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Abstract

Urban geomorphology analyzes modifications of morphology and topography

induced by human activity in cities, urban and peri–urban areas. Urban

expansion modifies ecosystems, but global actions for sustainability focus on

the biosphere, overlooking the role of abiotic components, embedded in and

supported by the geosphere and its ecosystem services.

We propose the joint study of indicators of land surface variability and

of anthropic modifications. We consider geomorphodiversity, as a discrete

measure of richness and variability of abiotic components, and a new index

describing the degree of human impact inferred from land cover classes. We

suggest that a joint study of the two indicators helps quantifying and under-

standing the effect of specific land cover changes on areas with different values

of geomorphodiversity and the relationships between abiotic parameters and

the human presence in urban areas.

Public datasets permits study geomorphology simultaneously at the na-

tional scale, and the local scale, within individual urban areas. We show

that (1) urban development in Italy was fostered in lowlands, alluvial plains

or hills, and urban areas with large values of geomorphodiversity host larger
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numbers of natural areas; (2) different definitions of urban boundaries are

essential to investigate different aspects of human impact on the landscape;

(3) synthetic scenarios of land use change, corresponding to different values

of anthropization, are useful to study the effect on geomorphodiversity.

Quantitative geomorphodiversity and anthropization index contain com-

plementary information, and their joint study is an additional tool to plan

city development and conservation of natural areas in a broad sense.

1. Introduction

It is common knowledge that unchecked urban expansion modifies ecosys-

tems. The United Nations Member States partnership recently called for

action for a better and sustainable future, adopting a list of 17 sustainable

development goals (SDGs) about life on Earth, the environment, inequality,

energy, and specifically the achievements of sustainable cities and communi-

ties (United Nations, 2015). Nevertheless, an over–simplified idea exists that

nature–based solutions involve only the biotic compartment, and overlooks

the role of the abiotic richness of Earth surface (Schrodt et al., 2019). When

it comes to investigating the impact of human presence and activities on the

environment, most of the literature focuses solely on changes in biodiversity

(e.g., Vačkář et al. (2012)).

Many scholars recently suggested that geodiversity is the geosphere coun-

terpart of what biodiversity represents within the biosphere, atmosphere, and

hydrosphere (Tukiainen et al., 2023), as geodiversity is “the natural range (di-

versity) of geological (rocks, minerals, fossils), geomorphological (land form,
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processes) and soil features” (Gray, 2008). The geosphere supports the natu-

ral processes occurring in the ecosystems and human health, through a wide

range of ecosystem services (McDonald et al., 2018; Fox et al., 2020).

Since its introduction, several scholars studied geodiversity from the the-

oretical and practical points of view, with different approaches, assumptions

and purposes (Zwoliński et al., 2018). Methods to define diversity of the

geosphere are quantitative, qualitative, and hybrid approaches, with the oc-

casional addition of heuristics, as described by Zwoliński et al. (2018) and

references therein, and by Kubalíková and Coratza (2023).

Here, we approximate geodiversity through a quantitative derivation of

geomorphodiversity index (GmI), representing the variety of features and the

morpho–genetic processes modeling the landscape (Panizza, 2009), and litho-

logical information (Benito-Calvo et al., 2009; Melelli et al., 2017; Burnelli

et al., 2023).

We combine information of GmI with a newly developed quantity devoted

to describing the degree of human impact on observed land cover classes,

which we label as anthropization index, AzI. The latter is a reclassification of

Copernicus’ CORINE Land Cover (CLC; Feranec et al. (2016)) into ten new

categories, inferred from the textual descriptions of the original CLC classes,

and denoting increasing degree of anthropization. This differs form indices

of anthropization existing in the literature, as they typically focus on the

impact of human presence on the biotic components (e.g., Lima Magalhães

et al. (2015)). An existing map of anthropogenic impacts on the environment,

the global human influence index (WCS and CIESIN, 2005), has much lower

spatial resolution and it is not applicable, here.

The two indices considered here might suggest complementary informa-

tion. Different classes of geomorphodiversity highlight the abundance and
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the variety of different landforms, as well as lithological, morphological and

hydrographic variability and, as such, contain information about the degree

of geomorphological activity (Howard, 1965; Leopold et al., 2020). Land sur-

face and its diversity provide the abiotic framework and the resources for

natural and human development. Land cover and land cover change give a

measure of how these resources are exploited by the biosphere and by hu-

man activities. The anthropization index aims at distinguishing places with

different degree of human impact.

Considering simultaneously GmI and AzI may allow us to define critical

levels of human pressure and devise solutions, towards an increased sustain-

ability of human impact on the landscape in urban areas, where the role of

the abiotic component is often underestimated (Stewart and Gill, 2017).

We studied specifically GmI and AzI in Italy, consistently at relatively

high resolution, with methods that one could readily apply elsewhere – above

all in Europe, in which the same data used to define GmI and AzI is available.

Specific objectives of this work are investigating (i) the relationship between

GmI and AzI, (ii) the relationship between the two indices specifically in

urban areas, consistently all over Italy and at high resolution, and (iii) the

possibility of inferring implications of specific land cover changes scenarios,

both for AzI and GmI spatial distributions.

As we are specifically interested in urban areas, we stress that their very

definition is not unique. In fact, United Nations (2018) stated that no stan-

dardized international criteria exist for determining the boundaries of a city

and often multiple boundary definitions are available for any given city. The

definition of cities’ administrative boundaries differ in different World coun-

tries. One relevant definition existing at global level is functional urban areas

(FUAs), encompassing cities and their commuting influence zone obtained
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from statistical models. For example, Schiavina et al. (2022) recently stud-

ied land use efficiency within FUAs globally. Functional urban areas are

also adopted in this work, to calculate statistics of the distribution of AzI

and GmI values. We also used alternative definitions, not related to ad-

ministrative boundaries but rather on indicators of human presence (Alvioli,

2020a,b), for comparison.

This paper is organized as follow. Next Section, 2, expands on the ideas

of geodiversity, different possible scales of analysis and types of existing data,

definition of landforms and of urban areas. Specific data used here are listed

and described in Section 3. Section 4 illustrates in four sub–sections the

approach to obtain geomorphodiversity and anthropization indices, and the

assessment of their spatial distributions across Italy and specifically within

different types of urban areas. Section 5 illustrates in detail the outcome of

the analysis, including the implications of synthetic scenarios for land use

change. Results are critically discussed in Section 6, and conclusions are

drawn in Section 7.

2. Background

Urban geomorphology focuses on the changes to the natural landscape

caused by human activities in cities (Thornbush and Allen, 2018). Human

activities have been operating within cities in different times, causing modifi-

cations of the landscape that has an effect on natural processes, local diversity

(Brandolini et al., 2020), and natural hazards (Sofia et al., 2017; Santangelo

et al., 2021; Zumpano et al., 2021; Agrawal and Dixit, 2024). Urban ge-

omorphology also analyzes resources in urban areas, including geoheritage

(Reynard et al., 2017; Coratza and Hobléa, 2018; Pelfini et al., 2018).

Methods to quantify and map the impact of urbanization onto the land-

scape are mostly known and applied at fine scales, typically the scale of
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individual cities or urban agglomerations (Burnelli et al., 2024; Pica et al.,

2024). These include both expert and objective methods, the latter requiring

a wealth of high–resolution and multi–temporal data. Meter–scale elevation

data, such as digital elevation models obtained from LiDAR and photogram-

metry, allows one to delineate natural and anthropogenic landforms (Tarolli

and Sofia, 2016; Vergari et al., 2022). This is useful for practical applications

of urban planning by local administrations (Elmqvist et al., 2021).

At broad scales, where the focus is on agglomerations of cities or ex-

tended urban areas, completely different data sources are available. These

are of different nature and exist at different (lower) resolution than data

usually utilized for urban analysis and planning at individual city scale. Rel-

evant examples are digital elevation models (DEM), land use, and land cover

(LULC) data. In Europe, Copernicus obtains and publishes DEM and land

cover data respectively at 25 m and 100 m resolution for all European Coun-

tries1. These are readily available to infer the distribution of landforms and

land cover within urban boundaries and, possibly, their evolution in time.

High diversity at the local and regional scale and natural LULC have a

positive feedback on the biosphere (Rahbek et al., 2019). Conversely, Rosa

et al. (2024) recently showed that land used and modified by humans has

lower functional richness, especially in croplands and urban areas, in differ-

ent bio–regions and at large scale. This highlights that informed conserva-

tion strategies and sustainable land management across scales are needed, to

reduce the impact of human activities onto biodiversity (Chakraborty and

Gray, 2020).

From an analytic point of view, a meaningful and automated morpho-

metric and morphological classification of land surface is more difficult than

1Available at https://doi.org/10.5270/ESA-c5d3d65
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identifying individual landforms at one specific scale (Evans, 2012).

A specific landform has a recognizable pattern on the surface and an

algorithm can single out any such pattern; the algorithm of Jasiewicz and

Stepinski (2013) can distinguish up to 498 different ones, with a multi–scale

method. Classification of any location of a given area into more generic cat-

egories be more challenging. For example, Hiwahashi and Yamazaki (2022)

classified the whole globe into polygons of varying size and shape, distin-

guishing them with few morphometric features. For this reason, a consistent

method for extracting landforms and their diversity across different geograph-

ical scales, which is accomplished with the GmI adopted here, improved from

that of Burnelli et al. (2023), is of great importance.

Finally, we highlight that FUAs are administrative boundaries and, as

such, do not necessarily reflect geomorphological properties and LULC classes

within actual urban areas (Hamilton and Rae, 2020). In contrast, delin-

eation of cities has been performed in a number of other different ways,

relying on heterogeneous data sources and criteria, including: (a) popula-

tion/urbanization density, (b) interactions, described by different kinds of

networks, and (c) geographical proximity/contiguity (Masucci et al., 2015).

Many such methods exhibit strong model or parameter dependence, for ex-

ample on population or area thresholds.

One class of methods exist that considers landmarks of continued human

presence as a basis for a parameter–free delineation of urban areas (Jiang

and Liu, 2012). In particular, we consider here a delineation of urban areas

in Italy (Alvioli, 2020a) built on the road junctions OpenStreetMap data

(e.g., Sarretta and Minghini (2021)). The dataset is a set of polygons ex-

hibiting several kinds of scaling laws, which are relevant tools to study social,

economic, and topographic properties of cities (Bettencourt et al., 2007; Cot-
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tineau et al., 2017). Most importantly, they follow an area–population scaling

law comparable with that of European and World cities, obtained without

fitting any parameter.

3. Materials

This work required the following input data:

• The Copernicus EU–DEM, a raster layer supplied by the European

Environmental Agency (EEA)2. The horizontal resolution is 25 m and

the vertical accuracy is of 2.9 m. Data is provided in the ETRS89-

extended / Lambert Azimuthal Equal Area projected coordinate sys-

tem (EPSG:3035). We converted all data used in this work in this

coordinate system. Out of the European coverage of the data, we se-

lected a bounding box covering Italy, in which elevation ranges between

-60 m and 4,789 m.

• A lithological map of Italy at 1:100,000 scale, recently developed by

Bucci et al. (2022)3. The map is distributed as a vector layer, in WGS84

geographical coordinates (EPSG:4326). The associated attribute table

described 19 different lithological classes. Here, we are interested in

diversity of classes, not the specific properties of each rock type.

• The CORINE Land Cover, available online from the Copernicus Land

Monitoring Service4 as raster data at 100 m spatial resolution. We used

CLC for 1990, 2000, 2006, 2012, 2018. Data is distributed in the same

coordinate system as EU–DEM.

2Available at https://www.eea.europa.eu/
3Available on the PANGAEA database: https://doi.org/10.1594/PANGAEA.935673
4Available at https://land.copernicus.eu
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• Three different delineations of urban areas in Italy; two of them from

the literature (Alvioli, 2020a,b)5, and FUAs by the Italian Institute for

statistics (ISTAT6).

The land surface diversity index GmI by Burnelli et al. (2023) is a quantita-

tive measure of geomorphodiversity, obtained from lithological, morphologi-

cal and hydrographic features. Geomorphodiversity is a proxy for geodiver-

sity, it represents a key parameter for understanding the different morpho-

logical settings and, potentially, of the evolution of a landscape.

The published version of GmI has a spatial resolution of 500 m. In this

work, we used the index at local and urban scale, which required a higher res-

olution raster map. The procedure to obtain the raster index required a few

modifications of the original approach, and will be reported in Section 8. In-

puts of the method to obtain the classified diversity map are three quantities

derived from the DEM – namely slope, drainage density, and geomorphons

Jasiewicz and Stepinski (2013), and a lithological map. Hence, the use of

EU–DEM and the lithology at the highest geographical scale available to us,

by Bucci et al. (2022).

CORINE land cover (CLC) is the well–known, open access set of land

cover information for the whole of Europe, at 1:100,000 scale, with a mini-

mum mapping unit of 25 ha and an accuracy better than 100 m. The 2018

version has a three–level classification, which identifies 44 land cover classes

in the third level and 15 in the second level; the first level contains five classes:

urban fabric, agricultural areas, forest and semi–natural areas, wetlands and

water bodies. We explored the temporal dependence of the urbanization in-

dex defined in this work, using CLC raster maps for 1990, 2000, 2006, 2012

5Available at https://urgere-project.irpi.cnr.it/downloads/
6Available at https://www.istat.it
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and 2018. Figure 1 shows the most recent release of CLC, and the original

classes.

We considered different delineations of urban areas (UA), because it is

widely acknowledged that the delineation of cities and urban boundaries

depends on many factors, including input data, criteria to distinguish urban

and internal areas, and purpose of the delineation. To take into account the

uncertainty of definition of the UA, we considered three different datasets:

(i) a parameter–free delineation based on indicators of “human presence”,

recently proposed by Alvioli (2020a); (ii) a more common definition based

on a measure of terrain imperviousness (similar to ’paved areas’, as discussed

by Bettencourt (2013)), described in more detail by Alvioli (2020b); (iii) an

official definition of FUAs, by the Italian Institute for Statistics, based on

commuting zone information at municipality level.

We refer to these three different approximation as UA1, UA2 and UA3,

respectively. We further distinguish FUAs (UA3) as “core” areas, UA3core,

and “extended”, UA3ext. The difference between core and extended FUAs in

Italy is that the core (defined as City) correspond to the central municipal-

ity of each urban agglomeration, while the extended (defined as commuting

zone) also includes the adjacent municipalities related to the central one by

daily commuting fluxes. Figure 2 shows the geographical distribution of the

different approximations, and Table 1 lists numerical figures about their size

distributions.

4. Methods

We describe the methods adopted in this work in three separate para-

graphs: the high resolution geomorphodiversity index, GmI in Section 4.1,

the definition of AzI classes, in Section 4.2, the assessment of their geograph-

ical distribution, limited to urban areas, in Section 4.3; a direct comparison
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of the geomorphodiversity and anthropization indices, and an assessment of

the geographical distribution of GmI values, in Section 4.4.

4.1. Definition of a geomorphodiversity index

We obtained a national GmI map of Italy following the method of Burnelli

et al. (2023), with two main differences. First, Burnelli et al. (2023) obtained

a GmI raster map at 500 m spatial resolution, downgraded from the spatial

resolution of 25 m of elevation data from EU–DEM. Here, we obtained a

GmI map at the same resolution of EU–DEM, suitable for the assessment of

urban geodiversity within city boundaries, and for comparison/combination

with CLC raster maps. Second, Burnelli et al. (2023) calculated partial

diversity of four input quantities (slope, landforms, drainage density, and

lithology) with a circular moving window (or focal statistics analysis) of fixed

radius. Here, we introduced a scale–independent methods which considers

contributions of partial diversities calculated with a range of radii.

Figure 3 shows the workflow adopted in this work to obtain a national,

scale–independent GmI map at high resolution. We used the same input

quantities used by Burnelli et al. (2023): (1) slope angle, calculated EU–DEM

with the default GRASS GIS (Neteler and Mitasova, 2008) (version 8.3) algo-

rithm; (2) ten landform classes, obtained by the geomorphons classification

method, based on recognition of ten different pre-defined patterns: flat, peak,

ridge, shoulder, spur, slope, hollow, foot slope, valley, and pit (Jasiewicz and

Stepinski, 2013); (3) 19 lithological classes, from the 1:100,000 map by Bucci

et al. (2022); (4) a drainage density obtained by a neighborhood analysis

of the river network obtained from the European Union’s Earth observation

programme Copernicus7

7https://www.copernicus.eu
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The algorithm to obtain the national GmI map consists of three main

steps. First, selecting a range of sizes (or radii, Ri in Fig. 3) for moving win-

dows to calculate partial diversity maps of the four input quantities. Second,

obtaining partial maps running the r.neighbors module in GRASS GIS,

with the “variety” statistics, for each selected value of the radius. Third,

classifying each partial diversity raster map in five categories using Jenks

breaks, combine (sum) the four map corresponding to the same value of the

radius, and classify again into the five final GmI classes. Five, dropping the

parameter dependence (effectively scale dependence) by combining the set

of radius–dependent GmI maps into a single map, selecting for each cell the

most common value across the set of maps.

We highlight, here, that we combined the four partial diversity maps con-

sidering them on the same footing, by classifying their variety into the same

number of classes (five) – to combine them into a single index, GmI. As in

Burnelli et al. (2023), inclusion of drainage density was dictated by the aim

of calculating an index on the entirety of the Italian peninsula. Consider-

ing slope, geomorphons and lithology alone would produce a trivial result

in plain areas – for slope is in the lowest class everywhere, lithology is “al-

luvial” and geomorphons class is “flat”. We acknowledge that there may be

alternative approaches to the use of drainage density but we also believe

that in this work, at national scale, it provides a reasonable approximation

to distinguishing different zones in flat areas. Moreover, we stress that sum

of classified rasters is the simplest choice to combine the four partial diver-

sity map (slope, landforms, lithology, drainage density) obtained from the

“moving windows” approach. The combination of moving window/sum of

parameters fall within the most used methods for the assessment of geodi-

versity outlined by Zwoliński et al. (2018), i.e., the use of geodiversity indices

12



and map algebra techniques.

We end up with a classified raster GmI that includes contributions from

spatial neighborhood ranging from 275 m (11 grid cells, at 25 m spatial

resolution) to 2,275 m (91 grid cells). We consider this raster map as a

multi–scale geomorphodiversity index of Italy, which we deem as a good

approximation to the variety of geomorphological features, obtained in an

indirect way -– using only morphometric and lithological information, as

field–based geomorphological maps do not exist for such a large area. Figure 4

shows a national map of the index, with two insets showing details in selected

areas and the distribution of elevation, within each class. The original and

updated maps are available for download (see Section 8).

4.2. Definition of an anthropization index

We defined an AzI of Italy, based on reclassification of CLC information,

inferring the degree of human modifications from the legend of the original

CLC data.

The classification is new to this work, and it describes increasing levels

of human impact. The motivation for a new index stems from the need of

quantifying anthropic impacts independently from the delineation of urban

areas, which (i) is model dependent, and (ii) it only describes urban vs. non–

urban areas, in any of the three definitions adopted in this work. The AzI

contains ten classes, with increasing level of human impact on the landscape,

listed in Table 2. The table includes the CLC classes and codes included

in each new AzI class, with codes matching those in Fig. 1, as well as a

synthetic summary of CLC names.

In the newly defined index, Class 1 includes the CLC classes “wetlands”

and the “open space with little or no vegetation”, which were easily under-

stood as the least affected by human activities. Class 2 includes “standing
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forests”, with different degrees of forestry management, but keeping a large

role in bio-conservation. Class 3 includes “transitional woodland and shrub”,

“heathland, sclerophyllous vegetation” and “burnt areas”; these are mixed

and transitional zones, impacted by reforestation and/or similar external ac-

tivities. Class 4 corresponds to “natural grasslands”, class 5 to “pastures”,

characterized by a constant human and livestock presence, which impacts

plant growth and selection of species. Class 6 includes “marine waters”, dif-

ferent from class 7, which includes “water bodies” and “water courses”, since

the latter are significantly affected by human modifications as compared to

coastal lagoons and estuaries, classified as “water bodies” in the CLC dataset.

In class 8 we included all the CLC parcels falling into the “mosaic farmlands”

group: here, the high level of anthropization coexists with a good variability

on the biotic level. The classes 9 and 10 of the AzI refers to the “arable land

and permanent crops” and to the “artificial surfaces”, respectively.

Figure 5 shows the results for the national map, with ten AzI classes cor-

responding to the 2018 CLC release, and the distribution of elevation within

each class. We obtained a temporal dependence of AzI corresponding to the

reclassification of five different CLC releases spanning 1990–2018. Table 3

shows the variation of percentage coverage for each release. The classified

AzI map is available for download (see Section 8).

4.3. Anthropization in urban areas

We studied the distribution of AzI values within the three definitions of

UA adopted here, namely UA1, UA2 and UA3ext. We disregarded UA3core

because they are a subset of UA3ext, with substantially smaller spatial extent

(cf. Table 1 and Fig. 2), and we deem the analysis within the smaller area

less significant.

For each UA set, we labeled individual polygons according to their size,
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distinguishing small, large and very large UAs. A head/tail procedure gave

the classification based on size. It works iteratively, calculating the mean

size of the dataset that acts as a threshold for “small” areas. Calculating the

mean of the remaining features in the dataset further distinguishes “large”

and “very large” sizes. Table 1 lists the first threshold (overall mean) for

each UA dataset. The head/tail split is particularly effective for UA1 and

UA2, containing thousands of polygons with a size distribution very skewed

towards small areas. Any other way of splitting size–wise would produce nu-

merically very imbalanced subsets. The method is also suitable for splitting

UA3.

In addition, we investigated the distribution of AzI classes considering

their geographical location, distinguishing Southern, Central and Northern

Italy, using the official definitions (see Fig. 2(c)).

Figure 6 shows results in six different sets of histograms, where size and

location are distinguished. The histograms are discussed in the Section 5.

4.4. Combining geomorphodiversity and anthropization indices

The GmI has a resolution of 25 m, whereas the AzI is available as a 100

m raster map. For a direct comparison of the two maps we worked at the

highest resolution (25 m), and calculated the percentage of grid cells for each

combination of the five classes of GmI versus the ten classes of AzI. Figure 7

shows results of the calculations with a heatmap. Each rectangle in the figure

is colorized with a green–to–blue ramp, describing increasing percentages of

overlap.

Next, we investigated the distribution of the GmI values within urban

areas, in the same way as we did for the AzI index described above, i.e.,

distinguishing the size and location of UAs. Results are in Fig. 8.

Finally, we suggest a joint visualization of GmI and AzI distributions,
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adopted in Fig. 9. That is easily done assigning a color code to each of the 50

possible combination of the two indices (five GmI classes, vs. ten AzI classes).

In the figure, the legend shows a four–fold color ramp used to colorize the

various combinations in the maps. Figure 9 shows UAs containing the cities

of Forlì—Cesena, Genoa and Milan, in Northern Italy; Pisa, Perugia and

Rome, in Central Italy; Taranto, Naples and Palermo, in the South. Each

triplet contains a small, a large and a very large UA, according to the split

of UA3ext sizes adopted here, which are shown as thick black contours. Each

figure also shows boundaries of UA1, shown as thin black polygons, filled

with a dotted pattern. One can see the substantial difference between these

two different ways of referring to UAs, in the nine sample areas considered

in the figure. Note that the scale in the different panels is either 1:275,000

or 1:500,000; details are in figure’s captions.

The combined GmI–AzI map and legend are available for download (see

Section 8).

To propose a sample application of the two maps discussed in this work,

we devised a few scenarios for land cover change, studying the implications for

the AzI and GmI maps. We hypothesized scenarios in which either artificial

surfaces, or arable land and permanent crops, or simultaneous both land

covers expand. These correspond to AzI = 10 and AzI = 9, respectively – the

highest and second highest classes of anthropization. We devised scenarios

as follows.

Scenario 1 (S1): expansion of AzI = 10 class, to simulate an expansion

of urban fabric and loss of adjacent land cover types; we constrained the

expansion to very large clusters of AzI = 10 contiguous cells (selected with

the head–tail break criterion used previously). We let such clusters expand by

one 25 m grid cell in every direction. Scenario 2 (S2): as in S1, but expanding
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the large cluster of artificial surfaces by two grid cells in every direction. In

S1 and S2, we took care of keeping fixed the AzI classes corresponding to

water bodies and courses.

Scenarios 3 and 4 (S3 and S4): as in S1 and S2, but expanding the AzI

= 9 class by either one or two grid cells in every direction. This simulates

an expansion of temporary and permanent crops, and loss of adjacent land

cover classes. In these scenarios, in addition to water courses (AzI=6, 7), we

also kept unchanged the AzI = 10 class.

Scenarios 5 and 6: a combination of S1 and S3, and of S2 and S4, respec-

tively. The results are scenarios in which artificial surfaces, temporary and

permanent crops are expanded simultaneously, either by one grid cell (S5),

and by two grid cells (S6), in every direction. In the process, in addition to

keeping fixed the AzI=6, 7 classes, we did not let the AzI = 9 overwrite the

AzI = 10 grid cells.

Results of land cover changes S1–S6 are in Table 4. The table is split into

results within each scenario for what concerns the modified AzI maps, and

their relationship GmI map.

Although the slope angle appears to be the determining factor in the

distribution of the GmI classes, in reality all the factors taken into account

have an equal weight. The relationship with slope angle is due to the fact that

the Italian territory is geodynamically active and there is a close correlation

between structural factors and geomorphological evolution. This makes the

interpretation of the geomorphic diversity even more valid, taking as input

factors those considered in this study.
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5. Results

5.1. High–resolution geomorphodiversity index

The new GmI map of Italy, obtained in this work, is shown in Fig. 4. The

main figure shows the national map, two insets zooms into selected areas, and

violin plots with the distribution of elevation, within each class. Violin plots

in Fig. 4 indicate that class 1 (very low GmI) is limited to altitudes below

1,000 m. This is understood considering that class 1 is mostly present in

the Po Valley, which has altitudes between 0 and 200 m. Areas with GmI

= 2 are also limited to lower altitudes, to a smaller degree. Class GmI = 3

shows the most homogeneous distribution. Class 4 is mostly represented at

lower altitudes, but also extends to the highest altitudes, similarly to class

5 (although less abundant under 1 km a.s.l.). In both cases, the high GmI

values at lower altitudes are related to the use of drainage density as one of

the inputs to obtain the final GmI. In fact the most important floodplains in

Italy are close to the coastline or, for the highest elevation values, the highest

Alpine and Apennine peaks, with large slopes. Slope angle is one relevant

input factor in the definition of GmI.

5.2. Distribution of anthropization index values

Figure 5 shows the map of the anthropization index, defined in this work

as described in Section 4, and prepared with the 2018 release of CLC. For each

class, an overview of the distributions of elevation values is also given. Table

2 lists the percentage coverage of each AzI class. Figure 5 correspond to the

2018 release, while the table reports result for five CLC maps, corresponding

to five releases, spanning 1990–2018.

The most widespread class (AzI = 9, arable land and permanent crops),

the second largest class (AzI = 2, standing forest) and the third (AzI = 8,

mosaic farmland) cover overall more than 75 % of Italy.
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Class AzI = 9 corresponds to areas with a relevant human impact and is

mostly located in lowlands, as we can clearly see in Fig. 8. It is often charac-

terized by modified rivers or channels, mostly embedding areas with AzI =

10 (artificial surfaces). Class AzI = 9 decreased in the time span considered

in Table 2, while class AzI = 10 increased (corresponding to expansion of the

urban fabric); their sum slightly increased.

Areas with AzI = 1, 2, 3 (and 4) are associated with more pristine natural

environment, they cover overall 124,380 km2, about 42 % of Italy. Class AzI

= 5 cover just 1.38 % and decreased slightly.

Class AzI = 2 (standing forests) extends mostly along major valleys in

the Alps, and less in the Apennine and Peninsular parts. This class extends

from low elevations to about 2,000 m, with the majority between about 500

m and 1,000 m (cf. Fig. 8). The percentage coverage seems to have remained

constant across the last 30 years.

Values of AzI = 6, 7 corresponding to marine waters, water bodies and

water courses cover overall less than 1 % and did not change in time. Water

courses, artificial rivers and canalised channels fall into these categories and

are mainly distributed along the Po river valley and the coasts.

Class AzI = 8 is characterized by substantial human impact in hilly or

flat areas and valleys, with sparse buildings in low elevation areas, but it

does not contain permanent crops. The percentage coverage of this class did

not change substantially in the considered time period.

Figure 6 shows the distribution of the AzI values within the three urban

boundaries considered in this work. The figure compares the distributions

in UAs of different sizes (panels on the left column) and with different ge-

ographical location (right column). Size of UAs are distinguished by small

(smaller than average, in each UA definition), large (larger than average)
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and very large (larger than the average large areas); the geographical distri-

butions distinguishes UAs in Northern, Central and Southern Italy, shown

in Fig. 2(d).

In all of the panels of Fig. 6, for each AzI class, we reported the national

percentage coverage (horizontal dashed lines), for comparison with the cor-

responding value within urban areas. It is straightforward to observe that

the classes AzI = 2, 8, 9 and 10 are the most relevant ones, in UAs, which

is not the case for the national distributions. Class AzI = 10 is above the

national value, which is expected in urban areas, given that it represents ar-

eas with highest human impact. Considering the extended functional urban

areas (corresponding to a clustering of administrative boundaries), the last

consideration can be extended to classes AzI = 8, 9 and 10, regardless of the

size or the location of the areas. That does not hold true for UA1 and UA2,

as the frequency in class AzI = 9 is always lower than the reference value,

while class AzI = 10 is several times larger. This is not surprising, as both

delineations of urban areas (using indicators of continued human presence,

in UA1, and impervious/paved ground, in UA2) extend further than the

built–up regions but do not artificially include substantial parts of internal

areas. Municipal boundaries in UA3ext include parts of internal areas, thus

the distribution of AzI values within these boundaries are very close to the

national reference values.

A relevant difference between UA1, UA2 and UA3ext is that UA1 and UA2

contains a large number of very small areas; cf. Table 2. In the case of UA1,

this is due to the Delaunay triangulation algorithm used to delineate the areas

starting from road junctions, while in the case of UA2 the smaller area is 400

m2 and it corresponds to one grid cell of the original 20 m raster resolution.

Both UA1 and UA2 were designed to reproduce an area–population scaling
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law (Alvioli, 2020a,b), which breaks if one artificially removes areas within a

particular range in size. Thus, we kept the full vector layer datasets of UA1

and UA2, here.

The total area of small areas (i.e., smaller than the average in each

dataset) in is 11 % in UA1, and 21 % in UA2. Figure 6 shows that, in

the most relevant classes (AzI = 8, 9 and 10), small areas (green bars) have

a different tendency than large ones (red bars), as they contains a larger

fraction of AzI = 8, 9 values and a smaller fraction of AzI = 10 values. This

is much more pronounced for UA2 then UA1.

The anthropization index in UAs does not show a strong dependence on

geographical distribution (panel on the right column in Fig. 6), as the bars

corresponding to all three versions of UAs show similar behavior in the three

cases. One difference is that, for UA1, urban areas in Southern Italy contain

more AzI = 8, 9 values and less AzI = 10 values, whereas the most natural

land use, AzI = 1 to 5, are more abundant in smallest and Southern cities.

The observed frequency in AzI = 10 means that UA1 are more similar to

the standard CLC artificial surfaces in Northern and Central Italy, and less

in the south. This class includes industrial activities, buildings and artificial

non-agricultural vegetated areas (leisure sites, green parks, etc). This is not

true for UA2, which is understood considering that artificial surfaces largely

correspond to the impervious areas used to single out polygons in UA2.

5.3. Distribution of geomorphodiversity and combined indices

Next, we investigated the relationship between the geomorphodiversity

index of Burnelli et al. (2023) and the anthropization index obtained here.

Figure 7 shows a heat map obtained from the percentage coverage of each

GmI–AzI value combination. The general trend shown by the figure is easily

understood, as the two peaks correspond either to high GmI–low AzI, and
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vice–versa. Negligible percentages corresponding to AzI = 6 and 7, for any

value of GmI, are simply due to the small coverage of the two classes (0.06

% and 3.5 %, respectively). In a similar way, the peak at low values of GmI

and large AzI is found for AzI = 9 instead of AzI = 10 because class 9 covers

altogether 47 % of Italy, while class 10 covers only 5 % (cf. Fig. 5).

Next, we present results for the distribution of land surface diversity, GmI

values, within urban areas. We prepared histograms for GmI distributions

in a similar way to the AzI case, shown in Fig. 8. At variance with the AzI

distributions, results are more uniform across the different UAs definitions.

The left panels show that the lowest and second–lowest percentages of

land surface diversity within UAs are larger than the corresponding national

averages, while values of GmI ≥ 3 are smaller. In this respect, the results for

UA1 and UA3ext are more similar. More in detail, results for UA1 and UA2

show that very large (VL, in the figure) cities have slightly lower percentages

than large and small cities, for GmI ≥ 3; the case of UA3ext show the opposite

trend.

The right panels have similar patterns; percentages are higher than the

reference values for GmI ≤ 2, and lower than reference for GmI ≥ 3, for

all UAs variations. The largest deviations from the national values are for

GmI = 1, mostly due to UAs in Northern Italy, while UAs in the center and

south are mostly aligned with the reference. Values of 2 ≤ GmI ≤ 4 are more

represented in UAs in Central and Southern Italy. Moreover, UAs in Central

Italy show larger land surface diversity than in Southern and Northern Italy.

The areas with largest values of land surface diversity, GmI = 5, are much

lower than the national values, for all UA variations and across Italy, except

for UA1 in Northern Italy.

Figure 9 shows a joint graphical representation of GmI and AzI classes,
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within three sample of urban areas in the Northern, Central and Southern

Italy, respectively (nine examples in total). For each geographical domain,

we included on example of small, large and very large UAs, considering the

extended FUAs size classification (size of UA3ext; cf. Table 2 and Fig. 4).

In all of the considered locations, UA3ext boundaries substantially exceeds

the cities’ core as delineated by UA1, and each UA3ext polygon contains sev-

eral disjoint AU1 areas. The UA1 polygons are usually closer to high AzI

values (brown–ish to white–ish areas), with a variable mixture of GmI values.

This is understood considering that the definition of large AzI values explic-

itly contains artificial surfaces, and GmI values are distinguished according

to the underlying topography and lithological information.

These general findings have variations within the different settings of Fig.

9. Low–AzI city cores are mostly embedded low–GmI regions in the case of

Forlì–Cesena and Milan, Figs. 9(a) and (c), Pisa, Fig. 9(d), and Taranto,

Fig. 9(h). The same holds to a lesser degree in the case of Perugia, Fig. 9(e),

and Naples, Fig. 9(i).

The cities of Genoa, Rome and Palermo, Figs. 9(b), 9(f) and 9(i), in-

stead, show much larger values of GmI, especially in Genoa and Palermo,

in which the city core is markedly characterized by intermediate– to large–

AzI and large–GmI values, and surrounded by large GmI and lower AzI, in

the extended FUAs. This is due to the proximity of high relief areas, in

the case of Genoa. In general, extended FUAs show varying distributions

of GmI–AzI combinations. To comparatively understand these distributions,

one must consider the actual sizes of the regions shown in the panels, as we

used different scales.
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5.4. Land cover change scenarios

As we stressed, one crucial difference between the AzI and GmI maps

presented here is the different rate of change with time, as AzI rate of change

may be of a few years. GmI can be considered constant over this time scale,

at least in absence of artificial, local changes. One possible joint application

of the AzI and GmI maps is studying different scenarios for land cover change

and the values of GmI in the modified areas. Section 4.4 defined a few change

scenarios, in which we let temporary and permanent crops (AzI=9), artifi-

cial surfaces (AzI=10), or both simultaneously, expand from the percentages

coverage listed in Table 3 (column 2018). The results of this exercise are in

(Table 4).

The top half of Table 4 shows the relative modifications of percentage

coverage of each AzI class, for each scenario, S1–S6. Column ’2018’ corre-

sponds to percentages the original AzI map. Columns S1, S2 (scenarios that

simulate expansion of artificial surfaces, with different extent) causes smaller

loss of coverage in AzI = 1, 2, and larger loss in AzI = 8, 9 classes. This

is easily understood considering that artificial surfaces are mostly adjacent

to arable lands, permanent crops, and mosaic farmlands. Columns S3, S4

(scenarios for expansion of arable land and permanent crops), instead, causes

loss of most of the AzI classes; only water bodies and artificial surfaces are

constant, by construction. Columns S5, S6 are a combination of the first two

kinds of scenarios (i.e., both AzI = 9 and AzI = 10 were allowed to expand),

and the numerical results are consistent with a combination of the results

in columns S1–S4. Specific differences between percentages in different sce-

narios are function of the spatial distribution of AzI classes with respect to

those that were allowed to expand.

The bottom half of Table 4 aims at showing the geodiversity classes in-
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volved in the land cover changes implied by the six artificial scenarios. The

values listed in the table are the percentages of each GmI class limited to

the grid cells that switched AzI class, as a consequence of scenario changes.

The values in column S1 show that when artificial surfaces expand, these

mostly affect low values of GmI; the percentage decrease for increasing value

of GmI. Values in column S2 are similar; we note that with increasing area

of change in AzI = 10, as in S2 with respect to S1, larger values of GmI

are slightly more affected. The values in columns S3–S6 have a substantially

different tendency, in that the largest values correspond to GmI = 3, and

higher values of GmI are equally affected than lower ones. Absolute values

are slightly smaller in S5 and S6 (change in both AzI = 9 and AzI = 10),

consistently with the results in S1–S3, and S2–S4.

These sample results are obtained from synthetic scenarios, where change

were applied with general criteria, all over Italy. Specific results may be

obtained with realistic projections of land cover change and, possibly, con-

straints dictated by topography or other quantitative arguments.

6. Discussion

A few authors used additional quantities in their definitions of geomor-

phodiversity, with respect to that of Burnelli et al. (2023) adopted here, which

includes slope, drainage density, lithology, and subset of terrain landforms.

For example, Benito-Calvo et al. (2009) and (Melelli et al., 2017) used did not

explicitly use landforms. In general, one can argue that many other variables

from the geology, geomorphology, hydrology and pedology sectors are useful

variables to define geomorphodiversity or, more in general, geodiversity.

Nevertheless, we believe that the efficacy of a model is not contingent

upon the multitude of input variables, but rather upon the minimal set of

variables that reproduce the essentials of a natural phenomenon. The factors
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considered in GmI encompass both the structural factors and the modeling

agents responsible for shaping the existing landforms. Here, we used a min-

imal set of publicly available input data, and applied a clear, reproducible,

and objective method to process them and obtain indicators of land surface

diversity and anthropic impact on land use. This reduces model dependency

to a minimum, and make results as robust as possible.

The climatic factor is one relevant piece of information that was neglected,

here. Climate contributes to the formation of a landform and its evolution

over time, as it can significantly alter the morphometric and evolutionary

characteristics of a morphotype. We postponed climatic zonation to a later

analysis in order to obtain results based primarily on topographic variables.

Simplicity of the approach makes the definition of geomorphodiversity

adopted here readily applicable at continental or global scale, as the necessary

data is available worldwide with comparable quality and resolution. That is

elevation data and river networks, either from independent cartography or

delineated on the digital topography. Lithology/geology information used by

Burnelli et al. (2023) was available at relatively high resolution (1:100,000,

Bucci et al. (2022)). Global geology maps, for example, GLiM v1.0 (Hart-

mann and Moosdorf, 2012) has considerably lower spatial resolution, and

using it in would imply a lower resolution of the final GmI.

The information contained in the AzI map, new to this work, conveys

in a simple and intuitive way the degree of human influence, inferred from

the definitions provided with the original CLC classes (refer to Table 2). We

suggested that the joint study of GmI and AzI within polygons delimiting

urban areas is meaningful.

We note that the use of independent urban boundaries may appear re-

dundant with class AzI = 10, as this class is defined by “artificial surfaces”.
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In reality, only one of the three definition of urban boundaries adopted here

(UAs) has similar meaning to artificial surfaces, namely, UA2. The latter

is based on a measure of terrain imperviousness (i.e., the degree of sealing),

and they probably correlate with artificial surfaces. On the other hand, UA1

and UA3ext differ substantially.

We stress that analysis of individual urban areas should be supported

by more detailed analyses, using additional information and combining mul-

tidisciplinary methods. Knowledge of the historical evolution and the an-

thropic variables that have conditioned the urban development of a city over

the centuries, especially for those with ancient foundations, is key to under-

standing the evolution of abiotic variables in the urban fabric. Moreover,

anthropogenic transformations can distort the topographic response and the

spatialization of land use, which calls for a historical analysis. The Italian

territory remained fragmented for centuries and was only recently unified

(second half of the 19th century). The type of anthropic settlement is also

a consequence of the policies adopted in the different areas over the cen-

turies. In short, a comparison with other disciplines and the consideration

of variables for detailed analyses would be desirable.

The results presented in Fig. 4, for the GmI map, in Fig. 5, for the newly

developed AzI, and Figs. 6–9, for the relationship between AzI, GmI and

urban areas in Italy, can be understood with general considerations about

the morphological settings in Italy (Marchetti et al., 2017). Italian lowlands,

where the GmI has low values, features dense urban settlements, whose ex-

tent is constant comparing the different CLC through time (cf. Table 3).

Figure 9 clearly show that a less diverse territory, mostly characterized by

alluvial plains, or gently hilly zone, was used for urbanization and agricul-

tural activities such as permanent cultivations (AzI = 9, 10). Projections of
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urban expansion indicate a “slope climbing trend” of cities (Shi et al., 2023),

meaning that urban growth is expected to shift from flat areas to higher

slopes and altitudes. This has implications for natural habitats, including

forests and grasslands; the relevance of this effect specifically in Italy should

be investigated more in detail.

Conversely, the most natural environments (AzI = 1–4) are dominant

along the Alps and Apennines mountain chains, with a rough surface, where

scattered urban settlements exist. A complex landscape results in high land

surface diversity, where terrain dynamics and surface processes do not foster

the city development and expansion.

Where intermediate GmI values exist, the most frequent land cover is a

mosaic farmland (AzI = 8). Here, human signatures are sparse, and repre-

sented by fruit orchards, olives, pastures, and scattered houses or gardens.

The landscape is characterized by landforms of different sizes, and elevation

ranges between a few hundred to 1,000 m (cf. Fig. 5). This class does not

change over time, which may be explained by the environmental peculiarities

of these terrains, which discourage human activities.

The examples considered in Fig. 9 somewhat indicate that the smallest

UA in each group shows larger levels of anthropization and small geomor-

phodiversity. This is largely due to the topography of the three examples.

Forlì–Cesena is located between the Appennine chain and the Po plain, where

the elevation ranges between 0 and 500 m a.s.l. (see Fig. 4), and the vast

majority of the flat area is urbanized, whereas the highest degree of natural-

ness and geodiversity are found near the Appennine. The area of Pisa and

Taranto mostly includes plain areas as well, near the coast, in Tuscany and

Apulia.

A less marked pattern in the considered examples is that two of the three
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largest areas in each group, Rome and Palermo, Figs. 9(f) and 9(i), show

medium–high GmI even in the areas bounded by UA1 polygons, and areas

with both high GmI and low AzI in the surroundings. On the other hand,

in the case of Milan, Fig. 9(c), the ’very large’ city in Northern Italy which

extends in the Po plain, the discussion is similar to the three cases of small

UAs: it is a flat area, highly urbanized in many respects, including built–up

areas and modified water courses.

In general, the high–resolution combined indices description of urban ar-

eas allows to single out specific topographic features, and put the into the

perspective of GmI and AzI values. For example in Forlì—Cesena (Fig.

9(a)), the combined map shows the sharp change between Central Apennine

chain and the southern portion of the Po plains, with several scattered areas

with low GmI and/or large AzI on the non–flat areas. In Milan (Fig. 9(c)),

one can see the paths of Ticino and Adda rivers, on the western and north–

eastern sides respectively, generating hot–spots of larger GmI with respect

to the surrounding areas, and the sudden change between the flat area and

the Alps in the north.

Figure 9 also graphically highlights the differences between urban bound-

aries by Alvioli (2020a), UA1, and functional urban areas, UA3ext, thus the

different role they may play in the context of spatial analysis and environmen-

tal planning. In all figures, UA1 represent the regions where actual human

presence is inferred, at variance with UA3ext, corresponding to administra-

tive boundaries. This means that while the former may be more suitable

for an assessment of the relationship between land cover and the geographi-

cal location of cities, the latter are the boundaries in which actual planning

decisions have an effect, and resources are allocated.

Figure 9 aims at showing examples of the application of a combined GmI–
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AzI distribution. We maintain that the combination of the two indices is

meaningful, because the first index contains land surface information that

remain constant in relatively short time intervals, while the CLC data used to

define the second index is sampled at four years intervals. Thus, in principle,

one can prepare different versions of GmI–AzI indices only replacing the

AzI information. Studying the time dependence of the definition of city

boundaries instead, though equally interesting, require spatially distributed

data that is not available to us.

Table 4 lists the relative change of anthropization classes as a consequence

of synthetic scenarios for land use change. They represent a hypothetical

application of the index introduced here, and provide information on the

geomorphodiversity classes affected in each scenario. We stress that the

scenarios were arbitrary, but we maintain that they give insight into the

GmI–AzI combination.

7. Conclusions

The role of geomorphology in the urban environment can benefit from

quantitative analyses summarized with concise indices that can be easily

reproduced in different geographical contexts. For example, in identification

of geoheritage, they can highlight morphological conformations with a strong

propensity for naturalness. In these cases they provide an objective analysis

that goes beyond the logic of territorial administration, which are very often

influenced by motivations that cannot be traced back to territorial reality.

Furthermore, spatial indices can be used for multiscalar and multitemporal

models and thus represent an important line of research for analyzing the

temporal variability of geodiversity.

We defined an anthropization index, AzI, with a simple reclassification

of CLC classes, to examine its relationship with the land surface diversity
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index, GmI, and to investigate the potential implications of increasing lev-

els of human impact on the landscape. We considered particularly relevant

the joint study AzI and GmI within urban areas, as they contain different

information at different rates of change in time.

We have marginally investigated the temporal evolution of AzI, consider-

ing multiple CLC datasets, spanning 1990–2018. The most significant tem-

poral variation of the Italian land use pertains to natural areas, like open

spaces and natural grassland, and artificial surfaces. Moreover, we simulated

a few land cover change scenarios, showing the amount by which classes in

AzI and GmI that would be affected by the expansion of anthropized areas

(classes AzI=9 and AzI=10).

The outcomes allow us to draw the following conclusions:

• Study of the spatial arrangement of abiotic parameters in urban ar-

eas is possible with high detail, using public datasets, considering the

complementary information contained in the GmI and AzI raster maps

proposed here.

• To study the effects of human pressure on the environment, it is cru-

cial to distinguish artificial urban boundaries from boundaries denot-

ing actual human presence and their activities. Statistics of GmI, AzI,

and their relationship differ substantially, within different urban delin-

eations.

• Synthetic scenarios of land use change, corresponding to different values

of anthropization, are useful to study the effect on areas with different

values of geomorphodiversity.

These conclusions show that a quantitative study of geomorphodiversity may

represent an additional tool in the Earth Sciences to investigate the landscape
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variability in urban areas and, possibly, their inherent relationship between

geodiversity and biodiversity. They provide knowledge regarding the influ-

ence of land use/land cover and the variability of landforms, which may help

a sustainable planning in the development of urban areas.

8. Data availability

Results of this work are maps of (i) a new geomorphodiversity index map,

calculated at 25 m consistently over Italy; (ii) 10 classes of the anthropization

index AzI, Fig. 5, and (iii) 50 combined classes of GmI vs. AzI, Fig. 9. Both

are available for download at the main website of the project URGERE,

https://urgere-project.irpi.cnr.it/. Maps are in the reference system

of EU–DEM, namely ETRS89-extended / LAEA Europe EPSG:3035, and

have 25 m resolution. The map of GmI at the same resolution is also available.

Any other intermediate result is available upon reasonable request.
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UA Min Max Mean Total No. of No. No. No. very
model area area area area areas small large large
(source) [m2] [km2] [km2] [km2] – – – –

UA1
0.01 1,311 0.24 21,073 89,272 79,945 7,930 1,397

(Alvioli, 2020a)
UA2

400 444 0.21 13,899 66,654 58,130 7,031 1,493
(Alvioli, 2020b)

[km2] [km2] [km2] [km2] – – – –
UA3core 30 1,327 203 16,851 83 51 18 14
(ISTAT)
UA3ext 59 6,156 773 64,189 83 53 22 8

(ISTAT)

Table 1: Size characteristics of the different urban boundaries considered in this work (see
Section 3). The distinction in small, large and very large is described in Section 4.2.
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AzI
Percent CORINE Land Cover CORINE CORINE

area class names codes classes

1 5.34
Wetlands 4.* 35–39

Open space with little or
3.3.* 30–32, 34

no vegetation
2 26.42 Standing forests 3.1.* 23–25

3 7.21

Transitional woodland and
3.2.4 29

shrub
Heathland, sclerophyllous

3.2.2-3 27, 28
vegetation
Burnt areas 3.3.4 33

4 2.54 Natural grassland 3.2.1 26
5 1.38 Pastures 2.3.1 18
6 0.20 Marine waters 5.2.* 42–44

7 0.74
Water bodies 5.1.2 41
Water courses 5.1.1 40

8 15.00 Mosaic farmlands 2.4.2-4 20–22

9 35.75
Arable land and 2.1.*, 2.2.*,

12–17, 19
permanent crops 2.4.1

10 5.42 Artificial surfaces 1.* 1-11

Table 2: Lookup table between AzI and CLC names, codes, and classes; the latter corre-
spond to the legend in Fig. 1. Asterisks in the column “CORINE code” mark either any
third level class, or any second and third level class, falling within the same row in column
“CORINE class name”. We also list the percent area covered by each class.
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Anthropization CORINE Land Cover (year, %)
index (AzI) 1990 2000 2006 2012 2018

1 3.81 3.42 3.18 5.32 5.34
2 26.07 26.20 26.50 26.45 26.42
3 7.40 7.33 7.26 7.20 7.22
4 4.83 4.89 4.60 2.56 2.54
5 1.52 1.42 1.43 1.38 1.38
6 0.19 0.19 0.19 0.19 0.20
7 0.72 0.73 0.73 0.74 0.74
8 14.57 14.61 14.93 15.00 15.00
9 36.50 36.43 36.07 35.77 35.74
10 4.39 4.72 5.12 5.38 5.42

Table 3: The temporal variation of the anthropization index (AzI) classes considering the
CORINE Land Cover classification for 1990, 2000, 2006, 2012 and 2018.
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Anthropization
2018 S1 S2 S3 S4 S5 S6

index (AzI)

1 5.34 5.33 5.33 5.27 5.21 5.27 5.21
2 26.42 26.40 26.38 25.83 25.30 25.81 25.26
3 7.21 7.21 7.20 7.03 6.86 7.03 6.85
4 2.54 2.54 2.54 2.50 2.47 2.50 2.47
5 1.38 1.37 1.37 1.34 1.31 1.34 1.30
6 0.20 0.20 0.20 0.20 0.20 0.20 0.20
7 0.74 0.74 0.74 0.74 0.74 0.74 0.74
8 15.00 14.92 14.85 14.22 13.52 14.15 13.37
9 35.75 35.63 35.51 37.43 38.96 37.31 38.73
10 5.42 5.66 5.87 5.42 5.42 5.66 5.87

Geomorphodiversity
S1 S2 S3 S4 S5 S6

index (GmI)

1 33.52 33.50 10.86 10.84 13.63 13.60
2 28.08 28.04 20.96 20.91 21.83 21.78
3 17.14 17.14 31.49 31.45 29.74 29.71
4 13.44 13.45 25.86 25.89 24.34 24.37
5 7.82 7.87 10.83 10.91 10.46 10.54

Table 4: Results for different scenarios of AzI change, for the AzI classes themselves (top),
and for the GmI classes (bottom). Scenarios are described in Section 4.4 and discussed in
Section 5.3.
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Figure 1: CORINE Land Cover class distribution on the whole of Italy; data correspond
to the 2018 release, and classes match those listed in Table 2, last column, and are defined
as follows: 1: Continuous urban fabric. 2: Discontinuous urban fabric. 3: Industrial
or commercial units. 4: Road and rail networks and associated land. 5: Port areas.
6: Airports. 7: Mineral extraction sites. 8: Dump sites. 9: Construction sites. 10:
Green urban areas. 11: Sport and leisure facilities. 12: Non-irrigated arable land. 13:
Permanent irrigated land. 14: Rice fields. 15: Vineyards. 16: Fruit trees and berry
plantations. 17: Olive groves. 18: Pastures. 19: Annual crops associated with permanent
crops. 20: Complex cultivation patterns. 21: Land principally occupied by agriculture,
with significant areas of natural vegetation. 22: Agro–forestry areas. 23: Broad–leaved
forest. 24: Coniferous forest. 25: Mixed forest. 26: Natural grassland. 27: Moors and
heathland. 28: Sclerophyllous vegetation. 29: Transitional woodland–shrub. 30: Beaches,
dunes, sands. 31: Bare rocks. 32: Sparsely vegetated areas. 33: Burnt areas. 34: Glaciers
and perpetual snow. 35: Inland marshes. 36: Peat bogs. 37: Salt marshes. 38: Salines.
39: Intertidal flats. 40: Water courses. 41: Water bodies. 42: Coastal lagoons. 43:
Estuaries. 44: Sea and ocean.
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Figure 2: The three definitions of urban boundaries based on different parameters, de-
scribed in Section 8. (a) UA1, obtained with a parameter–free approach by Alvioli (2020a);
(b) UA2, obtained by Alvioli (2020b) from an imperviousness layer by Copernicus; (c),
UA3core and UA3ext, corresponding to core and extended functional urban areas; (d) the
official North–Center–South distinction of Italy, and UA3ext considered for quantitative
assessment in this work.

38



Figure 3: The workflow leading to the high–resolution geomorphodiversity map (GmI) of
Italy. The different steps, form left to right, depict: (1) input data, (2) parametric calcu-
lation of partial diversity using moving windows, (3) combination of partial maps into as
many GmI maps as the values of the parameter R (moving window radius), representing (4)
an ensemble, scale–dependent geomorphodiversity assessment, and (5) scale–independent
assessment of GmI selecting cell–by–cell most common value of the index across the en-
semble. Refer to Section 4.1 for additional details.
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Figure 4: The main map shows the land surface diversity index (GmI) at 25 m resolution,
describing the level of geomorphodiversity from 1 (lowest class) to 5 (highest class). Insets
are sample areas representative of regions with all GmI classes. Violin plots show the
distribution of elevation in each class; colors match the maps. The horizontal range of
class GmI = 1 was scaled down by a factor five, w.r.t. other classes; percentages on top
horizontal axis are the areal coverage.
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Figure 5: Geographical distribution of the anthropization index, AzI, defined in this work,
as described in Section 8. Violin plots show the distribution of elevation in each class;
colors match the map classes. One asterisk: horizontal range scaled up by a factor five;
two asterisks: scaled down by a factor five. Percentages on top horizontal axis are the
areal coverage.
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Figure 6: Distribution of AzI classes within the three urban boundaries considered in this
work (cf. Section 3). Panels (a), (c) and (e) distinguish UAs by their size, and (b), (d)
and (f) by their geographical location. The horizontal dotted lines represent the national
value, in each class.
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Figure 7: A bivariate diagram showing the degree of anthropization and geomorphodi-
versity in Italy, represented by the fraction of surface area under each combination of
GmI–AzI classes.
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Figure 8: Distribution of GmI classes within the three urban boundaries considered in this
work (cf. Section 3). Panels (a), (c) and (e) distinguish UAs by their size, and (b), (d)
and (f) by their geographical location. The horizontal dotted lines represent the national
value, in each class.
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Figure 9: The relationship between GmI and AzI in
three sample urban areas in Northern (top row), Central
(middle) and Southern Italy (bottom), classified as small
(left column), large (center), and very large (right) (cf.
Fig. 4). Thick black lines: FUA boundaries; thin black
lines, dot–filled: UA1, by Alvioli (2020a). Maps in (a),
(d), (e), (g) and (h) are at 1:275,000 scale; in (b), (c),
(f) and (i) at 1:500,000 scale.
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