the proposed dataset and a
set of prescriptions for such choices, aimed at minimizing the effect of
methodological choices to obtain a meaningful benchmark.

5. Final assessment of the benchmark dataset for landslide
susceptibility

The selection of input variables – along with the type of model
applied – has a large effect on the final susceptibility results. Thus, to
improve the comparability of the models, we introduced a second step
(step two) whereby we updated the input variables and asked the
contributing teams to include the entire, updated dataset in their sus-
ceptibility model.

We updated the dataset firstly by including lithological information
from the geo–mechanical lithology map of Italy by Bucci et al. (2022)
because many contributors asked to include such information. We first
calculated the percentage presence of lithological classes in the whole
area, and selected the five classes with largest percentage cover, namely:
alluvial deposits (Al, 12 %), unconsolidated sedimentary rocks (Ucr, 27
%), marlstone (M, 4 %), schistose metamorphic rocks (Ssr, 35 %), and
carbonate rocks (Cr, 18 %). Total percentage was 96 %. Fig. 8 shows a
simple description of the new variables. Lithological classes were pro-
vided as areal percentage in each SU polygon, which includes infor-
mation about SUs containing different lithologies.

Fully comparable results also required each participant to adopt the
same workflow concerning training/validation steps. To do that, the
organizers had contributors apply a 10–fold CV procedure with mutual
exclusion. That amounts to splitting the dataset into 10 numerically
balanced parts. Training would be applied 10 times, on 90 % of the data,
and validation would be performed on the remaining 10 %. Iterating the
procedure 10 times on the 10 different splits for validation provides a
fully validated LSM. The advantage of this procedure is that suscepti-
bility values in each SU are calculated with a model trained with inde-
pendent data.

5.1. Removing correlations

The updated dataset contains the following variables: slope, curva-
tures (morphometric) northerness/easterness, elevation, TWI (topo-
graphic wetness index), max distance and MD/

̅̅̅̅
A

√
(max distance over

the square root of SU area), bulk density, clay/sand/silt content (related
to soil properties and texture), and percentage of lithology classes.

A few of these quantities are probably strongly correlated, and we

Fig. 8. Lithological classes included in the final version of the benchmark
dataset. The figure shows a subset of the map prepared for the whole of Italy by
Bucci et al. (2022). For this study, we considered only the five most represen-
tative classes as predictors, covering 96 % of the study area. Shaded relief map
as in Fig. 2.

Fig. 9. Linear correlation plot of the 29 candidate variables for the final
benchmark dataset. Short names of variables are as in Table 1. Symbols with
larger ellipticity correspond to a higher degree of correlation between the two
considered variables.
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would like to obtain a benchmark dataset free from major correlations.
That is because the classification performance of a few methods (for
example LR) would be penalized by correlations, while the performance
of most pure machine learning models would not be affected. Moreover,
we want to reduce the chance of overfitting the data and reduce the
overall dimensionality of the problem.

The process of defining and removing correlations should not be
linked to a specific classification method, so that we would end up with
data that can be equally useful for a fair comparison of a range of
different landslide susceptibility models. It should not be linked to the
values of the target variable either because we have two target variables
(p1, p2) and this would give performance advantages to some methods.

The final dataset was prepared to minimize correlations between
variables and to mitigate any bias in the results of part two of this
experiment. We first excluded depth to bedrock and SU area in the final
dataset. The depth to bedrock variable was hardly changing across the
study area, due to a low number of data points used to build the (global)
SoilGrids model. Slope unit area had a peculiar behavior in at least two
of the independent studies conducted in step one by G7 and G9.

After removing these variables, we checked for correlations between
each pair of quantities in the dataset, using the standard corrplot R
package (Wei and Simko, 2021). A graphical representation of the test is
in Fig. 9, and the figure clearly shows a large degree of correlations. To
visually explore correlations beyond linear, we used the GGally R
package (Schloerke et al., 2022) to plot two predictors against each
other, for all possible pairs, and check the general trend of data with
respect to the binary variables p1 and p2. As the full dataset is rather
large, to visualize the results we split the data into five pieces and pre-
pared figures for each pair combination, for a total of 10 figures for each
presence variable. As this is only a visual inspection of data, we pre-
sented them in the supplementary material (Figs. S1–S10). It is clear
from these figures that most variable pairs have a complex relationship
with one another. Moreover, it is hard at this stage to establish which
variable has a distinct behavior with respect to the absence or presence
of landslides, despite a few differences described by the diagonal plots.

The lithology variables clearly stand out with respect to the others,
which is expected, as they are different in nature from the other
variables.

We reduced the correlation between variables using information
gained from principal component analysis (PCA). We chose this method
because it is not biased towards any modeling method and can measure
overall correlations rather than just pairwise linear correlations. Prin-
cipal component analysis is an orthogonal linear transformation of data
to new coordinates that concentrate the largest variance in a smaller
number of axes with respect to the original coordinates (Joliffe, 2002).

Fig. 10. (a)-(b) Result of principal component analysis (PCA) on the full
dataset: (a) scree plot, i.e., contributions to the total variance explained by each
principal component (PC); (b) contribution of each variable to the PC decom-
position in (a).

Fig. 11. Linear correlation plot of the selected 19 variables in the final
benchmark dataset. Ordering is according to the decreasing contribution from
principal component analysis (PCA), as in Fig. 10(b). Symbols with larger
ellipticity correspond to a higher degree of correlation between the two
considered variables. One can observe that, after variable reduction, most linear
correlations were removed.

Table 3
Attribute table of the final dataset. After principal component analysis (PCA)
analysis, we retained the 19 variables contributing to 95 % of the total variance
in the full dataset. In the table, SD stands for standard deviation and SU stands
for slope unit.

Column name Variable Short name

id Unique slope unit identifier –
slope_aver Mean Slope Steepness [deg] Sav
tcurv_aver Mean Profile Curvature PCav
nthns_aver Mean Northerness NTav
nthns_stdd SD of Northerness NTsd
easns_aver Mean Easterness EAav
easns_stdd SD of Easterness EAsd
twi_stddev SD of Topographic Wetness Index TWsd
BLDFIE_ave Mean Bulk density [kg/m3] BLDav
BLDFIE_std SD of Bulk density [kg/m3] BLDsd
CLYPPT_ave Mean Weight % of clay particles CLYav
SNDPPT_ave Mean Weight % of sand particles SNDav
SLTPPT_ave Mean Weight % of silt particles SLTav
SLTPPT_std SD of Weight % of silt particles SLTsd
D_sqrt_A Maximum Distance/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
SUArea

√ MaxD
Litho2 Alluvial deposits (%) Al / Lit2
Litho6 Unconsolidated sedimentary rocks Usr / Lit6
Litho8 Marlstone M / Lit8
Litho11 Schistose metamorphic rocks Ssr / Lit11
Litho12 Carbonate rocks Cr / Lit12
presence1 Binary landslide presence flag p1

presence2 Binary landslide presence flag p2
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At variance with standard applications of PCA, we eventually did not use
the transformed orthogonal variables singled out by PCA, but only the
reduced set of original variables with maximal information content.

First, we performed PCA on the whole set of data, amounting to 29
variables (refer to Table 1). We used the R package factoextra

(Kassambara and Mundt, 2020) to visualize results as in Fig. 10.
Data were normalized (R function scale) before feeding them to

pca(). The percent contributions to principal components (PCs)
calculated with the full dataset (Fig. 10(a)) is useful for determining how
many PCs must be retained to explain a given fraction of the total
variance in the data. We opted for a threshold of 95 %; accumulating the
contributions, we conclude that the first 19 PCs are enough for the
purpose.

Second, we considered the contributions of all original variables to
the first 19 PCs (Fig. 10(b)). Explaining the required 95 % total variance
would require at least 19 PCs, and we would need a minimum of 19
variables to do so with a linear combination, as in PCA. Thus, we decided
to select the set of 19 variables that contributed to the 19 most relevant
PCs, going from left to right in Fig. 10(b).

We validated the results of the PCA delimited dataset measuring the
pairwise linear correlations among the reduced set of 19 variables.
Fig. 11 shows that few correlations are left. Table 3 lists the final set of
variables; note that all of the five lithological variables were retained by
the PCA–based procedure.

6. Results with final dataset and constrained workflow

Results for the final dataset (Section 5, Table 3) present LSMs ob-
tained with 16 different models. They correspond to one map for each of
the 11 groups participating in the benchmark for each scenario p1 and
p2, except for G1 (Section 4.1), who contributed with four results as in
the first step (LDA, QDA, LRM, and CFM), G7 (Section 4.7) with two
results (LR and ANN1), and G8 (Section 4.8) with two results (XGB5 and
BLR). All the remaining groups either presented one result from the very
beginning, or decided to show only their best result. G11 (Section 4.11)
presented results for two different methods for p1 (STK) and p2 (RF3).

To compare the 16 susceptibility values, we calculated the sum of
squared differences as in Eq. (2) (Fig. 12), the pairwise Pearson corre-
lation coefficient (Fig. 13), AUCROC (Figs. 14 and 15, for p1 and p2,
respectively) and Brier score as in Eq. (1), (Fig. 16).

In general, metrics are much more similar to each other than in the
first step; this is largely expected, given the prescription for training/CV
and use of same data. Figs. 12 and 13 indicate similar considerations. A
few methods stand out as more dissimilar from the others, for example
QDA, RF2 and STK (p1) and QDA, RF1, and RF2 (p2), in both figures. The
correlation plots also show a peculiar pattern within the block of the first
four results (all by G1), particularly for the combined model, CFM
(which is expected.

The difference between the participant reported AUCROC values and
values of AUCROC measured by the organizers are less variable compared
to step one of this experiment (Figs. 14 and 15). All of the AUCROC values
are between 0.7 and 0.75, are slightly higher for p2, and highest for the

Fig. 12. Pairwise comparison of the results of different methods applied with same workflow, during step two of the experiment, described in Section 5. Numerical
values calculated as in Eq. (2). Panels (a) and (b) correspond to the target variables p1 and p2, respectively. Names of the different methods are as in Fig. 3,
Sections 4.1–4.11.

Fig. 13. As in Fig. 12, but for pairwise Pearson correlations.
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RF2, XGB1 and RF1 models. On average, AUCROC values are slightly
lower than in step one of the experiment.

In contrast, the Brier score results measured by the organizers
(Fig. 16) show larger variability between groups. The results for RF2 still
are the best ones (in this case, smaller values correspond to better
agreement), and in the p2 case the RF1 value is practically the same. We
note that the GAM values are slightly different from each other, despite
using the very same training/CV strategy; the GAM2 results are different
from the other two.

We show the final landslide susceptibility maps to qualitatively
investigate spatial patterns (Figs. 17 and 18, for p1 and p2). Model re-
sults are float values in the [0,1] interval; in the figures we have clas-
sified each result in five equal intervals; this is one of the possible
classification procedures, apt to allowing direct comparison of the maps.
Boxplots of the distributions from the maps’ numerical values (Fig. 19)
show the clear difference between p1, in (a), and p2, in (b), as the mean
values are substantially smaller for the latter (around 0.3–0.35 instead of

about 0.5), but variations are larger in the second case. In both cases, a
few methods show wider distributions than the others, for example the
QDA, RF1, and RF2 stand out in this respect. Looking at same methods
applied by different groups, LR seems to give consistently similar dis-
tributions, as well as the GAM (the whisker for GAM2 looks slightly
narrower) and the XGB. The RF results instead seems to give more
variable distributions in the different applications.

Figs. 20 and 21 show different options for class breaks. We show, in
addition to the class breaks used in the maps of Figs. 17 and 18 in panel
(a), alternative classifications for all of the results, namely Jenks natural
breaks in (b), and 20–40–60–80 percentiles, in (c). These two methods
select breaks based on the distributions, so that break values are
different for each model result. We show maps classified with Jenks
breaks in the supplementary material, Figs. S11 and S12.

We acknowledge that classification into discrete categories would
deserve a chapter on their own, but we deemed this beyond the aim of
this review, and we preferred to focus on the distribution of values. The

Fig. 14. Comparison of AUCROC values for the different methods considered in step two of the experiment (Section 5), limited to the p1 landslide flag. Values in (a)
were calculated by the contributors, and values in (b) were obtained by the organizers of the experiment calculating AUCROC from the attribute tables provided by the
contributors. Names of the different methods are as in Fig. 3, Sections 4.1–4.11.

Fig. 15. As in Fig. 14, but for the p2 landslide flag.

Fig. 16. Brier scores (cf. Eq. (1) (Brier, 1950)) for the results with the final benchmark dataset (including 10–fold CV), calculated by the organizers of the experiment.
(a) is for p1, (b) for p2. Names of the methods as in Fig. 3, Sections 4.1–4.11.

M. Alvioli et al. Earth-Science Reviews 258 (2024) 104927 

16 



values of class breaks give an alternative description of the susceptibility
distributions, with respect to both maps (Figs. 17 and 18) and to box-
plots (Fig. 19).

7. Discussion

We presented the first cross–examination of susceptibility modeling
approaches with truly independent tests using a benchmark dataset. We
surveyed interested contributors in the landslide science community,
asking to prepare susceptibility maps with their methods of choice for a
given dataset. The experiment was designed to be a rather specific one
but, aside from quantitative calculations, we obtained a range of sub-
jective responses on how to approach the problem, and the proposed
experiment resulted in multiple outcomes.

Besides the use of different classification methods, the research
groups participating in the experiment tried to answer alternative
questions in addition to the simple, technical ones asked in the original
survey. This triggered a second iteration in response to findings from the
initial experiment, during which the dataset underwent modifications
and a specific workflow was singled out.

We discuss separately the results corresponding to the preliminary
dataset, presented in Sections 4.1–4.11, and the final version of the
dataset, i.e., our proposal for a benchmark dataset for landslide sus-
ceptibility assessment, presented in Section 5, with results in Section 6.

7.1. Discussion: preliminary dataset and results

The first part of the experiment, in which the contributors could play
freely with methods and spatial variables, showed how the same algo-
rithm could return quite different outputs, due to different model
implementation techniques that mostly went unreported. This high-
lights the need to understand how these techniques influence model
outcomes.

Variable selection was performed by 8 out of 11 participant groups,
with several different methodologies, and the number of considered
variables ranged from one (SU area) to all. We can distinguish different
methods in two classes: (1) in a few cases groups would only use data to
perform the selection, (2) in other cases, groups would also require
performance assessment (LOO, VIF, other statistical tests), making the
selection specific to the modeling approach. Selection based solely on
data always consisted of removing collinear variables, although with
different approaches for identifying them, mostly pairwise. These con-
siderations helped in shaping the final dataset of the benchmark
experiment, as described in Section 5.

One notable point was the relevance attributed to the SU area vari-
able. In fact, in the original experiment, area was not even intended to
be considered as a predictor. Nevertheless, G9 explicitly investigated the
effect of using SU area alone, or in combination with other predictors,
versus the case in which it was excluded. Slope unit area was a mean-
ingful predictor for landslide occurrence. However, this correlation was
assessed as a random effect rather than a causal relation. Group 7 dis-
cussed instead a related issue, namely the aggregation of variables over
SU polygons (i.e., zonal statistics: the process of calculating mean,
standard deviation, and percentages) and the possible confounding ef-
fect of different SU area. Group 2 kept SU area in the analysis, treating it
as any other covariate. The results of the performed k–fold CV showed a
wide dispersion of the mean decrease in deviance explained (i.e., vari-
able importance) for both p1 and p2 (similar interquartile range from
2.7 % to 7.2 %), indicating a random effect of the variable on the model
output.

At the data level, it is tricky to differentiate the SU area effect from
potential causal contributions of other covariates because the SU area is
inherently present in all covariates. Even after explicitly eliminating the
area variable, SU area still controls the distribution of other covariates
due to aggregation within SU polygons. This issue of aggregating
covariates and target variables across non–uniform aerial units gives rise
to the modifiable aerial unit problem, known as MAUP (Openshaw,
1984), mentioned in Alvioli et al. (2020).

We suggest that accounting for SU area effects could enhance the
practical applicability and interpretation of the LSM. This is also rele-
vant when assessing performance. We explore this point more fully later
in this section. However, a model structure where landslide occurrence
is represented as presence/absence does not seem ideal to visualize this
relationship, and an investigation of the use of this variable in models
targeting landslide counts versus landslide density is beyond the scope of
this work and could be considered in a separate study.

Two participant groups considered the relevance of the geographical
extent and location of the benchmark dataset. In fact, the dataset pro-
posed here is an excerpt from a larger dataset used in a previous study at
national level (Italy). The larger dataset, in turn, included landslide in-
formation from a national inventory. This triggered two different ap-
proaches from G2, which independently built a similar dataset for a
different region in Northern Italy, and from G3, who compared the re-
sults for the benchmark subset with those at the national scale.

In the first case (G2), the average AUCROC values in the Italian
Western Alps were higher than in Central Italy (up to 0.08 AUCROC
points), but the average loss of performance between the training and
test phases were lower in Central Italy than in the Alps (0.01 and 0.06
AUCROC points, respectively). Moreover, a different number of pre-
dictors was kept as significant in the two areas (26 in Central Italy, and
only 9 in the Italian Western Alps). This indicates the need to develop
more consistent models to account for spatial CV variability and to
develop the model for the unique attributes within the study area.

The varying degree of completeness of the national inventory
(Trigila et al., 2010) is discussed in great detail by Loche et al. (2022).
This emphasizes that multiple benchmark datasets based on interna-
tional open–source data are useful not only to investigate the compar-
ative performance of mapping methods but also to explore and discuss
geographical differences. For example, the landslides within this part of
central Italy are dominated by translational slides. Consequently, the
predictors included in this benchmark dataset were chosen to describe
the attributes of the terrain that influence these landslide types within
this region of Italy. Other variables can affect translational landslides, e.
g., terrain attitude or rock structure, which were not available for this
study. Other geographic areas or other landslide types may require a
different combination of predictors for a meaningful susceptibility
model comparison to be conducted.

In the second case, G3 compared the national susceptibility maps
(Loche et al., 2022) with the results of the benchmark dataset, and
evaluated the response of fixed and random effects, as they were
modeled in the same way in the two studies. They found that the
non–linear variables (slope_aver, Max_Distan and D_sqrt_A)
behave in the very same way in the two cases. Moreover, they calculated
the Pearson correlation coefficient between both presence scenarios and
all of Italy, which resulted in values of 0.81 and 0.83, for p1 and p2,
respectively. This confirms the relationship between the susceptibility
zonations applied across different scales, from our small study area for
the benchmark dataset up to the entire nation of Italy.

G4 and 11 explored the effects of different CV methods. Group 4
implemented several strategies, including non–spatial CV, spatial block
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Fig. 17. Susceptibility maps corresponding to the case p1; model names as in Fig. 3 and Table 2. Shaded relief map as in Fig. 2.
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Fig. 18. Susceptibility maps corresponding to the case p2; model names as in Fig. 3 and Table 2. Shaded relief map as in Fig. 2.
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CV, and spatial clustering CV, without CV based on XGBoost model. The
reason to implement a CV, and a spatial CV, is to reduce overfitting,
considering that spatial data is a special case of application of machine
learning and conventional (random) CV does not account for spatial
patterns. In general, spatial CV prioritizes consistency over accuracy.

Results (for the p1 scenario, Fig. 6) show that the difference in
AUCROC values between training and testing of the XGBoost model
without CV (XGB1) is slightly higher than that of non–spatial CV (XGB2),
spatial block CV (XGB3), and spatial clustering CV (XGB4). The differ-
ence in AUCROC values between training and testing of XGBoost models
using non–spatial CV and spatial CV shows the same result. The XGB6
model from G11 obtained similar testing performance with their spatial
block CV scheme. In step two, G4 only provided the non–spatial CV
results, as required, for the results to be exactly comparable with others.

We provide one last comment about performance assessment in the
first part of the experiment. The authors of G7 stressed the need of
devising a classification performance metric that would incorporate the
difference in size of SUs, which is not included in any of the metrics used
in this experiment. Their proposed solution focuses on using success
rate, which accounts for the heterogeneous spatial extent of SUs by
depicting the total area along the x–axis. This stands in contrast to the
classical ROC curve approach, where the x–axis represents the false–-
positive rate and treats SUs as equivalent entities. This often results in
moderate to good AUCROC values, although success rate values may
indicate non–informative models in the spatial context, because SU
ranking based on the likelihood of landslide presence may appear
spatially random.

Although we maintain that the comments about taking SU size into
consideration for performance assessment are valuable, we decided to
present two simple metrics in the second part of the experiment, i.e.,
AUCROC and the Brier score. These metrics facilitate the comparison
between the first and second parts of our experiment.

7.2. Discussion: final benchmark dataset and workflow

In the second part of this study, we proposed a revised dataset for
LSM benchmarking and a well–defined prescription for the application
of the different methods. The latter was a mandatory task because part
one showed that the participants workflows is as important as the
dataset itself.

In summary, there were four differences between step 1 and step 2 of
this study.

• Updated dataset. We removed several input variables based on the
variance calculated with a PCA analysis, and added lithological in-
formation, as suggested by several participants.

• Use of all proposed variables. No model dependence should be
introduced by further variable selection based on specific model
performances.

• Application of 10–fold CV without repetition, selected at random. In
addition to standardizing the CV procedure, this provides LSMred s
in which all of the SU susceptibility values are predicted, and not fit.

• Performance assessment with AUCROC by the contributors. In addi-
tion, an independent calculation of AUCROC and Brier score values
was performed by the organizers of the experiment.

The PCA procedure used to remove correlations between the vari-
ables proved effective. We stress that in the second part of the experi-
ment all contributors were asked to apply their methods to the original
(reduced set) of variables, and not to transformed variables from PCA.
This certainly reduced the possible bias introduced by using linear
combinations.

Principal component analysis is an effective linear dimensionality
reduction technique for capturing linear relationships, but it may not
adequately capture complex, non–linear patterns inherent in the data.
Conversely, one of the primary advantages of using machine learning
algorithms is their capability to discern intricate relationships between
features and the target variable, thereby capturing hidden non–linear
patterns. This could have contributed to the overall decrease in model
performance observed in step two.

The analyses indicate that the common use of CV without repetition
(e.g., 10–fold) can be problematic when it comes to interpreting and
comparing susceptibility maps. This is because susceptibility values
obtained by fitting the data are removed from the LSM, and only pre-
dicted values are retained, but in the literature those fitting data are used
in different proportions.

The experiments present some notable differences between the re-
sults produced using the p1 and p2 presence indicators. Generally, the
p2 indicator results in better AUCROC (Figs. 14 and 15) and Brier scores
(Fig. 16) compared to the p1 indicator. However, the p2 indicator re-
sults also show more variance (Fig. 22) and lower probabilities (Fig. 18).
These trends are likely due to the p2 indicator allowing SUs with one
landslide point to be considered as not containing a landslide. The
improved model metrics for the p2 indicator may be due to the reduced
number of SUs with landslides, which can artificially improve our cho-
sen metrics (Davis and Goadrich, 2006). Allowing a single landslide

Fig. 19. Boxplots of the distributions of susceptibility values in each model; (a) for p1, (b) for p2. The box is around the region between the 1st and 3rd quartiles,
horizontal line is at the median value, whiskers extend to 1.5 times the interquartile range, and the points are outliers.

M. Alvioli et al. Earth-Science Reviews 258 (2024) 104927 

20 



point to not change the presence indicator in p2 may also increase the
variance in the model results. This is because the attributes of SUs
containing one or many landslides may be similar, hampering a model’s
ability to differentiate between landslide and non–landslide SUs. The p1
indicator avoids this issue by not allowing any landslide points within
the SUs labeled as a non–landslide slope unit. The reduced area indi-
cating landslide presence (Fig. 2) also explains the reduction in proba-
bilities using the p2 flag. In summary, these results do not favor one
method of categorizing SUs as containing a landslide. However, the
chosen method may have notable effects on the model results.

Finally, we stress that we did not intend to select the “best” method
here, as our only aim is to establish a benchmark dataset and workflow,
that could be useful as a standard reference for calculations by other
scholars. Different methods may be more useful in diverse settings, and
different predictors may be available in other areas, with respect to
those considered here. We note that the standardized workflow leveled
out model performances, as Figs. 14–16 show, with respect to Figs. 6 and

7. Nevertheless, the spatial patterns in Figs. 17 and 18 show clear dif-
ferences that one could not grasp from the numerical values of the
performance metrics. The residual differences can be ascribed to
different predictive abilities of the models in the study area presented
here as a benchmark. Fig. 22 shows the variance of results across the 16
different methods, in each SU, colorized in five classes. We observe that
variability is larger for the second scenario, and has a different spatial
pattern, which highlights the relevance of the method adopted to
quantify landslide presence, starting from point landslide locations.

The pronounced leveling with the final dataset combined with the
observation that results are most similar within each contributing group
highlights that user–caused variability in model performance and
quality is significant. Different software packages, coding styles, user
error, and unclear workflows can all lead to significant model differ-
ences that are difficult to parse out, as evidenced by step one of this
experiment. This further highlights the benefit of a benchmark dataset
for directly comparing future susceptibility modeling approaches and
emphasizes that direct comparison between models produced by
different researchers without a standardized workflow should be done
with caution.

Fig. 20. Stacked bars representing different class breaks, for the p1 scenario,
using (a) equal intervals (same breaks, different number of values in each class;
used in Fig. 17), (b) Jenks natural breaks (different breaks and different number
of values in each class), and (c) percentiles of the distributions (different breaks,
but each class contains the same number of values, i.e., of slope units). In all
cases, we show the actual lower and upper limits in the distribution of sus-
ceptibility values with a white band.

Fig. 21. As in Fig. 20, but for the p2 scenario; breaks in (a) correspond to the
classification of Fig. 18.
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8. Conclusions

We presented the first participatory experiment to systematically
investigate current methods and practices in landslide susceptibility
modeling. Our results clearly highlight the benefit for landslide scien-
tists and practitioners to benchmark their results against known data,
methods, and workflows.

We demonstrated that two fundamental steps for obtaining robust
and reproducible LSMs are (1) a critical selection of model input and
detailed rules for application of a classification method (referred to as
“workflow” throughout this work), and (2) a critical evaluation of the
output. Our findings also highlight the benefit not only of benchmark
datasets, but also of very specific, unambiguous, and shared guidelines
on how to build an LSM. These warrant being included in guidance
ranging from data collection, data selection and pre–processing, to se-
lection and application of methods and, eventually, to the assessment of
results with proper metrics.

We designed the dataset to serve exactly this purpose, and the results
of the experiment demonstrate the success of our objectives. Moreover,
similar datasets and results for different regions of the world, specific to
landslide science, would improve our understanding of landslide sus-
ceptibility predictions, and would enable their real–world applicability.

Data and code availability

The final benchmark dataset corresponds to the same SUs set as in
the preliminary dataset, with a modified attribute table. In addition, we
provide in separate vector layers the results for all of the methods used in
step two of the experiment, used to prepare Figs. 11–21. We also share
code to (1) calculate susceptibility value within the GAM model of
Section 4.3, and (2) calculate AUCROC values and Brier scores from the
attribute table of the vector layer with results.

The benchmark dataset, results, and code are publicly available for
download at the main CNR IRPI SU project page, at:
https://geomorphology.irpi.cnr.it/tools/slope-units,

under the section Data → Benchmark Dataset. We provide the
datasets in OGC GeoPackage vector format (GeoPackage is an open,
standards-based, platform–independent, portable, self–describing,
compact format for transferring geospatial information) and in ESRI
Shapefile format. The maps are identical, both of them have the same
attributes, and are in EPSG:32632 - WGS 84 / UTM zone 32 N projected
reference system. Code is a combination of bash scripting, GRASS GIS,
and R.
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