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A B S T R A C T   

In landslide-prone regions, railway networks are vulnerable to rapid 昀氀ow-like landslides, which can cause 
extensive damage, even at signi昀椀cant distances from the landslide’s point of origin. The prioritization of pro-
tective measures on a national scale depends on the accurate assessment of each railway segment’s exposure to 
landslides. 

This study introduces a methodology for evaluating the exposure of transportation infrastructure, with a 
speci昀椀c focus on 昀氀ow-like landslides. The application of this methodology is demonstrated on Italy’s national 
railway network. 

The methodology involves a multi-phase approach, including a training phase using DEM data and landslide 
inventories, a modeling phase for landslide source areas and runout, and a 昀椀nal phase for infrastructure exposure 
assessment. Key outputs of this approach include the creation of a landslide susceptibility map and, critically, the 
generation of an exposure map that quanti昀椀es the risk to transportation infrastructure posed by 昀氀ow-like 
landslides. 

Validation using an independent landslide dataset demonstrated satisfactory results, especially in regions with 
area under the ROC curve values ranging from 0.7 to 0.95. The resulting exposure map shows that approximately 
13.4% (2376 km) of the entire national railway network is exposed to a medium-high level of risk from 昀氀ow-like 
landslides. 

This methodology highlights its effectiveness in nationwide exposure analysis of transportation infrastructure, 
providing valuable insights for risk mitigation and resource allocation, while relying solely on existing landslide 
inventories and digital elevation models.   

1. Introduction 

Landslides represent a prevalent natural hazard impacting trans-
portation infrastructures, encompassing both railways (Liu et al., 2018; 
Zhao et al., 2020) and roads (Jaiswal et al., 2010), (Bornaetxea et al., 
2022; Tanyaş et al., 2022; Taylor et al., 2020). Diverse slope movements 
are capable of in昀氀icting direct harm upon railways, and in particular to 
tracks, vehicles, and individuals in transit (Laimer, 2017; Martinović 
et al., 2016). Assessing the exposure of linear infrastructures to land-
slides is of paramount importance for network management, even on a 
large scale (Firmi et al., 2021; Samela et al., 2023), also considering that 
railways exposure is projected to rise due to climate change impacts 

(Schlögl and Matulla, 2018). In this paper, we focus on rail networks and 
consider “exposed” transportation infrastructure that lies within the 
landslide runout path (Corominas et al., 2014; He et al., 2023; Luo et al., 
2023). 

Exposure in transportation systems pertains to their susceptibility to 
damage or disruption caused by hazards like natural disasters and 
climate change. It can be evaluated by considering factors like infra-
structure location, design, construction, and protective measures (Pet-
rova and Bostenaru Dan, 2020). In Italy, Firmi et al. (2021) estimated 
that approximately 7700 km or approximately 45% of railway routes are 
susceptible to various landslide types. In the UK, around 36% of the 
national railway network is located in regions where slope instability 
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issues may be present or anticipated (Freeborough et al., 2016). 
The speci昀椀c manifestations of landslides affecting railways are 

contingent upon geological and geomorphological settings (Laimer, 
2017; Lan et al., 2008; Martinović et al., 2016) and the presence and 
maintenance levels of engineered slopes (Voumard et al., 2018). These 
events encompass different types of landslides types (Voumard et al., 
2018). Among these, debris 昀氀ows, mud昀氀ows and debris avalanche 
movements (in this paper “rapid 昀氀ow-like landslides”, partially 
exploiting the Hungr et al. (2014) classi昀椀cation) can be extremely 
dangerous and damaging to railways because their propagation speed 
and distance assume a critical role in their destructive potential. Rapid 
昀氀ow-like landslides, particularly debris 昀氀ows, may be classi昀椀ed into 
channelized and hillslope phenomena (Chen et al., 2009; Lorente et al., 
2003; Zhang et al., 2013), based on disparities in triggering mechanisms, 
affected areas, and primarily, runout lengths. 

Several methods and approaches, predominantly rooted in statistical 
and machine learning techniques, have been proposed to evaluate the 
exposure of railway networks to landslides at the national scale (e.g., 
(Freeborough et al., 2018; Freeborough et al., 2016; Liu et al., 2018; Yin 
et al., 2022; Zhao et al., 2020). However, many of these approaches 
focus primarily on the classi昀椀cation of study areas in terms of suscep-
tibility to landslide occurrence, while not taking into account runout 
(which for 昀氀ow-like landslides can be very relevant) and their possible 
interaction with transport infrastructure. 

Spatial probability of landslides triggering (susceptibility) can be 
evaluated using distributed physically-based modeling (e.g. (Alvioli 
et al., 2021, 2023; Bozzolan et al., 2023; Cabral et al., 2023; Mergili 
et al., 2018; Mergili et al., 2014a; Mergili et al., 2014b; Reichenbach 
et al., 2018; Van den Bout et al., 2022). However those models are 
demanding in terms of input data quality and quantity, and this 
requirement remains a challenge over large areas (Gariano and Guzzetti, 
2016; Marin et al., 2021; Palacio Cordoba et al., 2020; Park et al., 2019), 
also because detailed information on geotechnical characteristics of 
soil/subsoil is rarely available and hard to spatialize (de Lima Neves 
Seefelder et al., 2017; Mergili et al., 2018) Conversely data-driven 
models impose fewer data requirements and offer a robust alternative 
for modeling susceptibility to landslide occurrence over vast territories, 
from the local to the global scale (e.g. (Carrara et al., 2008; Felsberg 
et al., 2022; Jia et al., 2021; L. Lin et al., 2017; Q. Lin et al., 2021; Loche 
et al., 2022). 

For simulating landslide runout paths, physically-based approaches 
can be replaced by the conceptual models, which exploit empirical laws 
and terrain elevation data (Horton et al., 2013; Liang et al., 2023; 
Mergili et al., 2015, 2019; Steger et al., 2022), and that, to the best of our 
knowledge, have never been used for modeling, separately, hillslope and 
channelized rapid 昀氀ow-like landslides, at least at national scale. 

To date, no comprehensive research studies exist in Italy, or to our 
knowledge, in any other major nation, aiming to assess the exposure of 

Fig. 1. Flowchart of the methodology for assessing the exposure of a network transportation infrastructure to rapid 昀氀ow-like landslides. SA (source area - §2.2); SU 
(slope unit - §2.1); TT (Topographic Threshold - §2.2), F(Ω) (statistic distribution of reach angle values - §2.3), t map (map of number of random walks paths - §2.3), 
ECDF (empirical cumulative distribution function - §2.4 and §2.5), LS (landside susceptibility - §2.4), RE (Railway Exposure - §2.4), AUROC (area under the ROC 
curve - §2.5). 
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entire rail networks to 昀氀ow-like landslides at the national scale. Such 
studies should ideally incorporate (i) a fusion of statistical and concep-
tual models for source area and runout characterization, (ii) the separate 
consideration of hillslope and channelized phenomena, (iii) quantitative 
assessment of the exposure of the railway network and (iii) rigorous 
validation employing datasets distinct from and more extensive than 
those used for model training. 

Within Italian territory, at least two recent studies have explored the 
impact of landslides on railway infrastructure. The 昀椀rst study, con-
ducted by Alvioli et al. (2021), covered the entirety of the Italian railway 
network but did not address 昀氀ow-like landslides. Instead, it assessed the 
exposure of the main national railway network to rockfall phenomena. 
More recently, Samela et al. (2023) introduced a methodological 
framework for evaluating 昀氀ood hazards along land transport in-
frastructures at a national scale. While this framework considered po-
tential interactions between infrastructure and debris 昀氀ows, it was 
primarily applied to a limited selection of medium-sized hydrological 
basins in Italy. 

In this paper we propose, describe and apply, over the entire Italian 
railway network, a procedure that relies solely on landslide inventories 
and topographic data to (i) assess susceptibility to hillslope and chan-
nelized rapid 昀氀ow-like landslides and (ii) rank the exposure levels of 
transportation routes and network segments to these speci昀椀c phenom-
ena. The paper is organized as follows: Section (§) 2 outlines the general 
methods, including modeling approaches, exposure analysis, and the 
validation scheme; §3 delineates the case study of the Italian railway 
network and the landslide data used for modeling and validation. §4 
presents, validates and discusses the results. §5 provides a summary of 
the conclusions. 

2. Methods 

In this study, we leverage a statistical approach to identify and rank 
the source areas of rapid 昀氀ow-like landslides and a conceptual model to 
simulate their runout. The 昀氀owchart in Fig. 1 outlines the four stages of 
our proposed methodology, applied to the Italian railway network. The 
昀椀rst stage involves data preparation, which includes gathering (i) a 
Digital Elevation Model (DEM), (ii) a map of the transportation infra-
structure under investigation (e.g., a railway network), and (iii) one or 
more landslide inventory maps for training and validating the LS 
models. The second stage (“procedure”, the core of the methodology, in 
Fig. 1) encompasses the classi昀椀cation of landslides into channelized and 
hillslope movements, the identi昀椀cation and modeling of landslide 
source areas, and the simulation of 昀氀ow runout. The third stage con-
centrates on the classi昀椀cation (i.e., ranking) of landslide susceptibility 
(LS) and the generation of railway exposure (RE) maps. Finally, the 
fourth stage addresses the validation of the LS and RE maps. To assess 
the “predictive performance” (in a validation sense, as per (Reichenbach 
et al. - 2018) of a landslide susceptibility model, it is advisable to utilize 
independent inventories for validation, as suggested by Steger et al. 
(2017). In the absence of a secondary inventory, an alternative approach 
involves dividing the available inventory into two subsets for training 
and validation. In the following sections, we provide a detailed 
description of each stage, except for data preparation, which is primarily 

a technical step. 

2.1. Distinction between hillslope and channelized rapid 昀氀ow-like 
landslides 

The proposed methodology delineates distinct modeling approaches 
for channelized and hillslope rapid 昀氀ow-like landslides, with the com-
bination of their results resulting in a uni昀椀ed “combined” map. 

Hillslope rapid 昀氀ow-like landslides predominantly occur during 
rainfall events, often initiated by rills and/or shallow landslides, and 
typically originate in unconsolidated sediments along hillsides (Hürli-
mann et al., 2015). These phenomena can be initially referred to as 
“gravel/sand/debris slides,” according to Hungr et al. (2014), and may 
be termed “debris avalanches.” In this study, hillslope rapid 昀氀ow-like 
landslides encompass phenomena classi昀椀ed as “debris 昀氀ow in unchan-
neled basins” and “debris avalanches” as de昀椀ned by Crosta et al. (1990). 

Channelized rapid 昀氀ow-like landslides frequently develop within 
steep and con昀椀ned channels. The transported materials may originate 
directly from channel sediments (Gregoretti and Fontana, 2008), or 
result from failures in upstream or channel-side hillslopes. Channelized 
movements generally exhibit longer runouts (Hunter and Fell, 2003; 
Scotto di Santolo and Evangelista, 2009) and come to rest at lower slopes 
(Guthrie et al., 2010) compared to hillslope landslides. Hungr et al. 
(2014) classi昀椀ed these types of failures as “Debris 昀氀ows” or “Mud 昀氀ows,” 

while, in accordance with Crosta et al. (1990), they partially fall within 
the categories of “debris torrents” and “debris 昀氀ows in channeled ba-
sins,” which typically have larger average catchment areas than un-
channeled debris 昀氀ows. A graphical and schematic representation of 
channelized and hillslope debris 昀氀ows can also be found in Chen et al. 
(2009). 

The classi昀椀cation of landslides into channelized and hillslope phe-
nomena is executed through the subdivision of the study area into slope 
units (SU) (Alvioli et al., 2016). A slope unit is a non-uniform terrain 
partition de昀椀ned by drainage and divide lines, aiming to maximize 
geomorphological consistency within each unit while ensuring hetero-
geneity between neighboring units (Alvioli et al., 2020). Considering 
this slope unit subdivision, we assume that a rapid 昀氀ow-like landslide 
entirely contained within a slope unit can be categorized as a hillslope 
movement, whereas a rapid 昀氀ow-like landslide intersecting the bound-
aries of a slope unit (typically de昀椀ned by a drainage line) can be 
considered a channelized movement. 

To distinguish between hillslope and channelized landslides, slope 
units are intersected with landslide polygons, and the area of the 
resulting polygons from the intersection is compared to a selected 
threshold. In cases where a single landslide (L) intersects multiple slope 
units, it can be subdivided into several polygons (L1, L2, …). Typically, a 
landslide is divided into two polygons. The area (A) of each polygon is 
then compared to the total area of the landslide (R1 = A(L1)/A(L), R2 = A 
(L2)/A(L), …); If all values of the ratios (R1, R2, …) are less than a 
threshold value set at 0.95, the landslide is classi昀椀ed as channelized. 
Otherwise (if any of the Ri values >0.95), the landslide is categorized as 
a hillslope 昀氀ow-like movement. 

2.2. Modeling landslide source areas 

The training inventory map is used to identify the source areas (SA) 
of the rapid 昀氀ow-like landslides using a probabilistic approach. To 
achieve this goal, having the delineation of source areas in the training 
landslides is essential. In cases where this data is unavailable due to the 
training inventory not differentiating between trigger areas and propa-
gation/deposit areas, we assume that the source areas are situated in the 
highest regions of the landslide polygons. To pinpoint these upper sec-
tions within each landslide polygon, we extract only those cells with 
elevations exceeding the 90th percentile of the elevation distribution 
within the same polygon (Marchesini et al., 2020). 

To evaluate the relative probability of each DEM grid cell to be a 

Table 1 
Scheme used to classify the relative probability of each raster cell to be a 
source area of rapid 昀氀ow-like failure (SA is the slope value of a cell with a 
昀氀ow accumulation area A).  

Conditions Source area relative probability 
β05(A)≤SA<β10(A) 5% 
β10(A)≤SA<β25(A) 15% 
β25(A)≤SA<β75(A) 50% 
β75(A)≤SA<β90(A) 15% 
β90(A)≤SA≤β95(A) 5%  
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source area, we adopt a “Topographic Threshold” (TT) approach, whose 
basics were reviewed and described by (Torri and Poesen, 2014). The set 
of functions considered in the study are shown in Table 1. Two different 
sets of TT functions are derived for channelized and hillslope move-
ments. For this aim, we implemented an automated procedure (coded as 
a shell/GRASS/R script) capable to execute the following steps: (i) 
identi昀椀cation of the higher portion (raster cells) of each landslide (i.e., 
assumed as source area representative for the 昀氀ow initiation zone); (ii) 
exclusion of raster cells with 昀氀ow accumulation area less than a given 
threshold; (iii) evaluation of slope and 昀氀ow accumulation area of the 
selected cells; and (iv) 昀椀tting a power law quantile regression equation 
de昀椀ned as follows (Cavalli et al., 2017; Heinimann, 1998; Horton et al., 
2008; Rickenmann and Zimmermann, 1993): 
tan(β) = cAb (1)  

where β is the slope, A is the 昀氀ow accumulation area and c and b are 
empirical coef昀椀cients. The second step (exclusion of some raster cells) is 
devoted to include in the analysis only areas with non-negligible surface 
runoff, because rapid 昀氀ow-like landslides occur on partially or fully 
saturated debris (Hungr et al., 2014), a condition that may be favored by 
the convergence of surface runoff. 

The coef昀椀cients in Eq. (1) are obtained applying a quantile regres-
sion approach and considering the following percentile(quantile) 
values: 5%(0.05), 10%(0.1), 25%(0.25), 75%(0.75), 90%(0.90), 95% 
(0.95). Each set of coef昀椀cients identi昀椀es a different function for the 昀氀ow 
accumulation i.e., β05(A), β10(A), β25(A), β75(A), β90(A), β95(A). Quan-
tile regression computed for the 5% quantile identi昀椀es the curve that 
splits the data into 5% (below the curve) and 95% (above the curve). 
50% of the data are between the β25(A), β75(A) curves and 15% between 
the curves β75(A) and β90(A). In the methodology, we assume that a 
generic source area (SA) is characterized by slope and drainage area 
values similar to those derived from the training inventory and 昀椀t by 
quantile regressions. Denoting by βA the slope of a generic cell with a 
昀氀ow accumulation area A, Table 1 shows how the βxx(A) 昀椀ts are used to 
classify raster cells according to a relative probability to be a source 
area. This raw yet empirical assumption, allowed to identify source area 
objectively. 

The maximum relative probability of a raster cell to be a source area 
(SA) is set at 50% and the minimum at 5% (Table 1). Cells with terrain 
slope and 昀氀ow accumulation area below β05(A) or above β95(A) have 0% 
probability to be a SA. 

2.3. Landslide runout modeling 

To model the propagation of rapid 昀氀ow-like landslides, the meth-
odology exploits “r.randomwalk” (Mergili et al., 2015)). The software 
implements a Monte Carlo approach to simulate rapid 昀氀ow-like land-
slides paths from known source areas locations. Lateral spreading of the 
昀氀ow is controlled by the local slope and rules that force the perpetuation 
of the 昀氀ow direction. Parameters used by r.randomwalk to select the 
possible paths followed by trajectories are well described in the original 
work by (Mergili et al., 2015). The trajectories are certainly driven by 
the direction of maximum slope but some spread (deviation) from that 
trajectory is allowed to prevent the 昀氀ow from concentrating into an 
unrealistic linear feature. In particular, the randomness of the paths is 
handled by two parameters fβ and fd, the value of which de昀椀nes with 
what probability, during pixel-to-pixel routing, a cell may be affected by 
trajectories coming from one of the adjacent but higher-located cells. In 
this work, the values of fβ and fd were assumed to be 5 and 2, respectively 
(values that are in agreement with the results of (Mergili et al., 2015)), 
and it was also supposed that a single trajectory is able to pass obstacles 
no higher than 5 m. 

The software is able to simulate a large number of paths and the main 
output of “r.randomwalk” is an impact frequency map, which portrays 
the count of paths (t) for each raster cell. 

A modeled path ends when a prede昀椀ned “break criterion” is met. In r. 
randomwalk, several break criteria can be used, including empirical 
relationships based on volume of material released or 昀氀ow velocity. 
However, since information on material released and 昀氀ow velocity is not 
easy to estimate, in this work we use the h/l ratio break criterion, i.e. 
height/distance traveled, also referred to as reach angle (Corominas, 
1996; Prochaska et al., 2008)). 

In the proposed methodology, we 昀椀rstly de昀椀ne the distribution of 
reach angles (Ω = atan(h

l
) ) using only the paths originated from the 

higher portion (§2.2) of landslides in the training dataset. In detail, Ω 

values are estimated by measuring h and l where the paths intersect (i.e. 
exit) the landslide boundaries and their statistical distribution is 
modeled with a Gaussian or lognormal distribution function (F(Ω)) 
昀椀tting the empirical data. 

To simulate runout throughout the entire study area, all raster cells 
classi昀椀ed as SAs (§2.2) are exploited as runout initiation paths, which 
end at reach angle values randomly sampled from the distribution 
function (F(Ω)). r.randomwalk allows the user to choose the maximum 
number of paths that can be initialized by each raster cell, which in the 
proposed methodology is reduced by multiplying it by the value of the 
relative probability calculated by the TT model. This allows to run 
different 昀氀ow runout simulations from the different source area loca-
tions in dependence of their relative probability of being a potential 
source area. 

2.4. Susceptibility and exposure 

In the proposed methodology, landslide susceptibility classi昀椀cation 
is based on a measure of similarity, in terms of path counts (t), between 
each raster cell and those included in the training landslide polygons. 
More in detail, to convert the impact frequency map (§2.3) into a sus-
ceptibility map (LS map) to the runout of rapid 昀氀ow-like landslides, we 
昀椀rst extract the impact frequency values (t) within landslide polygons of 
the training inventory (Santangelo et al., 2021). 

These values are then used to construct an empirical cumulative 
distribution function (ECDF(t)), which is applied to the impact fre-
quency map to generate the LS map, assigning values from 0 to 1 to the 
raster cells. A value near 1.0 signi昀椀es a high susceptibility to the runout 
of 昀氀ow-like landslides, indicating that the number of modeled paths 
through that cell is similar to the maximum paths in the training in-
ventories. Conversely, values near zero indicate low or zero modeled 
path values, indicating low susceptibility. 

ECDF(t) functions are de昀椀ned separately for hillslope and channel-
ized phenomena, and they are also used to assess the exposure of 
transportation infrastructure (RE) to rapid 昀氀ow-like landslides. Specif-
ically, (i) the transportation infrastructure is split into segments of equal 
length, (ii) then each segment is associated with the total number of 
paths (t) computed by r.randomwalk for the underlying raster cells, and 
(iii) 昀椀nally the ECDF(t) function is applied to each segment to estimate 
its exposure value starting from the corresponding total number of paths 
(t). High values calculated with the ECDF curve (close to 1) indicate 
locations along the linear infrastructure with high concentration of 
runout paths, then having a high exposure level to 昀氀ow-like landslides. 
Conversely, values close to 0 (low number of paths) correspond to lo-
cations with low exposure levels. 

To create the 昀椀nal ‘combined’ LS map for rapid 昀氀ow-like landslides, 
the methodology merges the LS maps for channelized and hillslope 
phenomena by selecting the higher value for each pixel. Similarly, the 
‘combined’ exposure of the railway network (RE) is determined by 
choosing the highest RE value for each railway segment among those 
obtained for channelized and hillslope movements. 

2.5. Validation of the susceptibility and exposure maps 

The methodology uses two diversi昀椀ed approaches to validate the 
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landslide susceptibility map (LS map), and the transportation infra-
structure exposure (RE) map, respectively. As suggested by (Reich-
enbach et al., 2018), multiple metrics are used to validate the modeling 
outputs. Validation uses an independent landslide dataset, not used for 
model training, which can be either a different landslide inventory or a 
landslide sample extracted from the original inventory. 

LS map is validated using the Area Under the ROC curve (AUROC) 
and the Kolmogorov-Smirnov (KS) ‘D’ statistic (Davis, 2002), which 
measures the maximum vertical distance between the empirical cumu-
lative distribution functions (ECDF) of the susceptibility map in the in-
dependent landslide polygons and in the entire study area. 

The ROC curve and AUC (Fawcett, 2006) are essential metrics in 
machine learning for evaluating and comparing classi昀椀cation models. 
The ROC curve illustrates how a binary classi昀椀er performs across various 
thresholds by plotting TPR (true positive rate) against FPR (false positive 
rate). The AUC condenses this performance into a single value ranging 
from 0 to 1, with 1 indicating a perfect classi昀椀er, 0.5 indicating random 
guessing, and values below 0.5 implying an inverse correlation with true 

labels. AUC is versatile, threshold-agnostic, and robust for assessing a 
model’s ability to distinguish between positive and negative instances. 

The second metric was introduced in this study, since it does not 
require information on no-landslide zones, which can prove useful in the 
cases where the landslide validation dataset has limited information. 

The infrastructure exposure (RE) map is validated analyzing the 
spatial intersection between the transport infrastructure and the land-
slide validation polygons. In order to account for the width of the 
transportation infrastructure, the methodology requires the creation of a 
3-m buffer around the equal-length linear segments into which the 
entire national rail network is divided. This is then overlaid on the 
landslide polygons to 昀椀nd the intersections. 

If the distribution of RE values at landslide locations signi昀椀cantly 
differs from the overall network’s RE distribution, it suggests that the RE 
zoning identi昀椀es some highly exposed railway segments. However, this 
validation approach relies heavily on the amount of data available in the 
validation dataset. Suf昀椀cient intersections between the railway network 
and validation landslides are necessary to establish a reliable frequency 

Fig. 2. Location of the training landslide inventory maps. In colors the convex hulls: blue = Lombardy inventories, red = Umbria inventory, green = Sicily inventory. 
The map shows the subdivision of Italy into topographic units (TU) as de昀椀ned by (Guzzetti and Reichenbach, 1994). Light colors represent the heuristic associations 
of the topographic units with the training inventories: TU 1.1 and 1.2 is paired to Lombardy; TU 4.8, 7.4, 4.7, 8.1, 8.2, 8.4 to Sicily; and the remaining to Umbria (see 
§3.2.2). (For interpretation of the references to colour in this 昀椀gure legend, the reader is referred to the web version of this article.) 
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distribution of exposure values for the intersected railway segments. 

3. Case study: The Italian railway network 

In Italy, the responsibility for maintaining the railway networks lies 
with the infrastructure manager, RFI (Rete Ferroviaria Italiana - https:// 
www.r昀椀.it/en.html). RFI oversees the maintenance of approximately 
17,700 km of railway tracks, a portion of which is susceptible to various 
natural hazards, including landslides (Alvioli et al., 2021; Firmi et al., 
2021; Guzzetti et al., 2003; Salvati et al., 2018). The Italian railway 
network extends across the entire national territory, with recent 昀椀ndings 
(Firmi et al., 2021) indicating that roughly 7700 km of the network are 
potentially exposed to different types of landslides. The methodology 
detailed in the preceding section was applied comprehensively across 
the Italian territory to evaluate, at a national scale, the railway net-
work’s susceptibility to rapid 昀氀ow-like landslides. 

3.1. Data 

In our case study, we employed the TINITALY Digital Elevation 
Model (DEM), recognized as the highest resolution DEM accessible at a 
national scale (Tarquini et al., 2007; Tarquini and Nannipieri, 2017), 
This DEM was created by combining, using the Mosaik process, of all 
available topographical data in Italy, sourced from maps at a scale of 
1:25,000 or larger. The quality and spatial resolution of the DEM mirror 
the characteristics of the original data. Notably, in areas where trian-
gulated points are widely spaced, the resulting triangle areas (Triangu-
lated Irregular Network - TIN) are notably larger than the DEM 
resolution (10 m × 10 m) (Marchesini et al., 2021). 

RFI (Rete Ferroviaria Italiana) provided the vector layer of the 
operational railway network, featuring a level of detail that allows for 
the representation of individual railway tracks, even within railway 
stations. Sections of the railroad located within tunnels were omitted 
from the dataset, as they are not susceptible to rapid landslides. 

Training inventory of landslides data (Fig. 2) was obtained from 
three different geomorphological landslide inventories (Guzzetti et al., 
2012; Marchesini et al., 2014), respectively, located in Lombardy, 
Umbria and Sicily regions (see Fig. 8 for the location and administrative 

region boundaries). The inventory in Lombardy was prepared at a scale 
of 1:10,000 for the Valcamonica and Valseriana basins, encompassing a 
total area of 2114 km2 (blue polygon in Fig. 2). Landslides were 
recognized through visual interpretation of 1:33,000 black & white and 
1:20,000 colour stereoscopic aerial photographs, and include 8110 
segments representing landslide runouts. 

The training inventory of rapid 昀氀ow-like landslides in Umbria, which 
covers an area of about 8400 km2, was prepared at 1:10,000 scale (red 
boundary in Fig. 2) through visual interpretation of 1:33,000 black & 
white and 1:13,000 colour stereoscopic aerial photographs, and includes 
a total of 1459 segments classi昀椀ed as rapid 昀氀ow-like landslides. The 
training inventory in Sicily was prepared at 1:15,000 scale for an area of 
1970 km2 (green polygon in Fig. 2). The inventory was derived by 
interpreting b/w stereoscopic aerial photographs at 1:33,000 and 
1:28,000 scale taken in 1954 and 2005, respectively (Bucci et al., 2016; 
Santangelo et al., 2015). The inventory includes a total of 1736 segments 
representing rapid 昀氀ow-like landslides. In the three inventories the 昀氀ow 
source areas are mapped as points and runouts as lines (Fig. 2). This type 
of mapping poses practical problems since the lines drawn by the photo- 
interpreters may not perfectly match the 昀氀ow direction resulting from 
digital terrain models (DEMs) (Santangelo et al., 2015). To take into 
account graphical errors and facilitate modeling, a 20-m buffer was 
delineated around each segment. 

For the validation, we use landslide polygons from the IFFI inventory 
map (Trigila et al., 2010), a national database published by the Istituto 
Superiore per la Protezione e la Ricerca Ambientale (ISPRA), available at 
the IdroGeo geoportal (https://idrogeo.isprambiente.it/app/). This in-
ventory was already used to validate a national scale landslide non- 
susceptibility map (Marchesini et al., 2014) and a national map of 
landslide susceptibility (Loche et al., 2022). The IFFI inventory is a 
composite of different inventories prepared by the Italian regional ad-
ministrations. The quality, density and accuracy of the inventory vary 
across the regions and also across the different landslide types as noted 
by (Loche et al., 2022). Only rapid 昀氀ow-like landslides (i.e., those 
classi昀椀ed as “Rapid 昀氀ows”) were selected for the validation, corre-
sponding to a total of 23,654 landslides (Fig. 5b). 

Fig. 3. Quantile regressions for different quantiles, inventories and rapid 昀氀ow-like landslide types (from (Marchesini et al., 2020)). The dashed black line is the 
function proposed by Rickenmann and Zimmermann (1993) and used by (Horton et al., 2008). 
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3.2. Modeling settings 

3.2.1. Training settings 
The classi昀椀cation of the training inventories for Lombardy, Umbria 

and Sicily into hillslope and channelized rapid 昀氀ow-like landslides was 
based on the methodology described in §2.1, using the Italian slope units 
map produced by (Alvioli et al., 2020). The uppermost portion of each 
landslide polygon (10% of the cells at the highest elevation), was 
considered as landslide source area (SA, as explained in §2.2). To include 
only areas with non-negligible surface runoff, we excluded cells with 
昀氀ow accumulation area <500 m2 (§2.2). 

In Fig. 3 we show the results of six different quantile regressions (TT 
approach) obtained for channelized and hillslope movements, using the 
TINITALY DEM and the three training inventories (Lombardy, Umbria, 
and Sicily). The 昀椀gure includes, for reference, the function proposed by 
(Rickenmann and Zimmermann, 1993) (and used by (Horton et al., 
2008)), which is the lower limit boundary of the entire dataset collected 
by the authors. 

To obtain F(Ω) (§2.3), we applied r.randomwalk with 100 paths from 
each cell of the landslide source areas identi昀椀ed in the training 

inventories, using the parameter values suggested by software authors 
(Mergili et al., 2015). We performed this step of the methodology for 
channelized and hillslope landslides (§2.4), independently, for the three 
training inventories (i.e. Umbria, Lombardy and Sicily). Fig. 4 shows the 
six modeled Gaussian probability distributions F(Ω) of the reach angle 
for the three inventories and the two landslide types. 

3.2.2. Application settings 
The runout modeling was not simulated over the whole country since 

the “railway density” is not homogeneous and is null in a few areas. To 
select the spatial domain of application (SDoA), we delineated the area 
draining towards the railway infrastructure (Fig. 5a). In addition, within 
the draining areas, we selected only raster cells with a ratio of elevation 
difference to planimetric distance from the railway, along the 昀氀ow di-
rection (Marchesini et al., 2021), equal to or higher than 2◦. This value is 
precautionary, since debris 昀氀ows rarely have reach angles <4◦ (Rick-
enmann, 2005). We also excluded all raster cells with a hydrological 
distance from the railway network longer than a threshold of 10 km, 
which is a precautionary value compared to the maximum runout dis-
tance observed in the training inventories (i.e. 3500 m). 

Fig. 4. Probability distribution functions (F(Ω)) of the reach angle for the three inventories and the two types of rapid 昀氀ow-like landslides.  

Fig. 5. a) Spatial domain of application (SDoA) of the methodology (see text for explanation). b) Railway network and IFFI inventory.  
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Since TT equations and F(Ω) models were calibrated in the three 
training areas (Lombardy, Umbria, and Sicily) shown in Fig. 2, their 
application to other parts of the country could be done only after pairing 

the training areas with different SDoA portions. Pairing was based on 
expert judgment considering geomorphological, climatic, and litholog-
ical characteristics. Among the different subdivisions of the Italian 

Fig. 6. Details of the maps of the relative probability to be source areas for (a) channelized and (b) hillslope rapid 昀氀ow-like landslides.  

Fig. 7. Detail maps of the LS and RE maps. For LS, raster cells with values less or equal to 0.05 are not shown. (a) RE and LS for channelized 昀氀ow-like landslides, (b) 
RE and LS for hillslope 昀氀ow-like landslides, (c) LS and RE combined maps. 
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Fig. 8. Railway exposure (RE) to rapid 昀氀ow-like landslides in the different Italian regions. The provided numerical values represent the linear extent of railway 
segments where the exposure exceeds 0.5, along with the corresponding proportion relative to the overall length of the railway line. Abruzzo (ABR); Calabria (CAL); 
Emilia-Romagna (EMR); Liguria (LIG); Veneto (VEN); Molise (MOL); Umbria (UMB); Marche (MAR); Lombardy (LOM); Campania (CAM); Friuli Venezia Giulia 
(FVG); Valle d’Aosta (VAO); Lazio (LAZ); Piedmont (PIE); Trentino-Alto Adige (TAA); Tuscany (TOS); Sicily (SIC); Basilicata (BAS); Apulia (PUG); Sardinia (SAR). 
Colors and ranges of RE values correspond to the following classes of exposure: negligible, low, moderate, high, and very high. 
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territory (e.g. (Bini, 2013; Fredi and Lupia Palmieri, 2017)), we adopted 
the topographic and geomorphological physiographic units proposed by 
Guzzetti and Reichenbach (Guzzetti and Reichenbach, 1994). Fig. 2 
portraits the 昀椀nal heuristic pairing between the three training in-
ventories and the physiographic units and shows, as an example, that the 
entire Alpine chain (physiographic units 1.1 and 1.2) is associated with 
the Lombardy inventories. 

The railway network was split into 1-km segments for RE assessment. 

4. Results and discussion 

Loche et al. (2022) found that the northern part of Italy, dominated 
by the Alpine arc, is highly susceptible to 昀氀ow-like landslides due to 

steep terrain and elevation. However, mountainous terrain across the 
Italian peninsula creates conditions favorable for landslide occurrence. 
This emphasizes the need to evaluate the vulnerability of transportation 
infrastructure to such events nationwide. 

Our methodology enables assessment of transportation network 
susceptibility to rapid 昀氀ow-like landslides, demonstrated using the 
Italian railway network (Fig. 5). Proper modeling of source areas, run-
outs, and rigorous validation are crucial. Consequently, assessing pre-
diction accuracy is essential to ensure reliable modeling of landslide 
zonation. 

4.1. Rapid 昀氀ow-like landslides source areas and runout 

Landslides source areas and runout have been modeled according to 
the procedure described in §2.2 and §2.3, obtaining, respectively, 
topographic threshold (TT) functions and reach angles distributions (F 
(Ω)). 

Fig. 3 depicts the TT quantile regression functions for hillslope and 
channelized landslides, used to assess the likelihood of a raster cell being 
a source area for rapid 昀氀ow-like landslides. It is observed that: 

- For the Lombardy and Umbria training inventories, a negative cor-
relation between 昀氀ow accumulation and slope is evident across all 
quantile regression functions of the TT model, with a more pro-
nounced effect in Lombardy. 

- In Sicily, this correlation is primarily observed in equations corre-
sponding to higher quantiles (95th, 90th, and 75th for channelized 
landslides; 90th and 75th for hillslope movements).  

- In Lombardy, channelized landslides occur at steeper slope angles 
compared to hillslope landslides for all 昀氀ow accumulation values. A 
similar trend is observed in Umbria for quantiles equal to or less than 
the 25th quantile. 

The intermediate modeling results yields intriguing 昀椀ndings. Most 
quantile regressions derived from the TT approach con昀椀rm the estab-
lished negative correlation between 昀氀ow accumulation and slope for 
source areas (SAs) of rapid 昀氀ow-like landslides (Chen et al., 2009; 
Horton et al., 2008; Rickenmann and Zimmermann, 1993). This result, 
however, was not necessarily expected, as the data used for regression 
昀椀tting primarily stemmed from automatic cell selection in higher 
topographic regions of the training landslides. 

Another noteworthy observation comes from equations β05(A) and 
β95(A) (Fig. 3), delineating 昀氀ow accumulation and slope conditions ex-
pected within 昀氀ow-like landslide source areas. While intuitively, SAs are 
rare on gentle slopes, interpreting their scarcity on steep slopes is less 
straightforward. We attribute this to the lack of vegetated and unvege-
tated soils/debris on very steep cliffs available for mobilization (Carrara 
et al., 2008). 

The probability distributions F(Ω) of reach angles computed for the 
three inventories and two types of landslides (channelized and hillslope) 
exhibit similarities but not equality. Analysis (Fig. 4) reveals:  

- Reach angle values, for channelized landslides, are generally lower 
than those for hillslope landslides.  

- Sicily generally shows lower reach angle values than Umbria and 
Lombardy. In fact, the modes of the distributions of the reach angle 
values are always lower than in the other two regions and have 
signi昀椀cant values even below 10◦.  

- For channelized landslides, the central value of the distribution is 
around 30◦, while it is 3–7◦ larger for hillslope landslides (Umbria: 
35.1◦, Sicily: 30.8◦, Lombardy: 37.1◦). Rickenmann (2005) reported 
the lowest travel angle for debris 昀氀ows in 昀椀ne material as 4◦ in a 
Swiss inventory, which is an unlikely value in our probability dis-
tributions. In fact, 4◦ corresponds to percentiles consistently smaller 
than 0.001 for channelized and smaller than 8 × 10−4 for hillslope 
landslides. 

Fig. 9. Box plots showing the distribution of the railway exposure (RE) values 
of the segments in the regions of Italy (see Fig. 7). Width of boxplots is pro-
portional to the fraction of rail segments in each region. Colors depend on the 
median value and are classi昀椀ed according to Fig. 7 (the negligible class is merged 
into low). 

Fig. 10. The graph shows the landslides count and the relative area density in 
the SDoA across different regions. Marche and Abruzzo show signi昀椀cant dif-
ferences with respect to the other regions. 
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Interestingly, we found that automatically distinguishing between 
hillslope and channelized slope, based solely on intersection with a slope 
unit map, led to subtle differences in SA identi昀椀cation and runout 
propagation. In Lombardy, and to some extent in Umbria, the TT model 
indicated that, at the same slope, the 昀氀ow accumulation required for 
channelized landslide initiation exceeds that for hillslope initiation 
(Fig. 3), consistent with experimental evidence (Crosta et al., 1990; 
VanDine, 1985). 

Regarding 昀氀ow propagation, Fig. 4 shows that channelized land-
slides generally have lower reach angle values compared to hillslope 
landslides, aligning with existing literature (Hunter and Fell, 2003; 
Lorente et al., 2003; Scotto di Santolo and Evangelista, 2009). 

4.2. Rapid 昀氀ow-like landslides susceptibility and railway exposure 

Maps depicting landslide susceptibility and railway network expo-
sure were produced following the methodology outlined in §2.4. Fig. 6 
provides a small portion of the relative probability maps for rapid 昀氀ow- 
like landslide source areas, highlighting distinct spatial patterns for 
channelized and hillslope occurrences. 

The susceptibility maps (LS maps) for channelized and hillslope 
rapid 昀氀ow-like landslides serve as intermediate results for the combined 
susceptibility map. Fig. 7 highlights differences between the two, 
notably longer propagation distances in channelized features. High 
susceptibility values (near 1) indicate areas with numerous runout paths 
and high susceptibility to 昀氀ow-like propagation (e.g., the apical portion 
of a fan), while values near zero signify fewer paths and less 
susceptibility. 

Fig. 8 depicts Italy’s administrative subdivision into 20 regions 
alongside maps illustrating railway segment exposure in each region. RE 
is categorized into 昀椀ve levels: negligible (0.0–0.1), low (0.1–0.25), 
moderate (0.25–0.5), high (0.5–0.75), and very high (0.75–1.0). The 
letter “L” denotes the length of high to very high exposed railway lines, 
with value of RE > 0.5, while percentage value refers to the corre-
sponding percentage relative to the entire length of the railway network 
within this speci昀椀c region. Regions with maximum exposed segments 
include TAA, CAM, SIC, PIE, and CAL, while regions such as PUG, BAS, 
FVG, VAO, SAR, and MAR have exposed segments totaling <100 km. 

Fig. 9 displays boxplots illustrating the distribution of RE values 
across different Italian regions. In other words, Fig. 9 is complementary 

to Fig. 8, and sheds light on the details of the exposed segment situation 
in terms of value distribution on a 0–1 scale. The thickness of each 
boxplot corresponds to the total number of segments in the region, while 
colour indicates the median value. VAO and TAA, situated entirely in the 
Alpine chain, exhibit nearly all railway segments highly exposed to 
potential 昀氀ow phenomena. ABR and LIG, also mountainous regions, 
show high average RE values. While most regions have low or moderate 
median RE values, some segments within them display high to very high 
exposure. PUG stands out as the only region characterized by consis-
tently low RE values. It is worth noting that the longer the boxplot shape, 
the less representative its median value, especially if the distribution is 
clearly non-Gaussian, as in the case of LOM and VEN. 

4.3. Validation of the susceptibility and exposure maps 

To validate the landslide susceptibility (LS) and the railway exposure 
(RE) maps, we exploited the procedure described in §2.5, using the IFFI 
inventory as an independent validation dataset. 

4.3.1. LS map validation 
Due to the signi昀椀cant heterogeneity of the IFFI dataset, LS map 

validation was conducted region by region. To ensure accurate inter-
pretation of results and mitigate potential misinterpretation stemming 
from varying landslide data abundance, an exploratory analysis of the 
IFFI data was initially conducted. This analysis aimed to compare 
regional IFFI inventories based on two variables: (i) the number of IFFI 
landslides within the SDoA and (ii) the percentage of SDoA area occu-
pied by IFFI landslides relative to the entire region. Fig. 10 illustrates 
variable values, with the number of IFFI landslides within the SDoA 
normalized to the maximum value observed in Lombardy (1443 land-
slides) for improved graph clarity. 

The IFFI dataset shows considerable variation in the abundance of 
rapid 昀氀ow-like landslides across Italian regions, particularly evident 
between Marche and Abruzzo (MAR and ABR) and the rest of the 
country. Consequently, validation was performed for only 16 out of 20 
Italian regions (as depicted in Fig. 8). MAR and ABR were excluded due 
to limited data availability, while PUG and SAR were omitted because of 
the absence of rapid 昀氀ow-like landslides in the SDoA. BAS and CAL have 
the fewest landslides in the SDoA (27 and 33, respectively), while, at the 
opposite, LOM and CAM exhibit the largest amounts of landslide 

Fig. 11. Comparison of landslide count density and landslide area density in the SDoA. Colour (green, light green, yellow, orange, red and black) refers to 6 different 
ranges of Area Under the ROC (AUROC) values. (For interpretation of the references to colour in this 昀椀gure legend, the reader is referred to the web version of 
this article.) 
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movements within the SDoA (1443 and 1174, respectively). 
Given these disparities in landslide information, we investigated 

whether a relationship existed between the density of landslide infor-
mation within SDoAs and model predictive performance, measured by 
the AUROC index. In Fig. 11 colors depend on the AUROC values while x 
and y axes portray the IFFI landslide count density and the IFFI landslide 
area density in the SDoA, respectively. Although a positive correlation 
between the two axes is observed, TAA notably deviates from other re-
gions. However, overall, there is no clear evidence of a direct relation-
ship between landslide information density and LS map predictive 
performance. 

Furthermore, the analysis of Fig. 11 provides insights into LS map 
validation results. Performance varies from acceptable to outstanding in 
10 regions (UMB, LAZ, VEN, LOM, CAL, FVG, SIC, PIE, VAO, EMR), 
including the three regions with available landslide training inventories 
(LOM, UMB, SIC). Conversely, performance is poor in TOS, MOL, CAM, 
and very poor in LIG and TAA. BAS exhibits puzzling model performance 
with an AUROC value of 0.40. This indicates a lack of clear correlation 
between validation landslide density and model performance, high-
lighting that the reasons for the models’ poor predictive performance 

may not be related to the abundance but to the quality of landslides 
information. 

We decided to further assess the performances of the LS map. An 
additional test compares the empirical cumulative distribution (ECDF) 
of susceptibility values in the entire LS map with those in the landslide 
inventory polygons (§2.5). Fig. 12 displays the ECDF curves for each 
region alongside the KS ‘D’ metric. The KS ‘D’ statistic (Davis, 2002) 
measures the maximum vertical distance between the ECDFs of sus-
ceptibility values within independent landslide polygons and those 
across the entire study area. A notably large ‘D’ indicates signi昀椀cant 
dissimilarity between the two functions, suggesting differences in sus-
ceptibility values within the validation inventory polygons compared to 
the broader region, as expected for a susceptibility map. Conversely, a 
very small ‘D’ suggests random sampling of susceptibility values by 
landslide polygons, pointing at potential biases in either the suscepti-
bility map, the landslide inventory, or both. The advantage of using the 
ECDF lies in its ability to autonomously evaluate model performance, 
even with limited validation data and without the need for binary rep-
resentation of the dependent variable (value of 0 as non-landslide 
locations). 

In Fig. 12, we note signi昀椀cant and varied disparities between the two 
distributions across regions. The anomalous AUROC value observed for 
BAS (Fig. 11) is corroborated by the inversion of the ECDFs: the distri-
bution of LS map values within landslide polygons (red curve) surpasses 
that of the entire SDoA (blue curve). Furthermore, the maximum values 
of the KS ‘D’ statistic correspond to UMB (0.78) and LAZ (0.59), while 
the lowest correspond to TAA and LIG. We note that the two validation 
metrics for the LS map, AUROC and KS ‘D’ statistic, yield consistent 
results. KS ‘D’ con昀椀rms most AUROC 昀椀ndings, reinforcing good vali-
dation performance for UMB and LAZ and poor results for TAA, LIG, 
MOL, and TOS (Fig. 12). 

In CAL and EMR, regions with similar low landslide density, inter-
mediate AUROC values (0.7 to 0.8) indicate acceptable discrimination. 
Notably, CAL shows a high KS ‘D’ value (0.489), ranking fourth among 
all regions, while EMR has the fourth lowest KS ‘D’ value (0.243) 
(Fig. 12). 

As an effort to elucidate the factors contributing to the LS map’s low 
validation performance, as measured by at least one metric, we carried 
out an in-depth visual analysis of the classi昀椀cation and locations of IFFI 
landslides in speci昀椀c regions (BAS, LIG, TAA, and additionally TOS, 
MOL, CAM). The same analysis has been carried out in an attempt to 
understand the reasons behind the high performance achieved in other 
regions (UMB, LAZ, but also SIC, LOM, VEN). 

In the BAS region (Fig. 13a), numerous IFFI landslides on gentle 
slopes are classi昀椀ed as very or extremely rapid movements. A visual 
inspection reveals characteristics typical of earth昀氀ows, gravel/sand/ 
debris slides, clay/silt slides, or complex landslides with limited runout. 
These features align with the region’s terrain and geological composi-
tion, which primarily consists of hilly and low mountainous terrain 
composed of unconsolidated clastic rock, chaotic-melange, and silici-
clastic sedimentary rocks (Bucci et al., 2022). Similar observations hold 
for the TOS, MOL, and partially in the CAM regions. 

In the LIG region (Fig. 13b), large landslides occur on moderate 
slopes (~14◦) and exhibit shapes inconsistent with rapid or very rapid 
landslides, resembling earth昀氀ows and complex slides instead. 

In the TAA region (Fig. 13c,d), the IFFI polygons classi昀椀ed as rapid 
昀氀ow-like failures often encompass the entire upstream catchment of the 
landslide deposits, including many cells that the LS map does not classify 
as having high runout susceptibility and resulting in low validation 
performance. 

Limited landslide data in regions like EMR (Fig. 13e,f), with only 42 
landslides, pose challenges despite correct landslide type and 
morphology classi昀椀cation. The absence of analogous morphological 
settings in the training dataset (Umbria inventory, Fig. 2) contributes to 
poor model performance. In EMR, rapid movements mainly occur in 
badlands, prevalent in the Chaotic-mélange lithotype (Bucci et al., 2022) 

Fig. 12. ECDF of LS map values inside (i) the IFFI inventory (red curve) and (ii) 
the SDoA (blue curve), for the different administrative regions. Vertical dashed 
lines represent the KS ‘D’ statistic. The ‘D’ values and the related signi昀椀cance 
level of the KS test are also given. (For interpretation of the references to colour 
in this 昀椀gure legend, the reader is referred to the web version of this article.) 
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of EMR but not in UMB. 
We conclude that issues in (i) mapping approaches, (ii) ambiguous 

landslide classi昀椀cation and (iii) inadequate representativeness of the 
training data, may explain the suboptimal predictive performance in 
certain regions (Figs. 11, 12). 

In contrast, outstanding (as in UMB region) and excellent (as in LAZ, 
SIC, LOM, VEN regions) performances (Figs. 11, 12) are attributed to 
appropriate classi昀椀cation, location, and graphical representation of 
rapid 昀氀ow-like landslides (Fig. 13g,h). 

4.3.2. Railway Exposure map validation 
To validate the RE map, we compared the distribution of exposure 

values for segments of the railway network intersecting with the IFFI 

inventory to that of all railway segments. 
Regions with the highest number of intersections are: LOM (16), TAA 

(10), CAM (10), and VAO (7). Others have fewer intersections: SIC, PIE, 
and FVG (3 each), VEN and LAZ (2 each), and TOS, LIG, and BAS (1 
each). 

Fig. 14 depicts the relative frequency of exposure values for (i) all rail 
network segments and (ii) only those intersecting IFFI landslides. 
Excluded from the chart are railway segments in alluvial plains, where 
rapid 昀氀ow-like landslides are not expected. The distributions of the two 
groups of segments differ signi昀椀cantly: those intersecting landslides 
tend to have exposure values mostly above 0.5, with a main mode near 
1.0, while the entire railway network distribution peaks near 0 with 
denser information below 0.5. This stark contrast con昀椀rms the RE map’s 

FIg. 13. Examples of landslide polygons classi昀椀ed as rapid and very rapid 昀氀ows in the IFFI inventory. In BAS (a) and LIG (b) the polygons are poorly compatible with 
those typically generated by rapid 昀氀ow-like landslides. In TAA (c)the source areas of the phenomena include the entire hydrological basin, causing many false 
positives where the LS map does not identify source areas and/or runout channels (d). In EMR (e,f) the LS map is not able to spatially predict the location of rapid 
昀氀ow-like landslides. In LAZ (g) and UMB (h) the landslide polygons are consistent with those expected for rapid 昀氀ow-like landslides. 
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strong prediction capability. 

4.4. Limitations of the proposed procedure 

The method presented in this research is versatile yet data- 
dependent, relying on digital terrain models and robust landslide in-
ventories for large-scale assessments. While RE and LS maps primarily 
serve as ranking tools for exposure and susceptibility, aiding in priori-
tizing further studies and actions, limitations arise when local factors or 
transient conditions affect susceptibility. 

The methodology objectively classi昀椀es training inventories into 
hillslope and channelized rapid 昀氀ow-like landslides using slope units, 
treating both inventories separately due to distinct triggering and runout 
characteristics. However, caution is needed when merging susceptibility 
and railway exposure to avoid too many false positives. 

Potential false negatives in RE and LS maps, may stem from various 
factors, including DEM inadequacies, TT model limitations in recog-
nizing source areas, and non-representative training landslide in-
ventories affecting source area characterization and reach angle 
calibration. 

A methodology’s advantage lies in classifying source areas solely 
based on information from landslide triggering zones, eliminating the 
need to identify non-source areas. However, subjectivity may arise in 
assigning relative probabilities to source areas. Additionally, slope and 
昀氀ow accumulation in source areas may not consistently correlate across 
all quantile regression functions. 

Applying the method to the Italian railway network reveals certain 
limitations. Landslides in the training inventory are represented as lines, 
with buffer zones around each line used for training reach angle values. 
Small buffer sizes in some cases led to early path intersections with the 
buffered training polygons, resulting in high or very high reach angles. 

Segmenting the railway into 1 km sections for exposure assessment 
through random path intersections introduces subjectivity, potentially 
impacting exposure evaluation. We adopted 1 km segments in line with 
Alvioli et al. (2021) to balance critical section identi昀椀cation while 
highlighting the signi昀椀cance of even low exposure values in short rail-
way segments. This is particularly relevant in areas where the railway 
crosses debris 昀氀ow fans, where individual short segments (even 10–20 
m) may seem to have low exposure due to a relatively low chance of 
direct rapid 昀氀ow-landslide intersection. However, for the broader rail-
way section within the debris 昀氀ow fan, exposure remains high, and any 
impact on a small segment within the fan can disrupt train operations 
along the entire longer section. 

5. Conclusion 

In conclusion, our methodology for assessing transportation network 
exposure to rapid 昀氀ow-like landslides has been successfully applied to 
the entire Italian railway network. Leveraging statistical and conceptual 
approaches, the model requires input data such as a transportation 
infrastructure map, a medium/high-resolution digital elevation model, 
and landslide inventories for training and validation purposes. 

Key outputs include maps delineating landslide source areas, sus-
ceptibility to landslide runout, and exposure of transportation infra-
structure. The model’s effectiveness was demonstrated through 
validation against an extensive landslide inventory covering the entire 
national territory. 

Results indicate that approximately 20.1% of the Italian railway 
network exhibits exposure values exceeding 0.5 on a scale from 0.0 to 
1.0, with around 13.4% classi昀椀ed as highly exposed (exposure >0.75) to 
rapid 昀氀ow-like phenomena. These 昀椀ndings emphasize the signi昀椀cant 
challenges posed to infrastructure functionality and transportation 
safety. 

Noteworthy insights from this research include the ef昀椀cacy of high- 
quality landslide inventories for training models across expansive re-
gions. Furthermore, the classi昀椀cation of hillslope and channelized rapid 
昀氀ow-like landslides is optimized by analyzing the intersection of land-
slide polygons with a suitable mapping of slope units. It is essential to 
recognize the distinctions in source areas and travel characteristics for 
hillslope and channelized landslides, warranting separate treatment and 
simulation. 

In summary, this study underscores the importance of robust data 
inputs and nuanced modeling approaches for accurately assessing the 
exposure of transportation networks to rapid 昀氀ow-like landslides, 
providing valuable insights for infrastructure management and safety 
planning. 
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susceptibility analysis in tropical mountainous terrain using the physically based r. 

slope.stability model. Nat. Hazards Earth Syst. Sci. 20 (3), 815–829. https://doi.org/ 
10.5194/nhess-20-815-2020. 

Park, H.J., Jang, J.Y., Lee, J.H., 2019. Assessment of rainfall-induced landslide 
susceptibility at the regional scale using a physically based model and fuzzy-based 
Monte Carlo simulation. Landslides 16 (4), 695–713. https://doi.org/10.1007/ 
s10346-018-01125-z. 

Petrova, E., Bostenaru Dan, M., 2020. Preface: Natural hazard impacts on technological 
systems and infrastructures. Nat. Hazards Earth Syst. Sci. 20 (10), 2627–2631. 
https://doi.org/10.5194/nhess-20-2627-2020. 

Prochaska, A.B., Santi, P.M., Higgins, J.D., Cannon, S.H., 2008. Debris-昀氀ow runout 
predictions based on the average channel slope (ACS). Eng. Geol. 98 (1), 29–40. 
https://doi.org/10.1016/j.enggeo.2008.01.011. 

Reichenbach, P., Rossi, M., Malamud, B.D., Mihir, M., Guzzetti, F., 2018. A review of 
statistically-based landslide susceptibility models. Earth Sci. Rev. 180, 60–91. 
https://doi.org/10.1016/j.earscirev.2018.03.001. 

Rickenmann, D., 2005. Runout prediction methods. In: Jakob, M., Hungr, O. (Eds.), 
Debris-Flow Hazards and Related Phenomena. Springer, pp. 305–324. https://doi. 
org/10.1007/3-540-27129-5_13. 

Rickenmann, D., Zimmermann, M., 1993. The 1987 debris 昀氀ows in Switzerland: 
documentation and analysis. Geomorphology 8 (2), 175–189. https://doi.org/ 
10.1016/0169-555X(93)90036-2. 

Salvati, P., Petrucci, O., Rossi, M., Bianchi, C., Pasqua, A.A., Guzzetti, F., 2018. Gender, 
age and circumstances analysis of 昀氀ood and landslide fatalities in Italy. Sci. Total 
Environ. 610–611, 867–879. https://doi.org/10.1016/j.scitotenv.2017.08.064. 

Samela, C., Carisi, F., Domeneghetti, A., Petruccelli, N., Castellarin, A., Iacobini, F., 
Rinaldi, A., Zammuto, A., Brath, A., 2023. A methodological framework for 昀氀ood 
hazard assessment for land transport infrastructures. Int. J. Disast. Risk Reduct. 85, 
103491 https://doi.org/10.1016/j.ijdrr.2022.103491. 

Santangelo, M., Marchesini, I., Bucci, F., Cardinali, M., Fiorucci, F., Guzzetti, F., 2015. An 
approach to reduce mapping errors in the production of landslide inventory maps. 
Nat. Hazards Earth Syst. Sci. 15 (9), 2111–2126. https://doi.org/10.5194/nhess-15- 
2111-2015. 

Santangelo, M., Marchesini, I., Bucci, F., Cardinali, M., Cavalli, M., Crema, S., Marchi, L., 
Alvioli, M., Guzzetti, F., 2021. Exposure to landslides in rural areas in Central Italy. 
J. Maps 17 (4), 124–132. https://doi.org/10.1080/17445647.2020.1746699. 
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